Scalable Byzantine Fault-tolerant State-Machine Replication
on Heterogeneous Servers

Michael Eischer - Tobias Distler

Received: 21 September 2017 / Accepted: 11 August 2018

Abstract When provided with more powerful or extra hardware, state-of-the-art
Byzantine fault-tolerant (BFT) replication protocols are unable to effectively exploit
the additional computing resources: On the one hand, in settings with heterogeneous
servers existing protocols cannot fully utilize servers with higher performance capa-
bilities. On the other hand, using more servers than the minimum number of replicas
required for Byzantine fault tolerance in general does not lead to improved through-
put and latency, but instead actually degrades performance. In this paper, we address
these problems with OMADA, a BFT system architecture that is able to benefit from
additional hardware resources. To achieve this property while still providing strong
consistency, OMADA first parallelizes agreement into multiple groups and then ex-
ecutes the requests handled by different groups in a deterministic order. By varying
the number of requests to be ordered between groups as well as the number of groups
that a replica participates in between servers, OMADA offers the possibility to indi-
vidually adjust the resource usage per server. Moreover, the fact that not all replicas
need to take part in every group enables the architecture to exploit additional servers.

Keywords Byzantine fault tolerance - State-machine replication - Scalability -
Heterogeneity - Resource efficiency

1 Introduction

Applying the concept of Byzantine fault-tolerant (BFT) state-machine replication [8],
it is possible to build reliable systems that continue to correctly provide their services
even if some of their replicas fail in arbitrary ways. This includes failure scenarios
caused by hardware problems as well as (potentially malicious) misbehavior of soft-
ware components. In order to guarantee consistency in such systems, replicas exe-
cute client requests only after the requests have been committed by a BFT agreement

Michael Eischer and Tobias Distler
Friedrich-Alexander University Erlangen-Niirnberg (FAU)
E-mail: {eischer,distler} @cs.fau.de

This is a pre-print of an article published in Computing.
The final authenticated version is available online at:
https://doi.org/10.1007/s00607-018-0652-3.

https://doi.org/10.1007/s00607-018-0652-3

2 M. Eischer, T. Distler

protocol, which is responsible for establishing a global total order on all requests. In
particular, the agreement protocol ensures that the determined order of client requests
remains stable in the presence of replica failures or network problems.

In general, BFT agreement protocols require a minimum of 3 f + 1 replicas to tol-
erate up to f faulty replicas [22]. Although the number of protocol participants can be
larger than 3 f + 1, many BFT systems opt for exactly this many replicas [4, 6,7, 8, 9,
18, 23]. This is mainly due to the fact that the internal architectures of most state-of-
the-art BFT agreement protocols do not allow them to exploit additional replicas. In
contrast, with all replicas participating in the ordering of all requests, additional repli-
cas usually come at the cost of an increased computational and network overhead, and
consequently degrade performance without offering any notable advantages.

To prevent the agreement protocol from becoming the bottleneck of the entire
BFT system, research efforts in recent years aimed at increasing the throughput of
BFT agreement while keeping the number of replicas at a minimum [6, 18]. However,
these approaches are based on the assumption that all replicas run on homogeneous
servers, that is, servers with equal or at least similar performance capabilities. Un-
fortunately, it is not always possible to operate a BFT system under such conditions.
Especially in cloud deployments, the performance capabilities of different virtual
machines can vary significantly even if they are of the same instance type [20]. This
is usually a consequence of virtual machines being run on heterogeneous physical
servers, making it very difficult for cloud providers to offer identical computing re-
sources across virtual machines. As a result, it is basically impossible to ensure the
homogeneity of virtualized servers when deploying a BFT system in the cloud.

To address the problems discussed above, we present OMADA, a BFT system
architecture that exploits computing resources existing approaches are not able to
utilize: additional agreement replicas as well as spare capacities on fast servers.
OMADA achieves this by parallelizing agreement into multiple heterogeneous groups
and varying the ordering workload between them. This allows OMADA to individu-
ally adjust the responsibilities of replicas to the particular performance capabilities
of their servers. For example, a replica on a more powerful server can participate
in more than one group and be responsible for ordering a large fraction of requests,
whereas a replica on a less powerful server might only be part of a single group.

Although in this paper we primarily focus on heterogeneity introduced by servers,
we expect our approach to also be beneficial for scenarios in which variations be-
tween replicas are the result of other sources of heterogeneity. For example, using
heterogeneous replica implementations in order to minimize the probability of com-
mon mode failures [9, 11, 15] in general also causes replicas to advance at different
speeds, consequently having a similar effect as servers with different capabilities.

In summary, this paper makes four contributions: (1) It presents OMADA, a BFT
system architecture that benefits from additional replicas. (2) It details how OMADA
can exploit servers with heterogeneous performance capabilities. (3) It shows that
OMADA is generic by integrating the architecture with two BFT agreement proto-
cols. (4) It evaluates OMADA in a heterogeneous setting. In the remainder of the
paper, Sect. 2 identifies limitations of existing BFT architectures, Sect. 3 presents our
approach to address these issues, Sect. 4 describes two OMADA implementations,
Sect. 5 evaluates OMADA, Sect. 6 discusses related work, and Sect. 7 concludes.

Scalable Byzantine Fault-tolerant State-Machine Replication on Heterogeneous Servers 3

2 Background and Problem Statement

In this section, we first give an overview of BFT systems and then analyze the scala-
bility and resource usage of state-of-the-art BFT agreement protocols.

2.1 Background

In general, BFT systems based on state-machine replication [4, 6, 7, 8, 9, 18, 23]
require n > 3f 4+ 1 replicas to tolerate up to f faulty replicas. As shown in Fig. 1,
replicas ensure consistency by first running a protocol to agree on a client request
before executing the request. For this purpose, one of the replicas in the system acts
as leader while all other replicas participate as followers. If the leader becomes faulty,
replicas initiate a view change to reassign the leader role to a different replica.

Having received a request from a client, the leader assigns a unique sequence
number to the request and then starts the agreement process consisting of two rounds
of all-to-all communication between replicas: In the first round, which consists of two
phases (i.e., pre-prepare and prepare), replicas ensure that they consider the same
request proposal by the leader. After that, the second round (i.e., the commit phase)
is responsible for finalizing the assignment of the sequence number to the particular
request. In both cases, a replica completes a round once it has collected a quorum of
size [#1 of matching messages. The quorum size guarantees that each possible
pair of quorums intersects in at least f + 1 arbitrary replicas, and therefore in at least
one correct replica. Requests for which the agreement process has completed on a
replica are executed in the order of their sequence numbers. A client accepts the result
to its request after having obtained f + 1 matching replies from different replicas as
this guarantees that at least one of the replies was sent by a correct replica.

In order to prevent a faulty replica from impersonating a correct replica, correct
replicas authenticate each message, usually using a MAC authenticator, that is, a vec-
tor of message authentication codes [8]. Each MAC in the vector is calculated using
a secret only known to the sender and a particular receiver and cannot be verified by
a third party, thus requiring an authenticator to contain an individual MAC for each
intended recipient of the message. As a result, both the size of a MAC authenticator
and the computational cost of creating it are proportional to the number of recipients.

