
In Search of a
Scalable Raft-based Replication Architecture

Christian Deyerl
Friedrich-Alexander University

Erlangen-Nürnberg (FAU)

Tobias Distler
Friedrich-Alexander University

Erlangen-Nürnberg (FAU)

ABSTRACT

Providing a consistent replicated log across different servers,
the Raft consensus protocol greatly facilitates the design of
fault-tolerant services. However, due to the protocol follow-
ing the principle of a single strong leader, such architectures
in general do not scale with the number of cores and/or
network cards available on each server. To address this prob-
lem, we present the Niagara replication architecture, which
makes it possible to build scalable systems while still rely-
ing on Raft for consensus. In particular, we show how Nia-
gara parallelizes the process of appending new log entries
across multiple Raft instances and discuss Niagara’s support
for read operations with different consistency requirements.

CCS CONCEPTS

• Computer systems organization→ Reliability.
ACM Reference Format:

Christian Deyerl and Tobias Distler. 2019. In Search of a Scalable
Raft-based Replication Architecture. In 6th Workshop on Principles
and Practice of Consistency for Distributed Data (PaPoC ’19), March
25, 2019, Dresden, Germany. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3301419.3323968

1 INTRODUCTION

The Raft replication protocol [18] represents the founda-
tion of numerous dependable services currently running
in production, including key-value stores [6], distributed
databases [7], coordination services [9], and message bro-
kers [19]. In such systems, Raft is typically responsible for
maintaining a log that is replicated across the participating
servers and defines in which order to execute the commands
that modify the application state. To ensure the consistency
of this log, before appending new entries Raft executes a

PaPoC ’19, March 25, 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 6th Workshop on Principles and Practice of Consistency for Distributed
Data (PaPoC ’19), March 25, 2019, Dresden, Germany, https://doi.org/10.1145/
3301419.3323968.

fault-tolerant consensus algorithm that guarantees that all
non-faulty servers add the commands in the same order. Rely-
ing on Raft to keep the log consistent significantly simplifies
application design and implementation, however, it also in-
troduces problems for use cases in which a high application
workload causes Raft to become a performance-limiting bot-
tleneck. Unfortunately, solving such problems by providing
Raft with additional computing or network resources in gen-
eral is not an option due to the protocol’s internal structure
limiting scalability. That is, in scenarios where the protocol
is computation bound, for example due to the application
frequently appending comparably small commands to the
log, allowing Raft to use more cores on each server usually
does not increase performance. In a similar way, adding net-
work cards and/or connections typically does not lead to
improvements in cases where Raft is network bound, for
example as the result of large entries being added to the log.

In this paper, we address these problems with Niagara, a
state-machine replication architecture that enables system
designers to achieve scalability while still using Raft as un-
derlying consensus algorithm. Like Raft, Niagara also main-
tains a consistent log of state-modifying commands, however,
in contrast to Raft, Niagara distributes the responsibility for
appending new entries across multiple Raft instances. More
specifically, a configurable number of loosely coupled Raft
instances first create individual instance-local logs, and Nia-
gara then deterministically merges these logs into a global
log, which is finally accessed by the application. With the
involved Raft instances being largely independent from each
other, it is straightforward for different instances to effec-
tively and efficiently use different cores or network cards.
In particular, this paper makes the following contribu-

tions: (1) It presents the Niagara replication architecture
that is able to utilize the computing and network resources
available onmulti-core servers. Unlike existing Raft-based ap-
proaches [7], Niagara does not require application-state par-
titioning. (2) It discusses Niagara’s support for applications
that demand read operations with different consistency guar-
antees. (3) It evaluates the Niagara prototype, which is based
on one of the most widely used Raft implementations: the
protocol implementation of the etcd coordination service [9].

https://doi.org/10.1145/3301419.3323968
https://doi.org/10.1145/3301419.3323968
https://doi.org/10.1145/3301419.3323968

PaPoC ’19, March 25, 2019, Dresden, Germany Christian Deyerl and Tobias Distler

2 PROBLEM STATEMENT

In this section, we provide details on the Raft protocol and
explain how it is typically used to build replicated services.
Furthermore, we analyze the scalability limitations generally
associated with such architectures and identify the chal-
lenges that need to be addressed to solve these problems.

