Deterministic Fuzzy Checkpoints

Michael Eischer, Markus Biittner, and Tobias Distler
Friedrich-Alexander University Erlangen-Niirnberg (FAU)
Email: {eischer,markus.buettner,distler} @cs.fau.de

Abstract—Replicated systems tolerating arbitrary (Byzantine)
faults require periodic and deterministic application-state check-
points to perform essential tasks such as initializing new repli-
cas, enabling faulty replicas to recover, and garbage-collecting
old agreement-protocol messages. Existing techniques to create
checkpoints in these systems make it necessary to temporarily
suspend request execution in order to capture a consistent check-
point, causing significant service disruptions for applications with
large states. Unfortunately, state-of-the-art approaches from the
domain of crash-tolerant systems also are not directly applicable,
because the checkpoints they produce are not comparable across
replicas and therefore cannot be validated in an environment in
which replicas may fail arbitrarily and do not trust each other.

In this paper, we address these problems by proposing deter-
ministic fuzzy checkpoints (DFC), a novel technique that enables
all correct replicas in a system to create consistent and matching
checkpoints in parallel to processing requests. As a consequence,
DFC increases service availability while still allowing replicas to
verify the correctness of a checkpoint before applying it to their
local states. In addition to our general approach, we present
different alternatives to implement DFC within a replication
library and furthermore discuss support for the creation of
differential checkpoints. Experiments with a key-value store show
that DFC is able to snapshot states of 3 GB while sustaining high
performance throughout the entire checkpointing process.

I. INTRODUCTION

Byzantine fault-tolerant state-machine replication [1], [2]
enables systems to keep their services available even in scenar-
ios in which an unknown but limited subset of the participating
servers may behave in arbitrary ways and therefore cannot be
trusted. To offer resilience under these circumstances, in such
systems decisions, for example on the result of an application
request, are usually not based on the information provided by a
single replica alone, but instead are made after comparing and
voting on the opinions of multiple replicas. For correctness,
it is consequently crucial that all non-faulty replicas in the
system maintain a consistent view of the application and
are able to communicate this view to others in the form of
a checkpoint, that is, a snapshot reflecting the application
state at the point in time at which the checkpoint was taken.
Such checkpoints are an essential building block of replication
protocols as they, for example, allow a protocol to update new
replicas joining the system or old ones that have fallen be-
hind [2], [3], [4], to proactively or reactively rejuvenate faulty
replicas [2], [5], [6], [7], and to discard agreement-protocol
messages that no longer need to be stored [2], [4], [8], [9].

The traditional approach for a replica to ensure that a check-
point represents a consistent application state is to suspend
the execution of requests while copying the state, thereby

preventing intermediate modifications from introducing in-
consistencies [2], [3]. However, this solution comes with the
drawback of lowering service availability and increasing tail
latency [10] during the checkpoint-capture phase and therefore
is not suitable for periodically checkpointing applications with
large states. Relying on differential checkpoints (i.e., snapshots
that only contain the state changes since the previous check-
point [2], [11]) in such cases often is an effective means to
mitigate this problem, but without additional measures can still
cause significant disruptions, as our evaluation shows.

Unlike Byzantine fault-tolerant systems, many crash-tole-
rant in-memory databases support the creation of checkpoints
in parallel with the processing of transactions by implementing
fuzzy checkpoints [12], [13], [14]. Using this technique, a
database checkpoint consists of both (1) a possibly inconsistent
state snapshot and (2) a collection of transactions that were
active during and after the capturing process, and which later
can be used to “repair” the fuzzy snapshot. Although effi-
cient, this technique unfortunately cannot be directly applied
to replicated systems tolerating arbitrary faults, because the
resulting checkpoints are non-deterministic and therefore not
comparable across replicas. Comparability, as discussed above,
however, is an important requirement for systems in which
replicas do not trust each other, as it enables the verification
of a checkpoint based on the opinions of multiple replicas.

In this paper, we address these problems with a technique
we refer to as deterministic fuzzy checkpoints (DFC). Relying
on DFC, replicas are able to produce consistent checkpoints
without requiring support for database transactions and, more
importantly, without the need to suspend request processing.
Nevertheless, the resulting checkpoints are comparable across
replicas. To achieve this, replicas not only acquire a copy of the
application state but also capture intermediate modifications in
a deterministic order. If necessary, for example for verifying
snapshot contents, based on this information correct replicas
are able to retroactively create identical checkpoints for a
specific point in time; similar to state capture, this procedure
can also be performed in parallel with request execution.