(2) Agreement and Execution

(1) Request Follower

pre-

(3) Reply .
prepare preparecommit

—

Fig. 1 Overview of a BFT system: Requests are first ordered and then executed by each non-faulty replica.

4 M. Eischer, T. Distler

2.2 Problem Statement

Building on the basic approach presented in Sect. 2.1, in recent years different works
have proposed architectural changes and protocol refinements, for example, to im-
prove resilience [4] or reduce replication costs [12, 16, 25]. Below, we focus on two
problems that so far remain unsolved: The ability of a BFT system to scale with the
number of agreement replicas as well as the efficient use of heterogeneous servers.

Lack of Scalability For applications for which the computational cost of executing
a client request is comparably small (e.g., coordination services [14]), the agreement
stage of a BFT system usually is the decisive factor limiting performance. Unfortu-
nately, introducing additional agreement replicas to solve this issue for two reasons
is not an option in existing systems: First, due to the fact that as discussed in Sect. 2.1
the quorum size depends on the total number of replicas, adding replicas leads to
larger quorums and consequently requires more messages. Second, when the num-
ber of intended recipients increases, creating MAC authenticators for the messages
exchanged between replicas becomes more costly and the messages become larger.

Inefficient Use of Heterogeneous Servers With all replicas participating in both the
agreement and the execution of all requests, the replicas in a BFT system usually
consume a similar amount of processing resources. Some protocols even deliberately
minimize potential imbalances caused by the additional responsibilities of a leader by
rotating the leader role among replicas [6, 23, 24]. While a balanced resource usage
is beneficial if replicas run on servers that have the same performance capabilities, it
prevents existing BFT systems from fully utilizing the available resources if replicas
are executed on heterogeneous servers. Due to progress depending on a quorum of
replicas, in such environments the performance of the agreement stage is limited by
the [#} th fastest server, leaving resources on more powerful machines unused.

Summary To be able to benefit from additional agreement replicas, a BFT system
must ensure consistency without involving all replicas in all message exchanges.
Furthermore, to exploit heterogeneous servers such a system must provide means
to distribute load depending on the specific performance capabilities of each server.

3 OMADA

In this section, we present details of the OMADA system architecture and explain
how it is able to exploit additional replicas as well as spare capacities on servers with
heterogeneous performance capabilities. As illustrated in Fig. 2, to use additional
servers OMADA parallelizes the agreement of client requests into multiple groups
and in addition also separates agreement from execution [25]; that is, client requests
not necessarily need to be processed by the same replicas by which they have been
ordered. As a consequence, replicas in OMADA may assume different roles that are
associated with different responsibilities: ordering client requests by participating in
an agreement group (leader or follower) and executing client requests (executor).

Scalable Byzantine Fault-tolerant State-Machine Replication on Heterogeneous Servers 5

Agreement Group 1 Execution

1 1
- [Leadez Follower} : E
(cten] =:) !
1
[Follower | Follower | ' - :
“eq\)es\ »|_ Leader | | Follower J ' © :
1
s
-/) | |
1 1
1 1
1

a\
W .)
1
1
T : [Follower Follower} :
I
__________________ [B e

(2) Agreement Group 2 (4) Reply |

N
N2

Fig. 2 Overview of the OMADA system architecture relying on multiple, possibly overlapping, agreement
groups. To invoke an operation at the application, a client (1) sends a request to one of the groups, which
then (2) orders the request using a BFT agreement protocol and eventually (3) forwards the request to a
set of executors. Having processed the request, (4) the executors return their results to the client.

To support heterogeneous servers, a replica in OMADA can participate in more
than one agreement group and furthermore assume multiple roles. This approach al-
lows OMADA to tailor the responsibilities of each replica to the individual perfor-
mance capabilities of its server. While a replica on a powerful server, for example,
may be part of several agreement groups and also act as executor, a replica on a slow
server might only contribute to request ordering in a single agreement group.

Despite relying on multiple, largely independent agreement groups, OMADA is
nevertheless able to establish a total order on all requests. To achieve this, OMADA
splits the sequence-number space into partitions of equal size and statically maps
one partition to each group. In particular a group g is responsible for assigning the
sequence numbers S, = {k-|¥|+ g|lk € N}; & denotes the set of all groups. This ap-
proach of parallelizing agreement into multiple groups has the key advantage that the
messages required for ordering a request only need to be exchanged between replicas
of the respective group, not between all agreement replicas in the entire system.

Knowledge about the number, composition, and individual sequence-number par-
titions of agreement groups, as well as the information which replicas act as execu-
tors, is static and available throughout the system. This, for example, allows a client
to randomly select an agreement group at start up, which from then on will be re-
sponsible for handling all of the subsequent requests the client issues to the service.

3.1 Scalable Ordering Based on Multiple Agreement Groups

In the following, we present the overall protocol OMADA runs to ensure that requests
are ordered and executed properly. As the OMADA system architecture does not de-
pend on a specific agreement method, we also define the requirements an agreement
protocol needs to fulfill in order to be used within an agreement group. Finally, we
discuss specifics of OMADA such as the coordination of groups and fault handling.
We use (m)a; g to denote a message m that has multiple recipients and is therefore
authenticated with a MAC vector containing MACs between the sender i and each
recipient j in the set Z. Besides, (m)p; ; represents a message that is exchanged
between sender i and a single recipient j and authenticated with a single MAC.

6 M. Eischer, T. Distler

Overall Protocol To access the application, a client ¢ sends a (REQUEST, ¢, 0,1) 0t o/
message to its agreement group. As the request will only be verified by members
of this group, the authenticator of this message is limited to MACs for the group’s
agreement replicas 7. Apart from the command to execute o, the request also con-
tains a client-local timestamp ¢ that is incremented by the client on each operation.
As agreement replicas store the timestamp z. of the latest committed request of each
client, the timestamp ¢ allows them to detect and consequently ignore old requests.

Having received the request, the agreement group first verifies that the message
is authentic and then starts the agreement process (see below) to assign a unique se-
quence number s to the request; s is chosen as the lowest of the agreement group’s
unused sequence numbers. Once the request is committed, each agreement replica a
sends an (EXECUTE, s, q,a, cri) 0, s message to all executors &. Apart from the client
request g, this message also comprises a field cri containing information that later en-
ables a client to determine which agreement replica it should contact for a subsequent
request. As discussed in Sect. 4, the exact content of the cri field depends on the spe-
cific agreement protocol used to order requests within the agreement group.

To tolerate up to f faults, OMADA relies on a total of 2f + 1 executors. An ex-
ecutor only accepts an EXECUTE if the message is authentic and its sender i is indeed
an agreement replica of the group responsible for assigning sequence number s. Be-
fore executing the corresponding request, an executor first waits until having obtained
f+ 1 matching EXECUTESs from different agreement replicas, as this proves that at
least one correct replica has committed the request. As the same request may be
committed at different times on different replicas, correct agreement replicas not nec-
essarily provide the same contact-replica information in their respective EXECUTE.
Therefore, an executor ignores the cri field when comparing these messages.

Although EXECUTESs potentially arrive in a nondeterministic pattern, executors
process client requests in the order of their sequence numbers, leaving no gaps be-
tween sequence numbers. Similar to agreement replicas, executors manage a times-
tamp 7. for each client, which is the timestamp of the latest request of a client ¢
the executor has processed. To prevent multiple invocations of the same request, the
execution of a request from a client ¢ with a timestamp ¢ < ¢, consists of a no-op.