2.1 Background

Figure 1 illustrates a common use-case scenario of Raft in
which a stateful application relies on the protocol to keep
multiple replicas consistent across different servers. To this
end, application replicas only process state-modifying com-
mands in the order in which they appear in a replicated
log managed by Raft. In particular, when the application
wants to perform a state update (e.g., in the course of ex-
ecuting a client request), the application first submits the
corresponding command to Raft. In the next step, Raft then
runs a distributed consensus algorithm to replicate the com-
mand across servers and agree on the position at which the
command will be appended to the log. Once this position is
committed by the protocol, Raft instances on all servers add
the command to their respective logs. At this point, it is safe
for an application replica to apply the command to its local
state, provided that the replica has already processed all pre-
vious commands from the log. With all replicas applying all
commands in the same order, their states remain consistent.
Raft’s distributed consensus protocol elects one of the

participating servers to act as leader, resulting in the other
servers to assume the roles of followers. Only the current
leader starts the consensus algorithm for new commands;
if the application submits a command to a follower, the
follower forwards it to the leader. To ensure that a new
leader is elected in case the old leader crashes or gets dis-
connected from the system, followers in Raft monitor the
leader by periodically exchanging heart-beat messages. If
the current leader fails to send such messages over a certain
period of time, the followers trigger a new leader election.
As each state modification becomes part of the log, it

grows with every state update. To ensure that servers are
able to retain the log, Raft truncates it when the log reaches a
configurable number of entries. For this purpose, the protocol
instructs the local application replica to create a snapshot of
the application state and then discards all commands from
the log that have been executed prior to the snapshot.
Unlike state modifications, read-only operations access-

ing the application state do not have to be replicated across
servers and therefore do not appear in the log. In general,
Raft makes it straightforward for applications to provide
read operations with different consistency guarantees [17]:
With the application state at all times representing the result
of a consistent prefix of the committed sequence of com-

Server 1 Server 2

Server N

Application State

Raft

Log1. Submit

3. Append

4. Apply

Leader

2. Replicate

1
Figure 1: State-machine replication with Raft.

mands, a read that is performed by the application without
further coordination returns a weakly consistent result. For
such reads, it is guaranteed that they see a valid state, how-
ever the data they return might be stale, for example, due to
the local server not yet having received the latest log entries.
To perform a strongly consistent read, in a nutshell, an appli-
cation replica contacts the current leader and requests the
log position of the latest committed entry. As soon as the
replica has applied all commands up to this position to its
local state, it is able to perform the strongly consistent read.

2.2 Limited Scalability

One of Raft’s key design principles was the idea of having
a strong form of leadership, that is, implementing as much
functionality as possible in the leader [18]. While, on the one
hand, this approach for many researchers and programmers
makes it easier to reason about the protocol, on the other
hand, it also limits the scalability of traditional Raft-based
replication architectures. In particular, this is due to the fact
that in Raft all relevant information (e.g., new log entries)
flows through the leader to enable it to fully coordinate the
consensus process. Given this internal protocol structure, the
single leader may become a performance bottleneck in the
face of high application workloads. As confirmed by our ex-
periments in Section 4, providing additional computing and
network resources in such case usually does not mitigate this
problem, because of Raft being unable to effectively use them.

2.3 Challenges

Considering the drawbacks of the traditional approach, our
goal is to develop a scalable Raft-based replication architec-
ture that meets the following requirements: (1) The architec-
ture must ensure consistency while benefiting from multiple
cores and/or networks cards. (2) The architecture should still
offer the convenience of a single log, without requiring the
application state to be partitioned. State partitioning has the
potential to further improve scalability (see Section 5), but is
outside the scope of this paper. (3) The architecture should
not make it necessary to modify intrinsic Raft functionality
such as the algorithms for consensus and leader election.

In Search of a Scalable Raft-based Replication Architecture PaPoC ’19, March 25, 2019, Dresden, Germany

3 NIAGARA

In this section, we present details of our Raft-based replica-
tion architecture Niagara, which parallelizes the addition
of new commands to the log and therefore is able to effec-
tively use the computing and network resources available
on multi-core servers. Specifically, we focus on discussing
how Niagara ensures a consistent log, how it handles log
compaction, and how it supports strongly consistent reads.