In summary, this paper makes the following contributions:
(1) It presents the DFC technique that enables replicas to
create deterministic, and therefore comparable, checkpoints in
parallel to request processing. (2) It discusses two different
variants to integrate DFC with a replication library. (3) It
elaborates on how the basic concept of DFC can also be
used for differential checkpoints. (4) It uses a key-value store
to experimentally evaluate the proposed DFC variants in
comparison with state-of-the-art checkpointing approaches.

This is the authors’ version of an article to appear in the Proceedings of the 38th International
Symposium on Reliable Distributed Systems (SRDS ’19), Lyon, France, 1—4 October 2019.

II. SYSTEM MODEL

We consider systems that run multiple replicas of a state-
ful application on different servers to make the application
resilient against faults [1]. If a replica becomes faulty, for
example as the result of a software/hardware problem or a
malicious attack, the replica may behave in arbitrary (Byzan-
tine) ways [15]. At all times, at most f of the replicas in the
system are assumed to be faulty. If supported by the replication
infrastructure, replicas may recover from failures, for example,
by being rejuvenated using a clean state [2], [5], [6], [7].

The replicas of a system are connected through an unreliable
network that might reorder, delay, corrupt, or drop messages.
To enable a replica to verify the origin and integrity of a
received message, all correct replicas properly authenticate the
messages they send. We do not require a system to rely on a
specific authentication scheme for this purpose, only that the
cryptographic algorithm used is strong enough to prevent an
attacker from successfully impersonating a correct replica or
manipulating the content of a message without being detected.

To ensure that the application states of correct replicas
remain consistent even in the presence of replica and network
failures, as shown in Figure 1 the servers in a system use
a replication library that executes a Byzantine fault-tolerant
agreement protocol [2], [4], [8] to establish a stable total order
on incoming client requests. More specifically, the agreement
protocol assigns each request a unique, monotonically increas-
ing sequence number and ensures that all correct replicas
eventually commit to the same assignment. Requests for which
the agreement process is complete are then processed by all
correct replicas in the order of their sequence numbers. For
consistency, the application logic must be deterministic, that
is, starting from the same initial state and processing the same
sequence of committed requests, all correct replicas must reach
the same follow-up states and produce the same results.

In our target systems, the state of the application can be
modeled as a collection of disjoint objects [11], [16], [17] that
each are identified by a unique object id (e.g., a byte string).
The set of objects a state consists of may change over the
lifetime of a system, for example, due to requests creating new
objects and/or deleting existing ones. For most applications
partitioning the state into such objects is straightforward as
the state already possesses some form of internal structure. In
a key-value store, for example, each object may represent a
different entry, using the entry’s key as object id.

—»| Ry |Replication library _.ED:D:D:D_, Application
)

[]

ﬂ agreement LI (TIIII1]— [Application]
[]
]

protocol
4 — [TTTILLL]— [Application

- R .
L R4 Replication library | = I:l:l:l:l:l:l:l] — [Appllcatlon
A

T
Sequence of totally ordered requests

Figure 1. Overview of a system with four replicas (R1,...,/R4) that are kept
consistent by a replication library establishing a total order on all requests.

III. BACKGROUND & PROBLEM STATEMENT

In this section, we provide background on the purpose and
use of checkpoints in replicated applications that fit our system
model presented in Section II. Furthermore, we discuss and
analyze state-of-the-art checkpointing approaches in order to
identify their individual strengths and weaknesses. In a final
step, these insights then allow us to formulate requirements
for the design of improved checkpointing mechanisms.

A. Checkpoints

A checkpoint C is a representation of the state a replicated
application is in after having processed all requests up to (and
including) sequence number s. With correct replicas being
deterministic and executing all requests in the same order,
the checkpoints created by any two correct replicas ¢ and j
for the same sequence number are equal (i.e., Cs; = C ;).
This means that the checkpoints include the same state objects
O1,...,0, and that the values of these objects are pairwise
equal (ie., Yo € {1,...,x} : Op; = O, ;).