After an executor e has processed a request, the executor sends the result r in a
(REPLY, ¢, t,e,r, c?i} Ue,c message to the client ¢ ; cri is a vector of the contact-replica
information contained in the f + 1 corresponding EXECUTEs (see Sect. 4). A client
accepts a result after having received f 4 1 REPLYs with matching r from different
executors as this guarantees that at least one of the messages originates from a correct
executor and therefore contains the correct result. As the contact replica of a group
might change over time, the client ignores the cri vector when comparing replies.

Internal Agreement-Group Protocol OMADA’s overall protocol presented above
does not specify how client requests are ordered within an agreement group. As a
consequence, it is possible to integrate the OMADA system architecture with differ-
ent agreement protocols. In the following, we present the general requirements an
agreement protocol needs to fulfill in order to be used in OMADA; please refer to
Sect. 4 for a discussion of two concrete prototype implementations.

Scalable Byzantine Fault-tolerant State-Machine Replication on Heterogeneous Servers 7

/* Agreement on client requests x/
void orderRequest(REQUEST request);
[REQUEST, SEQUENCENUMBER, CONTACTREPLICAINFORMATION] getCommittedRequest();

/* Skipping sequence numbers */
void flush(SEQUENCENUMBER seqNr);

/* Garbage collection x/
void discard (SEQUENCENUMBER segN1);

Fig. 3 Interface used by OMADA to access the group-internal agreement protocol (pseudo code).

— Byzantine fault tolerance: Being a BFT system architecture, OMADA requires a
replication protocol to provide safety in the presence of up to f arbitrary replica
failures. In this context, OMADA does not pose any restrictions on how many
agreement replicas a protocol must rely on for this purpose, although to sim-
plify presentation we assume that an agreement group consists of 3 f 4 1 replicas,
because this is the most common group size for BFT protocols based on state-
machine replication [3, 4, 6, 7, 8, 10, 23]. With regard to synchrony, OMADA
introduces no additional assumptions. Consequently, the synchrony model of the
overall system depends on the synchrony model of the underlying BFT protocol.

— Stable total order: To be compatible with OMADA, an agreement protocol must
produce a sequence of totally-ordered client requests in which, once a request is
committed, the assignment of a sequence number to the request does not change
anymore. As a key benefit, this requirement greatly simplifies the interaction be-
tween agreement and execution stage, and in addition also frees executors in
OMADA from the need to have a rollback mechanism for the application state.
Note that the necessity of having to establish a stable order still allows an agree-
ment protocol to deliver committed requests out of order [8] as long as each re-
quest is unchangeably mapped to a unique sequence number.

As a consequence of OMADA only imposing very generic assumptions on the in-
ternal agreement-group protocol, a variety of state-of-the-art BFT protocols can be
used to order requests (e.g., [3, 4, 6, 7, 8, 10, 23]). Furthermore, the integration of
an existing protocol into OMADA is facilitated by the lightweight interface handling
the interaction between the architecture and the agreement protocol, which is illus-
trated in Fig. 3. In particular, this interface includes methods with which the architec-
ture can start the agreement process for new client requests (orderRequest ()) and
collect requests for which agreement has completed (getCommittedRequest()).
Besides, there are methods for instructing the agreement protocol to skip sequence
numbers (flush()) and performing garbage collection of agreement-protocol mes-
sages (discard()), whose rationale and use cases are further explained below.

Coordination of Agreement Groups Agreement groups in OMADA operate indepen-
dently of each other and therefore possibly advance at different speeds. As a result,
one group may for example already have committed a client request for sequence
number s while another group has not yet reached sequence number s — 1. To ensure
liveness in such scenarios, OMADA provides a mechanism that allows slow agreement
groups to detect that they have fallen behind by receiving notifications from executors
when requests with higher sequence numbers become ready for processing.

8 M. Eischer, T. Distler

To detect gaps in the sequence of executable requests, each executor in OMADA
maintains information about sy, the sequence number of the last client request it
has executed, and s, the highest sequence number for which the executor has col-
lected f + 1 matching EXECUTEs. Whenever one of these values changes, an execu-
tor e broadcasts a (FLUSH, Seyec, $,€) 0, o message to all agreement replicas 2; in
addition, to ensure that the agreement replicas eventually receive the information, the
executor periodically rebroadcasts the latest FLUSH message with the current values.
By combining the information contained in FLUSH messages from different execu-
tors, agreement replicas are able to reliably determine the overall system progress.
For this purpose, each agreement replica calculates sp,gress to be the f+ 1 highest
sequence number s the replica has learned from different executors.

Based on a comparison of sp9gress With the latest sequence number s, for which
the agreement process has been started, replicas of a group g can determine whether
their group has fallen behind in relation to other groups. If this is the case, the group
uses the agreement-protocol interface’s flush() method (see Fig. 3) to start new
protocol instances for all of the group’s sequence numbers between sg and $p,ogress-
proposing either a client request (if available) or a no-op. Consequently, the sequence-
number gap that temporarily prevents executors from processing further requests will
eventually be closed, enabling the system to make progress again.

To ensure liveness in the presence of faults, agreement replicas monitor the be-
havior of their group and initiate the necessary fault-handling procedures (e.g., by
triggering a view change) if the protocol instances that are required to close the gap
are not started within a certain predefined period of time. Apart from that, to toler-
ate message losses agreement replicas retransmit EXECUTESs for sequence numbers
higher than s.,.. when receiving repeated FLUSH messages from an executor.

Executor Checkpoints With EXECUTES not necessarily arriving in the order of their
sequence numbers, executors may need to buffer them. To implement a bounded
buffer, an executor uses a sliding window of size W = 2 xcpirervar [10] and only stores
EXECUTEs with numbers between s;,,, and s;,,, + W. To advance the window, in in-
tervals of cpiyervar €ach executor e creates and stores a checkpoint cp of the applica-
tion state, the latest client timestamps, and the latest reply it has sent to each client.
Furthermore, the executor broadcasts a (CHECKPOINT, s,D(cp),e) 0, #1s message
to all agreement replicas and executors; s is the sequence number of the latest request
processed prior to the snapshot and D(cp) denotes a hash of the checkpoint.

When an executor receives f + 1 matching CHECKPOINTs from different execu-
tors for a sequence number s > sy,,,, the checkpoint becomes stable. At this point,
the executor sets the start of its local window to sequence number s and discards all
EXECUTEs and checkpoints before s — cpiyervar- If an executor has fallen behind, ad-
vancing the window can result in requests being skipped. To ensure a consistent state
in such scenarios, an executor first obtains a full checkpoint with matching sequence
number and hash from another executor before continuing to process further requests.

Besides guaranteeing execution-stage progress, CHECKPOINTS also enable agree-
ment groups to perform garbage collection of internal messages. For this purpose, an
agreement replica notifies its local agreement protocol about stable checkpoints by
invoking the protocol interface’s discard () method (see Fig. 3).