3.1 Overview

As shown in Figure 2, in contrast to traditional Raft-based
replication architectures, a server in Niagara does not ex-
ecute only a single but multiple instances of Raft, typically
each one on a separate core. To reduce the number of syn-
chronization points, the Raft instances on a server are loosely
coupled and do not interact with each other. In particular,
each instance communicates with its peer instances on other
servers via dedicated network connections, possibly even
using dedicated network cards. Furthermore, each Raft in-
stance follows its regular workflow and appends commands
to its own, instance-local log. Based on these local logs, a
Niagara-specific architecture component, the sequencer, cre-
ates a consistent global log by merging the local logs in a
deterministic fashion. Once a command appears in the global
log, application replicas apply it to their respective states.

As a key benefit, relying on loosely coupled Raft instances
allows Niagara to minimize development overhead by re-
using an existing implementation of Raft. Above all, the
architecture does not make it necessary to modify the most
complex and crucial protocol parts such as the consensus
algorithm or the mechanisms for compacting the local log
and for electing a leader. With each Raft instance performing
its own independent leader election, as illustrated in Figure 2,
the leader role (L) of different Raft groups might be assigned
to different servers. In such case, in contrast to the traditional
approach, Niagara’s multiple application replicas are able to
efficiently submit new commands by handing them over to
a Raft leader running on their respective servers. If a server
hosts multiple leader instances, the application is allowed
to choose which instance to use for this purpose; ideally,
the application in such situations balances the submission
of new commands across the leader instances in question.

3.2 Sequencer

By executing Raft’s distributed consensus protocol, each Raft
instance ensures that its local log is kept consistent. Guaran-
teeing that the same also applies to the global log is the main
responsibility of Niagara’s sequencer. To achieve this, a
sequencer combines the local logs following a deterministic
pattern: in a round-robin order of increasing instance ids
r ∈ {1, 2, ...,R}, the sequencer selects the next entry from

Server 1 Server 2

Srv.N

Application State

Raft1 Raft2 SequencerRaftR

Local
logs

Global logSubmit

L

Leader

Submit

Submit

L

L

1
Figure 2: Overview of the Niagara architecture.

each local log and appends it to the global log. If there is no
new committed command in the local log that is next in line,
the sequencer waits for such an entry to become available,
independent of whether there are entries remaining in other
logs. With all sequencers behaving this way, it is guaranteed
that they all produce identical copies of the global log.

To ensure that Niagara makes progress when there is at
least one local log with commands waiting to be processed,
each sequencer periodically executes the following steps:
First, for each Raft instance r the sequencer determines the
number of committed commands cr that have yet to be ap-
pended to the global log. Next, the sequencer computes the
maximum cmax of these values. Finally, to each leader in-
stance l that is hosted on the local server, the sequencer
submits cmax −cl no-op commands. These special commands
pass through Raft in the same way as regular commands,
but later result in a no-op when the application executes
them. Although not having an effect on the application state,
no-op commands play an important role in guaranteeing
system progress. Once a no-op command is committed and
appears in the local log for which a sequencer is waiting, it
provides the sequencer with an entry to append to the global
log, thereby enabling the sequencer to move on to other logs
with newly committed regular application commands.

3.3 Log Compaction

In order to prevent the local and global logs from growing
indefinitely, Niagara triggers a log compaction as soon as
the global log reaches a configurable size. To do so, a se-
quencer first instructs the application to snapshot the local
service state. After this procedure is complete, the sequencer
truncates the global log at the position represented by the
snapshot, keeping only newer entries whose effects are not
yet included in the snapshot. This way, the combination of
snapshot and remaining global-log entries still provides all
the information necessary to reproduce the current applica-
tion state, for example, in cases where a server needs to re-
cover from a failure. Apart from garbage-collecting the global
log, a sequencer also informs all Raft instances on the same
server to truncate the corresponding parts of their local logs.

