
This is the authors’ version of an article published in Tagungsband des FB-SYS Herbsttreffens 2019. Bonn: Gesellschaft für Informatik e.V..
DOI: https://doi.org/10.18420/fbsys2019-01

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact the Authors.

Efficient Checkpointing in Byzantine Fault-Tolerant Systems
Michael Eischer Tobias Distler

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

ABSTRACT
Distributed Byzantine fault-tolerant systems require frequent check-

points of the application state to perform periodic garbage collec-

tion and enable faulty replicas to recover efficiently. State-of-the-art

checkpointing approaches for replicated systems either cause sig-

nificant service disruption when the application state is large, or

they are unable to produce checkpoints that are verifiable across

replicas. To address these problems we developed and evaluated

deterministic fuzzy checkpointing, a technique to create consistent

and verifiable checkpoints in parallel with request execution.

1 PROBLEM STATEMENT
Distributed Byzantine fault-tolerant (BFT) systems [1, 2] provide

resilience against arbitrary hardware or software failures by pro-

cessing a client request on multiple application replicas and voting

over the determined results. To ensure that non-faulty replicas pro-

duce consistent and therefore comparable results, a BFT system

relies on a fault-tolerant agreement protocol [2, 3, 4, 5] guaran-

teeing that all non-faulty replicas execute all requests in the same

order. Participating in an agreement protocol requires replicas to

repeatedly create, exchange, and store new protocol messages that

may only be garbage collected after their effects manifested in a

stable application-state checkpoint. To generate such a checkpoint,

each replica periodically takes a snapshot of all application objects

and verifies the snapshot’s correctness by comparing it to the snap-

shots of other replicas. Besides garbage collection, checkpoints also

play an important role in the recovery of faulty replicas [2, 6, 7, 8].

The state-of-the-art approach for BFT systems to ensure that a

checkpoint comprises a consistent application-state snapshot is to

temporarily suspend request processing while serializing all appli-

cation objects into a dedicated buffer [2]. As a consequence, this

technique usually decreases system availability, especially for ap-

plications with large states. Some in-memory databases from the

domain of crash-tolerant systems circumvent this problem by imple-

menting fuzzy checkpoints [9, 10, 11], that is, checkpoints that are

created while the database processes transactions. Unfortunately,

this approach cannot be directly applied to BFT systems as the fuzzy

checkpoints provided by different non-faulty replicas are not guar-

anteed to represent the application state at the same point in time.
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Figure: Using deterministic fuzzy checkpointing, all repli-
cas (R1,...,R4) performboth state capture (SC) aswell as check-
point completion (CC) in parallel with request execution.

2 APPROACH
To address the problems associated with existing approaches, we

developed deterministic fuzzy checkpointing (DFC), a technique that
enables BFT systems to produce consistent and comparable check-

points without the need to suspend request processing. In the fol-

lowing, we summarize the most important aspects of DFC; for more

details on the concept and its implementation please refer to [12].

General Concept. As shown in the figure, using DFC all replicas

in the system create checkpoints for specific statically configured

positions in the sequence of requests determined by the agreement

protocol. In particular producing a checkpoint requires two phases:

(1) During the state-capture phase, a replica starts a dedicated check-
pointer thread that takes a fuzzy snapshot S by iterating over the

entire application state and serializing all objects. In addition, the

replica records a listM of all modifications to the application state

that occur after the checkpointer thread started. With the check-

pointer thread running in parallel with request execution, at the

end of the state-capture phase the snapshot S does not necessarily

comprise the latest version of each object. Furthermore, as each

replica individually selects the starting point of state capture, the

fuzzy snapshots produced by non-faulty replicas are likely to differ.

(2) The subsequent checkpoint-completion phase therefore is re-

sponsible for making the snapshots consistent and comparable

across replicas. For this purpose, each replica applies all modifica-

tions from list M to the fuzzy snapshot S , resulting in all objects

in the snapshot to eventually be up to date at the end of the phase.

Implementation Variants. Having analyzed several BFT system

architectures, we identified different ways for integrating DFC. On

the one hand, it is possible to implement the checkpointing logic in

a generic and application-agnostic manner, for example, as part of

the replication middleware. On the other hand, the responsibility

for object-modification tracking and capturing may be moved to

the application, thereby enabling a more efficient implementation.

3 EVALUATION
We implemented DFC in the REFIT replication library [4, 5, 13, 14]

and conducted experiments with a key-value store that manages its

state in a SQLite database in memory. Our measurements show that

for a 3GB state (750,000 objects), despite all data residing in mem-

ory, serialization takes about 4.7 seconds. During this time, a replica

is unable to process requests when using the traditional checkpoint-

ing approach. In contrast, relying on DFC it is possible to keep

the service available throughout the entire checkpointing process.

4 CONCLUSION
The DFC technique enables BFT systems to efficiently create consis-

tent application-state checkpoints in parallel with request execution

and consequently leads to an increase in system availability.
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