Scalable Byzantine Fault-tolerant State-Machine Replication on Heterogeneous Servers 9

Fault Handling OMADA tolerates up to f faulty replicas per agreement group and
a maximum of f faulty executors. In heterogeneous settings where some replicas
assume multiple roles, the failure of a replica can affect more than one component.
Relying on a Byzantine fault-tolerant protocol for request ordering within each group
has the key advantage that for many fault scenarios, OMADA does not need to provide
additional mechanisms, as they are already handled by the agreement protocol.

If a client issues a request but does not get a result within a predefined, BFT-
protocol-specific period of time, the client sends the request to both all replicas of
its agreement group as well as all executors. This way, replicas learn about the prob-
lem and if necessary can initiate fault handling within their group or retransmit the
EXECUTE for a committed request to handle cases in which previous messages to ex-
ecutors have been lost due to network problems. On the other hand, executors resend
the corresponding reply (if available) when receiving a request directly from a client.

Optimizations OMADA supports common BFT-system optimizations such as pay-
load hashes and batching, that is, ordering multiple requests in the same agreement
instance [8]. If batching is applied, clients use the individual maximum batch sizes
of agreement groups (see Sect. 3.2) as relative weights when randomly selecting a
group. To improve efficiency, the leader of a group g aims at proposing batches of
maximum size bg gy as long as this does not introduce unnecessary delays. In par-
ticular, this means that in cases in which there are less than by ;.4 new requests, the
leader only proposes the batch if, based on the progress information contained in the
executors’ latest FLUSH messages, the leader knows that its group has fallen behind
and that therefore its batch will be immediately processed when arriving at the execu-
tion stage. In contrast, if the FLUSHes indicate that its group is ahead of other groups,
the leader defers the proposal of the batch in favor of waiting for additional requests.
For replicas assuming more than one role, OMADA offers the following optimiza-
tions: First, messages to multiple receivers such as FLUSHes need to be sent only once
to each server. Second, if the same replica acts both as an agreement replica as well
as an executor, a request becomes ready for processing as soon as it has been com-
mitted locally; the executor does not have to wait for an external proof in the form of
f+ 1 matching EXECUTES. As a result, it is sufficient for agreement replicas to only
send EXECUTEs to those executors whose replicas are not part of the same group.

3.2 Supporting Heterogeneous Servers

To effectively exploit the resources available in heterogeneous settings, OMADA stat-
ically tailors the responsibilities of each replica to the individual performance ca-
pabilities of its server before startup. In the following, we describe the systematic
approach to determine the assignment of roles to replicas we use for this purpose:
First, we assess the specific performance capabilities of each server in the system.
Next, we estimate how many resources to reserve for the agreement stage compared
with the execution stage. Then, we rely on an integer linear program to determine the
number of agreement groups as well as the mapping of roles to replicas. Finally, in
the last step we define an individual maximum batch size for each agreement group.

10 M. Eischer, T. Distler

15 Group Assignment
838 E E
52 £ 10 1 Variables
EE =4 2 2 ’ E ‘ ‘ 2 ‘ 2 w = maxyer ()
£ a‘tﬁ 5H 3 Cfg = ﬁ
5o o g*cia
SR 1 1 1 1 2 4 P={plpCRAlpl=3f+1}
— (IRI]
1 2 3 4 5 5 1PI= ()
Server 6 Constraints
Variable | Description 7 VreR,r¢E:
R |[Set of all servers Y geporegTa S lr
£ Set of executors (i.e., the 2f+1 servers with 8 Vreé&:xz,
the most performance points in the system) +2gepregTg Sl
Iy Performance points of server r 9 X ,ep(0.524) — 0.5 < ze

Gmaz |Maximum number of groups
P |All possible group permutations 10 VgeP:zg+twrzgy Sw
zg |Performance points for group g € P 11 > yepgp 2 [Pl — Gmaa
og Number of executors without a collocated 12

. Optimization target
agreement replica of group g 13

max(dep cfg *xg)

Fig. 4 Integer linear program for systematically assigning roles to replicas in OMADA. To account for ef-
ficiency gains achieved by collocating an agreement replica with an executor, the program weights agree-
ment groups using a cost factor cf, that reflects an empirically determined cost increase ci, (e.g., 15% for
PBFT, 0% for Spinning) for each executor that runs on a server without an agreement replica of group g.

Assessing the Performance Capabilities of Servers Prior to being able to assign
replica roles, we first need to identify the differences in performance between the
servers involved. To achieve this, on each server, we execute a small benchmark that
measures the number of MACs the server can calculate per second. This empirical
approach has two key advantages: First, it assesses the individual performance ca-
pability of a server based on the operation that is the dominant factor with regard to
OMADA’s overall computing-resource usage. Second, the approach also provides re-
liable results in cases where the actual performance of a server is not known a priori.

As our assignment algorithm operates with relative performance values, we trans-
late the measured performance numbers into performance points reflecting the differ-
ences between servers; to have a point of reference, we start by attributing 10 points
to the slowest server. To illustrate this step, Fig. 4 shows an example for a heteroge-
neous setting with five servers in which the two fast servers are able to perform 50 %
more MAC calculations per second than the three slow servers. As a consequence, in
such a scenario we assign 15 and 10 points to the fast and slow servers, respectively.

Relative Costs for Agreement and Execution To estimate the relative amount of
resources OMADA needs to reserve for agreement and execution, we compare the
number of MACs each stage computes per client request during normal-case opera-
tion. Using PBFT [8] or Spinning [23] as agreement protocol, for example, to order
requests in batches of size b an agreement replica must perform 1+ % MAC cal-
culations per request: 1 for verifying the authenticity of the request, % for ordering
it, and # for sending EXECUTES to the executors. In contrast, an executor only
calculates f%l + 1 MACs per request: f%l for verifying the EXECUTEs and 1 for

Scalable Byzantine Fault-tolerant State-Machine Replication on Heterogeneous Servers 11

authenticating the reply to the client. For f = 1 and a batching factor of b = 10, this
for example means that participating in all agreement groups requires about twice as
many computing resources as assuming the role of an executor (e.g., 10 versus 5 per-
formance points for Server 1 in the example in Fig. 4). A similar ratio applies in the
optimized case where an agreement group does not need to send EXECUTE messages
due to one of its members being collocated with an executor.

Assignment of Roles to Replicas Having determined the individual capabilities of
servers as well as the relative costs for agreement and execution, we can derive the
mapping of roles to replicas. As greedy mapping algorithms are unable to guaran-
tee optimal solutions and knapsack algorithms in this case involve increased com-
plexity (i.e., the placement of groups with heterogeneous performance characteristics
across different servers constitutes a large multi-dimensional knapsack problem), we
formulate the problem of mapping roles to replicas as an integer linear program [21],
as shown in Fig. 4. In a nutshell, this approach allows us to automatically examine all
possible distributions of agreement groups across the servers available in order to find
a configuration that maximizes performance. By specifying a number of constraints,
we ensure that the selected configuration provides certain properties: First, the config-
uration allocates an identical amount of resources to all members of the same group
to ensure that performance remains stable across group-internal reconfigurations such
as view changes (see Fig. 4, the sum in Lines 7-8). Second, it respects the individ-
ual performance limits of each server (Lines 7-8). Third, it places executors on the
2f + 1 most powerful servers, thereby increasing the number of agreement groups
that are able to benefit from collocation with an executor (Lines 8-9). Fourth, it does
not make use of more than a predefined number of agreement groups to keep the
coordination overhead low (Lines 10-11).