PaPoC ’19, March 25, 2019, Dresden, Germany Christian Deyerl and Tobias Distler

Overall, Niagara’s approach to performing log compac-
tion has two main benefits: (1) The mechanism requires only
a single application snapshot to garbage-collect the local logs
of all Raft instances on a server. (2) While the application is
creating the snapshot, Raft instances can continue to execute
the consensus process for new commands, thereby minimiz-
ing the effects of log compaction on system performance.

3.4 Consistent Reads

As in traditional Raft-based replication architectures, an ap-
plication replica in Niagara is always able to performweakly
consistent reads by directly accessing its state (cf. Section 2.1).
Consequently, in the following we focus on presenting Nia-
gara’s support for strongly consistent reads. For such reads,
it is essential to guarantee prior to the read that the state
of the application is sufficiently up to date. In particular, all
commands that previously have been executed on at least
one of the servers in the system must also have been ap-
plied by the application replica that wants to perform the
read. Niagara ensures this by relying on the sequencer
as a coordinator for strongly consistent read operations.

Specifically, the task of the sequencer in this context is to
identify a position in the global log at which the sequencer’s
application replica will have seen and processed the com-
mands of all append operations that could have previously
been committed on one ormore servers. To determine this po-
sition, the sequencer learns the current local commit progress
of one of the Raft instances by querying the instance’s leader
and then uses this local-log position to compute the posi-
tion at which the next command ordered by this instance
(in the future) will be appended to the global log. If the se-
quencer’s application replica has processed the global log
up to this point, it is able to perform the strongly consistent
read operation. Below, we elaborate on this process in detail.
When the application contacts the sequencer to request

permission for a strongly consistent read, the sequencer for-
wards the request to an arbitrary (potentially remote) Raft
leader instance r . Upon receiving such a request, the leader
of r first determines the position1 plocal,r of its latest com-
mitted local-log entry, then ensures that it still assumes the
leader role by exchanging heart-beat messages with a major-
ity of its followers [17], and finally returns plocal,r to the se-
quencer. Next, the sequencer waits until the global log grows
up to (and excluding) position pдlobal = (plocal,r ∗ R) + r ,
with R representing the number of Raft instances per server
and r ∈ {1, 2, ...,R}. As soon as this is the case, the sequencer
allows the application to perform the strongly consistent read
under the condition that the application first processes all
remaining commands in the global log up to position pдlobal .

1If the position of an entry is p , it is the p-th entry to have been appended to
the log since system start (i.e., the position is not affected by log compaction).

Querying the latest committed local-log entry from a sin-
gle Raft leader to decide the earliest point in time at which the
application may perform a read in Niagara is sufficient to
provide strong consistency. This is due to the fact that, as dis-
cussed in Section 3.2, the global log is created by merging lo-
cal logs in a deterministic round-robin fashion. Consequently,
if the local log of an instance r only contains plocal,r com-
mitted entries, then at this point at most plocal,r + 1 en-
tries from local logs with instance ids lower than r can
have already been appended to the global log on any server
in the system. Therefore, (plocal,r ∗ R) + r marks an upper
threshold for the commands that may have been executed
before the application requested the strongly consistent read.

3.5 Fault Handling

Relying on a collection of loosely coupled Raft groups, most
fault scenarios in Niagara are handled by the specific Raft
instance affected, without requiring interaction with the se-
quencer or other Raft instances. In cases where, for example,
network connections to remote instances fail, Raft’s built-in
fault-handling mechanism is responsible for reestablishing
the connections. If network problems cause a leader to be
separated from the majority of its peers over a longer pe-
riod of time, the fault-handling procedures of a Raft instance
may also involve the election of a new leader. In scenarios in
which an entire server crashes, fault handling is not limited
to individual instances but conducted by all Raft groups in
parallel. Specifically, once the failed server recovers, all of its
Raft instances rejoin their respective groups as followers and
receive from their leaders the newly appended log entries
they have missed while the server was disconnected from
the system. If due to log compaction a leader has already
discarded some of these log entries, it enables the recov-
ering server to catch up by transmitting its latest snapshot.

3.6 Implementation

Our Niagara prototype is based on version 3.3.3 of one of the
most widely used Raft libraries: the protocol implementation
of the etcd coordination service [9], which is written in Go.
All main components of Niagara are implemented as sepa-
rate goroutines, that is, lightweight threads that are dynam-
ically mapped to operating-system threads by the Go run-
time. Within each server, components communicate via FIFO
channels through which they are able to efficiently exchange
messages. The channel connecting the sequencer and the
application represents the global log, which to minimize Ni-
agara’s memory footprint, only stores the committed com-
mands until the application collects them. The interaction
between servers is handled byHTTP. To improve throughput,
Raft batches multiple commands submitted by the applica-
tion and replicates them within the same consensus instance.

In Search of a Scalable Raft-based Replication Architecture PaPoC ’19, March 25, 2019, Dresden, Germany

4 EVALUATION

In this section, we evaluate whether Niagara is able to
benefit from additional computing and network resources.
As baseline, we use the traditional replication architecture
presented in Section 2.1 (in the following simply referred to
as “Raft”), which only comprises a single Raft instance on
each server. To get meaningful and comparable results, the
two evaluated system implementations originate from the
same code base and share as many components as possible.
In particular, both systems improve consensus efficiency by
replicating new commands in batches (see Section 3.6). All
reported numbers represent the average result of three runs.

4.1 Throughput

In our first experiment, we determine the throughput with
which the two systems are able to append new commands
to their respective (global) logs. Furthermore, we investigate
whether it is possible to improve performance by allowing
the systems to utilize an increased number of cores on each
server. For this microbenchmark, we distribute the evaluated
system architectures across three 12-core servers (Intel Xeon
E5645, 2.4 GHz, Ubuntu 16.04, Linux 4.4.0) that are connected
with Gigabit Ethernet. As we are interested in stress testing
the consensus layer in this experiment, we keep the size of
commands small (i.e., 16 bytes of payload per command) and
directly generate the workload in the application, for which
we reserve an additional core. That is, for this microbench-
mark there is no interactionwith clients to avoid interference.
In order to evaluate different workload levels, we vary the fre-
quency with which the application submits new commands.
Figure 3 presents the measurement results for this mi-

crobenchmark experiment showing the relationship between
the throughput requested by the application (horizontal axis)
and the throughput with which Raft and Niagara actually
append new commands to the log (vertical axis). Ideally, both

0

100

200

300

400

500

600

700

0 200 400 600
Requested throughput [kOps/s]

Pr
ov

id
ed

th
ro

ug
hp

ut
[k

O
ps

/s
]

12 cores
8 cores
4 cores
2 cores
1 core

(a) Raft

0

100

200

300

400

500

600

700

0 200 400 600
Requested throughput [kOps/s]

Pr
ov

id
ed

th
ro

ug
hp

ut
[k

O
ps

/s
]

12 cores
8 cores
4 cores
2 cores
1 core

(b) Niagara

Figure 3: Comparison between requested andprovided

throughput in Raft and Niagara for a microbench-

mark continuously appendingnewentries to the log.

0

10

20

30

40

50

60

70

80

90

100 kOps/s 200 kOps/s 300 kOps/s 400 kOps/s
Provided throughput

La
te

nc
y

[m
s]

Raft (1 core)
NIAGARA (1 core)
NIAGARA (2 cores)
NIAGARA (4 cores)
NIAGARA (8 cores)
NIAGARA (12 cores)

Figure 4: 90th percentile latencies of Raft and Nia-

gara at different throughput levels for a microbench-

mark continuously appendingnewentries to the log.

throughput performance numbers match, resulting in data
points on the graph’s diagonal. When we use the Linux util-
ity taskset [14] to allocate a single core for Raft, this is
only the case for workloads of up to about 120,000 append
operations per second. If the requested throughput increases
beyond this level, Raft already reaches saturation and there-
fore is no longer able to handle all append requests, forcing
our workload generator in the microbenchmark application
to drop some of them. As our results in Figure 3a illustrate,
allowing Raft to run on multiple cores does not solve the
problem. Instead, due to increased inter-core synchronization
overhead, the throughput achieved by Raft in the evaluated
multi-core settings is lower than its single-core throughput.