Obeying these constraints, the integer linear program assigns individual perfor-
mance points to each group in the set of possible group-to-server mappings. Based
on this result, we can compile the final OMADA configuration by including all groups
that received at least one performance point. Furthermore, with each group id rep-
resenting a particular group-to-server mapping, the result also directly contains the
placement of groups. In case the integer linear program produces multiple solutions,
we select the solution with the lowest number of groups and the smallest relative
performance-point differences between groups to minimize coordination overhead.

Selection of Maximum Batch Sizes To implement performance differences between
agreement groups, we define the maximum batch size for each group individually.
For a group g, we calculate the maximum batch size by multiplying its performance
points with a cost factor cf, (see Fig. 4) and normalize the result such that the weak-
est group uses a predefined maximum batch size (e.g., 10). For the configuration
in Fig. 4, this for example leads to normalized and rounded maximum batch sizes of
S5x1—12and 5% m — 10 for Group 1 and Group 2, respectively, which reflects
the fact that the executor on Server 3 does not have a collocated replica of Group 2.
Using this approach to select maximum batch sizes, less powerful agreement groups
process fewer requests to be able to keep up with the more powerful groups. This is
necessary as all groups have to handle the same amount of sequence numbers.

12 M. Eischer, T. Distler

4 Implementations

The OMADA system architecture requires agreement groups to establish a stable or-
der on requests but does not make assumptions on how exactly agreement is reached
within a group. As a key benefit, this approach offers the flexibility of allowing dif-
ferent BFT protocols to be integrated with OMADA. Below, we present details on two
Java-based implementations relying on the PBFT and Spinning protocol, respectively.

OMADApprr Our first OMADA implementation is based on the PBFT protocol [8]
and consequently uses agreement groups consisting of 3f + 1 replicas. Internally,
PBFT proceeds in a sequence of views, thereby, based on the view number, for each
view deterministically selecting one of the replicas to serve as leader for the group.
As the leader is responsible for starting the agreement process for new requests,
information on the identity of the current leader replica must be kept up to date at the
client. For this purpose, OMADApgrr applies the following approach: Whenever an
agreement replica commits a request, the replica includes the number of the current
view in the cri field of the corresponding EXECUTE to the executors. As discussed in
Sect. 3.1, having processed the request an executor then combines the cri information
from different agreement replicas into a vector and provides this vector to the client
as part of the reply. To tolerate faulty agreement replicas, when the client receives a
valid reply it determines the view number by choosing the f + 1 highest value from
the vector. If this view number is higher than the view numbers the client has learned
from previous replies, the client selects the leader of this view as new contact replica.
With PBFT establishing a stable total order on client requests, the protocol seam-
lessly integrates with the OMADA system architecture. A key benefit in this context
is the fact that executors in OMADA are completely agnostic of the specific proto-
col used to reach agreement on the sequence numbers of requests. In particular, an
executor does not need to be able to interpret the cri information contained in EXE-
CUTESs as the executor only concatenates the values it receives. As a consequence, the
executor code does not have to be modified for the integration of PBFT (or any other
agreement protocol that fulfills the requirements specified in Sect. 3.1) with OMADA.

OMADA pinning In contrast to PBFT, the Spinning protocol [23] does not rely on a
fixed leader replica but instead continuously rotates the leader role among the non-
faulty replicas in the system to balance load. With the leader role frequently being re-
assigned, there is no need in Spinning to maintain knowledge about the identity of the
current leader at the client, because each replica is allowed to initiate the agreement
protocol for new requests and can therefore serve as contact replica for clients. For
this reason, EXECUTEs and REPLYs in OMADASsinning d0 not contain any contact-
replica information, causing messages to be slightly smaller than in OMADApgFT.

Another major difference between PBFT and Spinning concerns ordering paral-
lelism: While PBFT runs multiple protocol instances concurrently, Spinning executes
instances in lock step, only starting a new instance after the previous one has finished.
Compared with PBFT, Spinning therefore requires larger batching factors to achieve
a similar throughput, which is why for OMADAgpinning We use 50 as maximum batch
size for the weakest group (see Sect. 3.2), compared with 10 in OMADApBFT.

Scalable Byzantine Fault-tolerant State-Machine Replication on Heterogeneous Servers 13

5 Evaluation

In this section, we evaluate OMADA based on a coordination service that relies on our
architecture for fault tolerance and comprises a similar interface as ZooKeeper [14].
Coordination services are key building blocks of today’s data-center infrastructures as
they allow processes of distributed applications to cooperate, for example, by reliably
exchanging small chunks of data. As a consequence of being essential for the well-
functioning of other applications, it is crucial for coordination services to provide
resilience against a wide spectrum of fault scenarios, including Byzantine failures.

5.1 Environment

To compare OMADA with existing approaches, we enable our implementations to
also apply the traditional BFT system architecture, executing either plain PBFT or
plain Spinning. Using our prototypes, we repeat all experiments with the following
settings, all of which are configured to be able to tolerate one Byzantine fault:

— PBFT-4 and Spinning-4 make use of the minimum number of replicas required
for Byzantine fault tolerance (i.e., four replicas) and thereby represent the typical
setting found in most state-of-the-art BFT systems. To order client requests, these
implementations execute the PBFT and Spinning protocol, respectively.

— PBFT-5 and PBFT-6 are variants of PBFT-4 with five and six replicas, respec-
tively, each running on a separate server; accordingly, Spinning-5 and Spinning-6
represent variants of Spinning-4. We evaluate these settings as they allow us to
study the effects of introducing additional resources into traditional BFT systems.

— OMADApgfr and OMADA spinning, as described in Sect. 4, rely on our novel BFT
system architecture and are distributed across up to six servers.

5 B o
1| |1 |1 1| 2
1

2 3 4 5 1 2 3 4 5

Hn

1 2 3 4 5

(a) PBFT-4 & Spinning-4 (b) PBFT-5 & Spinning-5 (c) OMADAPpPBFT (d) OMADASpinning

il

AE@EAl | |

1 2 3 4 5 6 1 2 3 4 5 6
(e) PBFT-4 & Spinning-4 (f) PBFT-6 & Spinning-6 (g) OMADApPBFT (h) OMADASpinning

Fig. 5 System configurations for the two heterogeneous settings used in the experimental evaluation, com-
prising five servers (top) and six servers (bottom) with different performance capabilities, respectively.

14 M. Eischer, T. Distler

In order to be able to investigate the influence of heterogeneity, we conduct our
experiments using two different settings of servers with non-uniform performance
capabilities, as illustrated in Fig. 5. In this context, we distinguish between two cat-
egories of machines: fast servers and slow servers; the difference in performance
achieved varies between experiments and will therefore be explained in later sections.
All servers use Ubuntu 16.04 LTS as operating system along with OpenJDK 8ul31
and are connected via switched Gigabit Ethernet.

For each experiment, we vary the number of clients writing data to the coordina-
tion service in chunks of typical sizes of 128 bytes. Besides, we have also conducted
experiments evaluating read operations, but we omit these results due to limited space
and because they offer similar insights as the write results. To generate the workloads,
we execute the clients on a separate server and distribute them across the available
agreement groups in a way so that more powerful groups handle more clients. During
an experiment, each client runs in a closed loop, that is, it only sends a new request
after having obtained a stable reply for its previous one. Each data point presented in
the following represents the average over 5 runs.