Repeating the same experiment with Niagara, we config-
ure the number of Raft instances to always match the number
of allocated cores. As shown in Figure 3b, when using a sin-
gle Raft instance Niagara provides a similar throughput as
Raft. However, in contrast to Raft, due to distributing the re-
sponsibilities for appending new log entries across different
instances, Niagara’s performance improves for an increas-
ing number of instances. In the setting with 12 Raft instances,
when the number of instances matches the total number of
cores available on each server, the application inevitably
needs to share computing resources with Niagara, there-
fore enabling only small gains compared with the 8-core
setting. At maximum, Niagara appends almost 600,000 new
commands per second to its global log, a factor of 5 improve-
ment over the traditional Raft-based replication architecture.

4.2 Latency

During the microbenchmark experiment presented in Sec-
tion 4.1, we not only evaluated the throughputs achieved by
Raft and Niagara, but also recorded how long it took each
system to perform the requested append operations. Figure 4
presents the 90th percentiles of the measured response times
for different throughput levels and system configurations.

PaPoC ’19, March 25, 2019, Dresden, Germany Christian Deyerl and Tobias Distler

At a throughput of 100,000 operations per second, append-
ing new log entries requires about 35 milliseconds when
using the best-performing Raft configuration, that is, the
setting in which the protocol runs on a single core; for the
other Raft settings that are able to sustain this throughput
level we observed 90th percentile response times of up to
100 milliseconds. With the servers in our experimental en-
vironment being connected via local-area links, large parts
of the response time are not the result of network latency,
but instead can be contributed to queueing delays as well as
the serialization and deserialization of HTTP messages. As a
consequence, Niagara is able to provide significantly lower
latency than Raft when being configured to rely on multi-
ple Raft instances due to parallelizing protocol execution
across different cores. For the same throughput level, Nia-
gara settings with fewer Raft instances offer lower latency
than those with more instances, because of the sequencer
needing to merge fewer local logs to construct the global log.

4.3 Network Resources

In our second experiment, we evaluate the scalability of Raft
and Niagarawith respect to the network resources available.
For this purpose, we deploy the systems on 3 servers (4 cores,
Intel Xeon E3-1245 v3, 3.4 GHz, Ubuntu 16.04, Linux 4.4.0)
and use Linux Traffic Control [15] to split their respective Gi-
gabit Ethernet links into four 250-Mbit subnets. This allows
us to vary the amount of network resources each system
has at its disposal. For Niagara, we create a dedicated Raft
instance for each provided subnet. In this experiment, Raft
and Niagara are permitted to utilize all available cores on a
server. To investigate a typical use case of Raft in practice,
we implement a multi-threaded key-value store that can be
remotely accessed by clients via HTTP and offers read and
write operations. The workload in this experiment consists
of data chunks with 8-byte keys and 2-kilobyte values. With
both evaluated systems processing weakly consistent reads
entirely within the application (see Sections 2.1 and 3.4), our
analysis in the following focuses on strongly consistent reads.
Figure 5a shows the maximum throughputs achieved by

Raft and Niagara for reads that guarantee strong consis-
tency. Such reads are executed by the application, but coor-
dinated by the replication protocol (see Sections 2.1 and 3.4).
Due to the coordination messages of Raft and Niagara be-
ing small, most of the data in this case is exchanged be-
tween clients and the application, not between Raft instances
on different servers. Consequently, the replication proto-
col for small and medium workloads does not become a
performance-limiting factor, enabling both systems to in-
crease performance when provided with additional network
resources. For high workloads, the fact that Niagara paral-
lelizes the coordination of strongly consistent reads across

0

10

20

30

40

50

1 2 3 4
Number of subnets

Th
ro

ug
hp

ut
[k

O
ps

/s
]

Raft
NIAGARA

(a) Reads

0

10

20

30

40

50

1 2 3 4
Number of subnets

Th
ro

ug
hp

ut
[k

O
ps

/s
]

Raft
NIAGARA

(b) Writes

Figure 5: Throughput provided by Raft and Niagara

for a key-value store offering read and write access.

different Raft instances leads to performance improvements,
for example allowing Niagara to achieve an 11% higher
throughput than Raft when using four Raft instances. In
contrast to reads, writes must be appended to the log and
therefore are replicated by Raft and Niagara. With all writes
in Raft flowing through the leader, high write workloads may
cause the leader’s network link to be filled to capacity. As
Figure 5b confirms, adding links under such circumstances
in Raft allows the application to distribute the transmission
of the (comparably small) replies to clients, but otherwise
has no significant effect on throughput. Raft instances in
Niagara, on the other hand, are able to benefit from their
own network links, enabling Niagara with four instances
to handle about 2.6 times more writes per second than Raft.

4.4 Discussion

Our evaluation has shown that the etcd implementation
of Raft we have used for the experiments does not scale
with the computing and network resources available. This
is not a problem of this particular implementation, but a
direct consequence of Raft’s strong-leader design principle.
Technically, it would probably be possible to modify exist-
ing Raft implementations to mitigate at least some of the
effects observed in our experiments, for example by main-
taining multiple network connections between the leader
and each of its followers. However, our experiences with
such efforts in the context of the BFT-SMaRt replication
library [5], which implements a different consensus algo-
rithm, have shown that this approach (1) requires non-trivial
changes to the replication protocol, (2) introduces additional
synchronization points, and (3) may lead to throughput in-
creases in some scenarios, but does not offer general scala-
bility [3]. In contrast, the Niagara replication architecture
represents a way to achieve scalability in Raft-based systems
without the need to adapt essential parts of the protocol.

In Search of a Scalable Raft-based Replication Architecture PaPoC ’19, March 25, 2019, Dresden, Germany

5 RELATEDWORK

Several works aimed at improving the performance of Raft-
based systems. Howard et al. [11] proposed optimizations to
speed up leader election. Arora et al. [1] used quorum reads
involving multiple followers to offload work from the leader
while still ensuring strong consistency. Both approaches are
applicable to Niagara. For scalability, CockroachDB [7] di-
vides its state into partitions that each are coordinated by a
dedicated Raft instance. In CockroachDB, the Raft instances
on a server are tightly coupled and, amongst other things,
share the same execution context and heart-beat mecha-
nism. This approach is efficient if a server hosts thousands of
partitions, but unlike Niagara it requires significant modifi-
cations to the original protocol implementation. In Niagara,
the number of Raft instances is small (e.g., one instance per
core) and thus the overhead of heart-beatmessages negligible.

Application-state partitioning is also used to achieve scal-
ability in replication protocols besides Raft. In Multi-Ring
Paxos [16], a server only participates in the multicast groups
that distribute the requests accessing the server’s partitions.
The Agora coordination service [20] relies on parallel in-
stances of the Zab protocol [12] and synchronizes them via
vector clocks that are attached to application requests and
replies. In contrast, Niagara provides scalability without re-
quiring a partitioned state or extended application messages.
That said, for use cases for which state partitioning at applica-
tion level is beneficial, it is still possible to implement such a
scheme on top of Niagara, for example, using the global log
as input for a dispatcher that assigns commands to partitions.
The Atum middleware [10] offers scalable and resilient

group communication based on replica groups whose compo-
sition may vary at runtime, for example, due to a new server
joining the system. With Niagara focusing on effectively
utilizing the local resources available on a server, Raft groups
in Niagara are static and co-located on the same machines.

Various Byzantine fault-tolerant agreement protocols par-
allelize the consensus process for incoming requests [2–
4, 8, 13]. Apart from the fault model—Raft tolerates crashes—a
major difference to Niagara is the fact that these protocols
achieve strong consistency for reads by ordering them in the
same way as writes. Niagara, on the other hand, relies on
the replication protocol for coordinating strongly consistent
reads, but the read itself is only performed by a single server.

6 CONCLUSION

The Niagara replication architecture makes it possible to
build scalable systems that rely on Raft for consensus. In con-
trast to traditional Raft-based systems, Niagara parallelizes
the responsibilities for replicating writes and coordinating
strongly consistent reads across different Raft instances. As
a result, it is able to effectively use both multiple cores as
well as multiple network cards on each participating server.

ACKNOWLEDGMENTS

This work was partially supported by the German Research
Council (DFG) under grant no. DI 2097/1-2 (“REFIT”).