5.2 Exploiting Additional Computing Resources

The first heterogeneous setting we use for our experiments comprises two fast and
three slow servers (see Fig. 5a—5d). The fast servers are equipped with Intel Xeon
E5645 CPUs (2.4 GHz) and 32 GB RAM, whereas the slow servers have Intel Xeon
E5520 CPUs (1.6 GHz) and 8 GB RAM. Based on the rate of MAC calculations per
second, a slow server in this setting achieves about two thirds of the performance of a
fast server. For this environment, OMADApgpT’s group assignment procedure creates
the configuration we already used as example to explain the procedure in Sect. 3.2.
The configuration comprises two agreement groups with maximum batch sizes of 12
and 10, respectively. For a fair comparison, we configure PBFT-4 and PBFT-5 to use
a maximum batch size of 11, which is the average batch size of the two OMADApBpT
groups. As discussed in Sect. 4, the maximum batch sizes for the two agreement
groups in OMADAgpinning are larger (i.e., 50 and 83, respectively) to compensate for
the fact that Spinning executes protocol instances in lock step. Accordingly, we con-
figure a maximum batch size of 67 for Spinning-4 and Spinning-5.

Fig. 6 presents the measured latency and throughput for this experiment. All six
evaluated systems achieve low latency until reaching saturation, at which point la-
tency rises quickly when the workload is increased further. In general, the latency of
PBFT-5 is higher than the latency provided by PBFT-4; the same holds for Spinning-5
compared with Spinning-4. This is caused by the larger quorum sizes and thus the ad-
ditional messages that are necessary to include the fifth server, as well as the larger
MAC authenticators which grow in size and require an additional MAC calculation.
Compared with PBFT-4, the latency of OMADApgFr is slightly higher which can be
attributed to the increased coordination overhead necessary to manage the two agree-
ment groups. However, unlike PBFT-4, its group-based system architecture enables
OMADApgFT to sustain low latency at higher throughputs by effectively utilizing the
fifth server. OMADApinning Shows a similar picture compared with Spinning-4.

Scalable Byzantine Fault-tolerant State-Machine Replication on Heterogeneous Servers 15

100 - 100
; ot ot
- [-3 - PBFT-5 — | -3 - PBFT-5
@ 75) @ 75
E [n] OMADApBET E OMADApBpT
& 50 o 2 50 -
g 0 g g
T 25| S 25 f m
$ Batching disabled - Pl
0 G ! ! ! T T T 0 ey WP=N o OB o 20 = I |
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Throughput [kOps/s] Throughput [kOps/s]
100 —— — 100 —

% Spinning 4 Spinning 4
= 75 - M - Spinning-5 = 75 - M - Spinning-5
g i @ OMADAspinning | B @ OMADAspinning
g 50 Fm® & 50 - [

g L g LY
< 25| Mg % 25 u
s : e b
0 l.\ I I I I I I I 0 SR oo @ - O =7 I I I
0 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Throughput [kOps/s] Throughput [kOps/s]

Fig. 6 Relationship between throughput and latency for the heterogeneous setting with two fast and
three slow servers using PBFT (top) and Spinning (bottom) as agreement protocol, respectively.

With regard to the maximum throughput achievable, our experiments confirm
the key advantage of the batching optimization, which enables all six evaluated sys-
tems to provide a significantly higher performance, independent of the specifics of
their agreement protocols. Nevertheless, due to not being able to benefit from the
additional server, the maximum throughput of PBFT-5 is still about 9% lower than
the maximum throughput of PBFT-4; without batching the difference is about 16%.
In contrast, OMADApgpr exploits the additional computing resources offered by the
fifth server and therefore compared with PBFT-4 achieves an increase in maximum
throughput of 15% when batching is enabled and 19% when batching is disabled.

For Spinning-4 without batching, throughput performance is limited by the proto-
col executing agreement instances sequentially. Providing a throughput of only about
2.5kOps/s, a large amount of resources remains unused in this setting. Our mea-
surement results show that Spinning-5’s traditional architecture prevents the system
from taking advantage of this fact. Instead, the additional transmission and authen-
tication overhead in Spinning-5 leads to a throughput decrease of 10% compared
with Spinning-4. Relying on two agreement groups and running them in parallel,
OMADAgpinning 0N the other hand is able to use parts of the spare resources and there-
fore achieves a throughput increase of nearly 68% compared with Spinning-5.

5.3 Assessing the Costs of Groups

To evaluate the group-coordination overhead in OMADA in more detail, we use the
same setup as in the previous experiment but now vary the number of agreement
groups by splitting each of the two existing groups into up to four smaller ones. For
each of the two OMADA systems, this yields four configurations comprising between
two and eight agreement groups. The measurement results presented in Fig. 7 show
that the overhead for operating additional agreement groups in OMADA is small but

>
£

. Eischer, T. Distler

-
o
o
=
=
o

2 groups Batching enabled 2 groups
= 75 1 ® 4 groups | o 75 || (OMADApgT) 4 groups
E & -&-6groups | E - @& - 6 groups
> 50 | é - % - 8 groups > 50 | - % - 8 groups
g : g
8 25| E Batching disabled | | % 25 eé\—

2 (OMADApgrT) B
0 L__cd=ad ?ﬂeﬂ f I I T T I 0 D T e v A TAT |
0 5 10 15 20 25 30 35 40 45 0O 5 10 15 20 25 30 35 40 45
Throughput [kOps/s] Throughput [kOps/s]
100 - 100
® @ 2 groups Batching enabled @ 2 groups
=750 —— 4 groups | — 75 || (OMADAS)inning) —— 4 groups
E : -e-6groups | § - @ - 6 groups
Bsol e - % - 8 groups 5 50 |- - % - 8 groups
=} : =}
g : g %
X251 @ Batching disabled < 25 -
! 1 1 1 = 1 1 ! ! !

L L L 0
0 5 10 15 20 25 30 35 40 45 0O 5 10 15 20 25 30 35 40 45
Throughput [kOps/s] Throughput [kOps/s]

Fig. 7 Relationship between throughput and latency in OMADApgft (top) and OMADAgpinning (bottom)
with different numbers of groups for the heterogeneous setting with two fast and three slow servers.

measurable. With agreement groups in OMADA being largely independent of each
other, having fewer groups has the advantage that it becomes less likely that requests
of one group need to wait at an executor until requests with lower sequence numbers
of another group become ready for execution. As a consequence, with two agree-
ment groups OMADA provides lower latency than with eight agreement groups. For
OMADApgFT, a similar effect can also be observed with regard to throughput: The
maximum throughput of two-group OMADApgpr Without batching for example is
about 4% higher than the maximum throughput of eight-group OMADApgpT. For
OMADASpinning, the costs associated with additional agreement groups in some cases
are outweighed by the positive effects of the increased parallelism at the agreement
stage. In particular, this is true when batching is disabled. As our results show, in
such settings throughput increases with the number of agreement groups, which for
example results in OMADAsinning being able to process almost 110% more requests
per second with eight agreement groups than with two agreement groups.