REFERENCES

[1] Vaibhav Arora, Tanuj Mittal, Divyakant Agrawal, Amr El Abbadi, Xun
Xue, Zhiyanan, and Zhujianfeng. 2017. Leader or Majority: Why Have
One When You Can Have Both? Improving Read Scalability in Raft-
like Consensus Protocols. In Proc. of the 9th Conference on Hot Topics
in Cloud Computing (HotCloud ’17).

[2] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2014. Scalable BFT
for Multi-Cores: Actor-based Decomposition and Consensus-oriented
Parallelization. In Proc. of the 10th Workshop on Hot Topics in System
Dependability (HotDep ’14).

[3] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2015. Consensus-
Oriented Parallelization: How to Earn Your First Million. In Proc. of
the 16th Middleware Conference (Middleware ’15).

[4] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids
on Steroids: SGX-Based High Performance BFT. In Proc. of the 12th
European Conference on Computer Systems (EuroSys ’17).

[5] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. 2014. State
Machine Replication for the Masses with BFT-SMaRt. In Proc. of the
44th Int’l Conference on Dependable Systems and Networks (DSN ’14).

[6] Consul. 2019. https://www.consul.io/.
[7] Ben Darnell. 2015. Scaling Raft. https://www.cockroachlabs.com/blog/

scaling-raft/.
[8] Michael Eischer and Tobias Distler. 2019. Scalable Byzantine Fault-

tolerant State-Machine Replication on Heterogeneous Servers. Com-
puting 101, 2 (2019).

[9] etcd. 2019. https://coreos.com/etcd/.
[10] Rachid Guerraoui, Anne-Marie Kermarrec, Matej Pavlovic, and Dragos-

Adrian Seredinschi. 2016. Atum: Scalable Group Communication Using
Volatile Groups. In Proc. of the 17th Int’l Middleware Conference (Mid-
dleware ’16).

[11] Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy, and Jon
Crowcroft. 2015. Raft Refloated: Do We Have Consensus? SIGOPS
Operating Systems Review 49, 1 (2015).

[12] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. 2011. Zab:
High-Performance Broadcast for Primary-Backup Systems. In Proc. of
41st Int’l Conference on Dependable Systems and Networks (DSN ’11).

[13] Bijun Li, Wenbo Xu, Muhammad Zeeshan Abid, Tobias Distler, and
Rüdiger Kapitza. 2016. SAREK: Optimistic Parallel Ordering in Byzan-
tine Fault Tolerance. In Proc. of the 12th European Dependable Comput-
ing Conference (EDCC ’16).

[14] Linux Manual Page. 2019. taskset(1). http://man7.org/linux/
man-pages/man1/taskset.1.html.

[15] Linux Manual Page. 2019. tc(8). http://man7.org/linux/man-pages/
man8/tc.8.html.

[16] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. 2012. Multi-
Ring Paxos. In Proc. of the 42nd Int’l Conference on Dependable Systems
and Networks (DSN ’12).

[17] Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Ph.D.
Dissertation. Stanford University.

[18] Diego Ongaro and John Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In Proc. of the 2014 USENIX Annual
Technical Conference (ATC ’14).

[19] RabbitMQ. 2019. https://www.rabbitmq.com/.
[20] Rainer Schiekofer, Johannes Behl, and Tobias Distler. 2017. Agora: A

Dependable High-Performance Coordination Service for Multi-Cores.
In Proc. of the 47th Int’l Conference on Dependable Systems and Net-
works (DSN ’17).

https://www.consul.io/
https://www.cockroachlabs.com/blog/scaling-raft/
https://www.cockroachlabs.com/blog/scaling-raft/
https://coreos.com/etcd/
http://man7.org/linux/man-pages/man1/taskset.1.html
http://man7.org/linux/man-pages/man1/taskset.1.html
http://man7.org/linux/man-pages/man8/tc.8.html
http://man7.org/linux/man-pages/man8/tc.8.html
https://www.rabbitmq.com/

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Background
	2.2 Limited Scalability
	2.3 Challenges

	3 Niagara
	3.1 Overview
	3.2 Sequencer
	3.3 Log Compaction
	3.4 Consistent Reads
	3.5 Fault Handling
	3.6 Implementation

	4 Evaluation
	4.1 Throughput
	4.2 Latency
	4.3 Network Resources
	4.4 Discussion

	5 Related Work
	6 Conclusion
	References