5.4 Evaluating the Impact of Faults

In our third experiment, we evaluate the impact of a server failure on the perfor-
mance of OMADA. As illustrated in Figure 8, when one of the fast servers hosting a
leader replica crashes 60 seconds into the experiment, the affected agreement group
in OMADA needs to elect a new leader before being able to make progress again.
Relying on the built-in view-change mechanism of the underlying BFT agreement
protocol for this purpose, this process takes about the same time in OMADApgpT and
OMADASpinning @s it does in PBFT and Spinning, respectively. With one fast server
and three slow servers remaining in the system after the crash, OMADA’s throughput
still matches (in case of PBFT) or even exceeds (in case of Spinning) the performance
provided by the two baseline systems under fault-free conditions.

Scalable Byzantine Fault-tolerant State-Machine Replication on Heterogeneous Servers 17

= 50 [= 50
N N
§ 1o § A0 Lyl AR
= 30 = 30 | T
3 20 g" 20
= PBFT4 E Spinning-4 &
S 10 | - OvADAT 10 o CuADAS |
ﬁ 0 ! ! "[E 0 ! !
0 30 60 90 120 0 30 60 90 120
Time [s] Time [s]

Fig. 8 Impact of a server failure on performance in OMADApgFr (left) and OMADAgpinning (right).

5.5 Analyzing the Effects of Heterogeneity

For our final experiment, we use a heterogeneous environment that differs from the
previous setting and enables us to study the adaptability of OMADA. As shown in
Fig. 5e—5h, the systems now comprise an additional server. Furthermore, by limit-
ing the number of MACs a slow server is able to calculate per second, we create
a scenario in which a slow server only achieves a third of the performance of a fast
server. In practice, such performance differences between replicas can be the result of
not only incorporating servers with different capabilities but also relying on heteroge-
neous replica implementations to minimize the probability of common mode failures.
For this purpose, replicas for example may make use of different programming lan-
guages or operating systems to reduce the fault dependency between them [13]. In
this experiment, OMADApgrr and OMADA spinning both have three agreement groups
that are distributed across servers as shown in Fig. 5g and Fig. 5h, respectively. As all
groups in OMADApppT Use a maximum batch size of 10 we select the same size for
PBFT-4 and PBFT-6; all Spinning variants order batches of at most 50 requests.

150 PBFT-4 150 PBFT-4
! - Batchi -
o125 -3 - PBFT:6 =125 ’ o -3 - PBFT-6
E100 | OMADApgrr | £100 - n OMADApEFT
g5 g 75| !
& 50 @ & 50 | Jul
3 i 5 o
25 | A
0 E | | | 1 1 0 Rk I [|
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Throughput [kOps/s] Throughput [kOps/s]
150 150
: ' Spinning-4 Batchin. - Spinning-4
=125 he - W - Spinning-6 =125 1 enabled ; - W - Spinning-6
I5100 *i‘ ---@-- OMADASpinning EIOO r n @ OMADAgpinning
g 75 g5 [
g 50 (M} g 50 " 'y
g 1.0 kS [~ o ®
25 @ Batching disabled 250 WA PR o
0 b I I I I I 0 O Bl ni ol I I I
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Throughput [kOps/s] Throughput [kOps/s]

Fig. 9 Relationship between throughput and latency for the heterogeneous setting with two fast and
four slow servers using PBFT (top) and Spinning (bottom) as agreement protocol, respectively.

18 M. Eischer, T. Distler

The results in Fig. 9 show that as an effect of the reduced amount of comput-
ing resources, the maximum throughputs achieved in this experiment are lower than
the maximum throughputs in previous experiments. In particular, both PBFT-4 and
PBFT-6 are unable to utilize most of the resources available on the fast servers due
to being limited by the slow servers. With a decreased maximum throughput of 30%
(without batching) and 18% (with batching) compared with PBFT-4, PBFT-6 per-
forms significantly worse than its counterpart PBFT-5 in Sect. 5.2, which confirms
the system’s lack of scalability. Similarly, there is a notable throughput decrease for
Spinning-6 in comparison to Spinning-4 (i.e., 29% without batching and 6% with
batching) and a significant difference to Spinning-5 in our first experimental set-
ting. OMADA, on the other hand, not only benefits from the additional servers but
also utilizes a large part of the computing resources on the fast servers by enabling
their replicas to act as executors and to furthermore participate in all three agree-
ment groups. This way, when batching is disabled OMADA pgpT achieves a maximum
throughput that is 53% higher than the maximum throughput of PBFT-4 for this ex-
periment; similarly, OMADA gpinning Shows an improvement of 44% over Spinning-4.
As in previous experiments, enabling the batching optimization has a positive impact
on overall maximum throughput also for this evaluation setting. With batching en-
abled, OMADApggT provides a 108% higher throughput performance than PBFT-4.
OMADASpinning €ven shows an improvement of 146% over Spinning-4, thereby con-
firming the effectiveness of our approach in heterogeneous environments.

6 Related Work

Yin et al. [25] proposed a BFT system architecture (in the following referred to as
SAfE) that separates agreement from execution and comprises a dedicated cluster
of replicas for each of the two stages. OMADA builds on this idea by splitting the
responsibilities for ordering and executing requests into different roles and allowing
each replica to assume one or more of these roles depending on its performance ca-
pabilities. As a consequence, both SAfE and OMADA need to provide the agreement
stage with means to prove to the execution stage that a request has been committed.
In SAfE, the agreement cluster for this purpose sends internal protocol messages to
the execution cluster, thereby (1) creating a tight coupling between both stages and
(2) requiring agreement messages to be authenticated with additional MACs in order
to be verifiable by the execution cluster. In contrast, OMADA cleanly decouples the
agreement protocol from the execution protocol (i.e., the transmission of EXECUTESs)
to keep the authentication cost for agreement messages low. In addition, OMADA
saves further network and computing resources by suppressing an agreement group’s
EXECUTEs if an executor is collocated with an agreement replica of the group.
UpRight [10] goes one step further than SAfE and, besides agreement and exe-
cution, relies on a third stage responsible for receiving and buffering requests. Using
this stage, the system can forward large requests directly to the execution while per-
forming the agreement on their hashes, thereby reducing the load on the agreement
cluster at the cost of increased latency. Similar to SAfE and PBFT, UpRight’s agree-
ment stage comprises 3 f 4 1 replicas and is unable to benefit from additional servers.

Scalable Byzantine Fault-tolerant State-Machine Replication on Heterogeneous Servers 19

Amir et al. [2] proposed a hierarchical replication architecture for wide-area envi-
ronments in which each geographical site hosts a group of replicas executing a local
agreement protocol. At the global level, each of these groups acts a participant in
a wide-area replication protocol. Compared to this work, OMADA also merges the
output of multiple agreement groups into a global total order, however, executors in
OMADA for this purpose do not require a full-fledged replication protocol.

Kapritsos and Junqueira [17] outlined a general approach to partition the agree-
ment workload in order to improve the scalability of replicated systems. In particular,
they presented a crash-tolerant protocol that, similar to OMADA, is able to assign dif-
ferent parts of the sequence-number space to different replica groups. Having been
designed to provide resilience against crashes, unlike OMADA, the protocol however
cannot ensure liveness in the presence of arbitrary replica failures. Furthermore, their
approach does not address replicated systems that consist of heterogeneous servers.

The idea of using multiple replicas to independently order requests that are then
merged into a single ordered request stream has been explored in various ways in
the context of crash fault tolerance. In the accelerated ring protocol developed by
Babay and Amir [5] the replicas pass on a single token after proposing several re-
quests while compensating for network latency. Aguilera and Strom [1] presented an
algorithm to deterministically merge multiple message streams primarily based on
the timestamps of individual messages. Mencius [19], a crash-tolerant protocol for
wide-area networks, evenly partitions the sequence numbers across all replicas.

COP [6] and Sarek [18] parallelize the handling of agreement-protocol instances
within each replica of a BFT system to effectively utilize multi-core servers. Focusing
on the internal structure of a replica, these approaches are orthogonal to the replica-
tion scheme presented in this paper and could therefore also be applied to OMADA.

The few works that have studied heterogeneity in BFT systems [9, 11] use hetero-
geneous execution-stage implementations to reduce the probability that a single fault
causes multiple replica failures. OMADA, in contrast, deals with the consequences of
heterogeneity at the level of the entire system. This enables OMADA to exploit per-
formance capabilities that so far have not been used, following the principle that it is
better to harness the differences between replicas than to try to compensate them.

7 Conclusion

OMADA is a BFT system architecture that is able to use additional servers by par-
titioning the agreement stage into multiple largely independent groups. In environ-
ments comprising servers with heterogeneous performance capabilities, OMADA tai-
lors the distribution of the agreement groups to the set of servers available in order
to exploit the individual performance capabilities of each server. Our evaluation has
shown that in contrast to existing systems OMADA is able to benefit from additional
computing resources, and that our approach is particularly effective in heterogeneous
settings with a significant performance difference between fast and slow servers.

Acknowledgements This work was partially supported by the German Research Council (DFG) under
grant no. DI 2097/1-2 (“REFIT — Resource-Efficient Fault and Intrusion Tolerance™).

20

M. Eischer, T. Distler

References

20.

21.

22.

23.

24.

25.

. Aguilera MK, Strom RE (2000) Efficient atomic broadcast using deterministic merge. In: Proc. of the

19th Symp. on Principles of Distributed Computing, pp 209-218

Amir Y, Coan B, Kirsch J, Lane J (2007) Customizable fault tolerance for wide-area replication. In:
Proc. of the 26th Int’l Symp. on Reliable Distributed Systems, pp 65-82

Amir Y, Coan B, Kirsch J, Lane J (2011) Prime: Byzantine replication under attack. IEEE Transactions
on Dependable and Secure Computing 8(4):564-577

Aublin PL, Mokhtar SB, Quéma V (2013) RBFT: Redundant Byzantine fault tolerance. In: Proc. of
the 33rd Int’l Conference on Distributed Computing Systems, pp 297-306

Babay A, Amir Y (2016) Fast total ordering for modern data centers. In: Proc. of the 36th Int’l Con-
ference on Distributed Computing Systems, pp 669—679

Behl J, Distler T, Kapitza R (2015) Consensus-oriented parallelization: How to earn your first million.
In: Proc. of the 16th Middleware Conference, pp 173-184

Bessani A, Sousa J, Alchieri EEP (2014) State machine replication for the masses with BFT-SMaRt.
In: Proc. of the 44th Int’l Conference on Dependable Systems Networks, pp 355-362

Castro M, Liskov B (1999) Practical Byzantine fault tolerance. In: Proc. of the 3rd Symp. on Operating
Systems Design and Implementation, pp 173—-186

Castro M, Rodrigues R, Liskov B (2003) BASE: Using abstraction to improve fault tolerance. ACM
Transactions on Computer Systems 21(3):236-269

Clement A, Kapritsos M, Lee S, Wang Y, Alvisi L, Dahlin M, Riche T (2009) UpRight cluster ser-
vices. In: Proc. of the 22nd Symp. on Operating Systems Principles, pp 277-290

. Distler T, Kapitza R, Reiser HP (2010) State transfer for hypervisor-based proactive recovery of het-

erogeneous replicated services. In: Proc. of the 5th ”Sicherheit, Schutz und Zuverldssigkeit” Confer-
ence, pp 61-72

Distler T, Cachin C, Kapitza R (2016) Resource-efficient Byzantine fault tolerance. IEEE Transactions
on Computers 65(9):2807-2819

Garcia M, Bessani A, Gashi I, Neves N, Obelheiro R (2014) Analysis of operating system diversity
for intrusion tolerance. Software—Practice & Experience 44(6):735-770

Hunt P, Konar M, Junqueira F, Reed B (2010) ZooKeeper: Wait-free coordination for Internet-scale
systems. In: Proc. of the 2010 USENIX Annual Technical Conference, pp 145-158

Junqueira F, Bhagwan R, Hevia A, Marzullo K, Voelker GM (2005) Surviving Internet catastrophes.
In: Proc. of the 2005 USENIX Annual Technical Conference, pp 45-60

Kapitza R, Behl J, Cachin C, Distler T, Kuhnle S, Mohammadi SV, Schroder-Preikschat W, Sten-
gel K (2012) CheapBFT: Resource-efficient Byzantine fault tolerance. In: Proc. of the 7th European
Conference on Computer Systems, pp 295-308

Kapritsos M, Junqueira FP (2010) Scalable agreement: Toward ordering as a service. In: Proc. of the
6th Workshop on Hot Topics in System Dependability, pp 7-12

Li B, Xu W, Abid MZ, Distler T, Kapitza R (2016) SAREK: Optimistic parallel ordering in Byzantine
fault tolerance. In: Proc. of the 12th European Dependable Computing Conference, pp 77-88

Mao Y, Junqueira FP, Marzullo K (2008) Mencius: Building efficient replicated state machines for
WAN:S. In: Proc. of the 8th Conference on Operating Systems Design and Implementation, pp 369—
384

Ou Z, Zhuang H, Lukyanenko A, Nurminen JK, Hui P, Mazalov V, Yli-Jddski A (2013) Is the same
instance type created equal? Exploiting heterogeneity of public clouds. IEEE Transactions on Cloud
Computing 1(2):201-214

Papadimitriou CH, Steiglitz K (1998) Combinatorial Optimization: Algorithms and Complexity.
Dover Publications

Pease M, Shostak R, Lamport L (1980) Reaching agreement in the presence of faults. Journal of the
ACM 27(2):228-234

Veronese GS, Correia M, Bessani AN, Lung LC (2009) Spin one’s wheels? Byzantine fault tolerance
with a spinning primary. In: Proc. of the 28th Int’] Symp. on Reliable Distributed Systems, pp 135-144
Veronese GS, Correia M, Bessani AN, Lung LC (2010) EBAWA: Efficient Byzantine agreement for
wide-area networks. In: Proc. of the 12th Symp. on High-Assurance Systems Engineering, pp 10-19
Yin J, Martin JP, Venkataramani A, Alvisi L, Dahlin M (2003) Separating agreement from execution
for Byzantine fault tolerant services. In: Proc. of the 19th Symp. on Operating Systems Principles, pp
253-267

	Introduction
	Background and Problem Statement
	Omada
	Implementations
	Evaluation
	Related Work
	Conclusion