Checkpoints constitute an essential building block of fault-
tolerant replicated systems and are typically used to solve
a variety of problems. First and foremost, they often play
an important role in state-transfer mechanisms that allow
new replicas to join an already running system. Specifically,
by fetching a checkpoint and accordingly updating its local
application, a new replica is able to reach a consistent state
without having to process all requests since system start. In a
similar way, checkpoints also provide a means for recovering
replicas to catch up [2], [5], [6], [7]. Apart from these use
cases, many replication architectures also rely on checkpoints
to determine the point in time at which they can safely
garbage-collect information on completed agreement-protocol
instances [2], [4], [8], [9]. The rationale in this context is
that once a checkpoint covers the effects a request had on the
application state, the agreement-protocol information of the
request is no longer required and therefore can be discarded.

In environments where replicas are assumed to possibly
fail in arbitrary ways and therefore do not trust each other,
a correct replica must never update its state solely based on a
checkpoint provided by a single other replica. Otherwise, if the
other replica is faulty it might transmit a corrupted checkpoint
that does not represent the actual application state at the
specified sequence number, which in turn would result in the
correct replica becoming inconsistent. To address this issue,
Byzantine fault-tolerant agreement protocols usually enable a
replica to verify the content of a received checkpoint based
on information gathered from multiple replicas [2], [8]. For
this purpose, these protocols ensure that all correct replicas
periodically checkpoint their local states at predefined se-
quence numbers (e.g., in intervals of 100,000). Having created
a checkpoint, each correct replica then computes a hash over
the checkpoint’s content, which another replica can later use to
verify the checkpoint by comparing the hashes obtained from
multiple replicas. In the presence of at most f faulty replicas,
a checkpoint is correct if there are at least f + 1 matching
hashes from different replicas confirming its content.

B. State of the Art

The straightforward approach to guarantee that a checkpoint
correctly reflects the current state of the application is to
suspend request processing while the checkpoint is created,
as illustrated in Figure 2a. Using this method, when a check-
point C; is due, a replica first waits until the execution of the
request with sequence number s is complete. Next, it copies
all state objects to a separate memory location reserved for
the checkpoint. Finally, the replica resumes request execution
at sequence number s + 1. With no request being processed
during checkpoint creation, all objects remain unchanged
and consequently the checkpoint reflects the application state
between sequence numbers s and s+ 1. On the downside, with
all objects being copied this approach often incurs a significant
performance penalty, especially for large application states.

One possibility to mitigate the performance penalty associ-
ated with checkpointing is to create hybrid checkpoints [3].
Using this technique, an application-state snapshot is only
taken in comparably large sequence-number intervals. In be-
tween, the captured snapshot is subsequently extended by
frequently adding deltas, that is, sequences of the client
requests that a replica has executed in the meantime. With
the replication library already having these requests available,
obtaining such deltas is straightforward. However, this comes
at the cost of an increased overhead for applying hybrid check-
points, because in addition to loading the (outdated) snapshot
into the application a replica then also needs to process all
the requests that are contained in the succeeding deltas. In
general, the approach of bringing an application state up to
date via request execution has two drawbacks: (1) Processing
a request usually requires more resources than reproducing
only the changes the request made to the application state [7].
(2) While verifying a snapshot allows a replica to confirm that
certain state parts are correct, successfully verifying a delta
solely tells the replica that the inputs it is going to process
are valid. However, the same does not hold for the effects the
requests have on the application. If, for example, the execution
of a request causes a replica to fail and the replica then tries to
recover using a hybrid checkpoint containing the same request
in its deltas, the request will result in the replica failing again.

An alternative way to speed up checkpointing is to rely on
differential checkpoints [2], [11]. In contrast to regular (full)
checkpoints, differential checkpoints do not capture the entire
application state but only comprise information on the state
objects that have been created, modified, or deleted since
the last full checkpoint (see Figure 2b). The information in
the differential checkpoint is afterwards used to update the
previous full checkpoint in parallel with request execution
to create an up-to-date full checkpoint. As a main benefit
of the differential-checkpoint approach, the duration of the
checkpoint-capturing process no longer depends on the overall
size of the application state, but instead on the number and
size of the objects that changed during the latest checkpoint
interval, which in many use cases is significantly smaller.
However, as we show in Section VI, for applications with large
objects and/or expensive state-retrieval operations differential

Request execution | Checkpointing
R;1[01]01,03]03]01] 01,...,05

Ro 01|O1,O3 |O3|O1 Oq,..., Os5
R3 Ol|01,03 |O3|01 Ol 05
R4[01]01,05][05]0:| 01,..,05
time —>

Request execution | Checkpointing
02,05]01]05]01,05| O1,....05

02,03 |01|O5|01,O5 O1,..., O5
02,03]01]05]01,05| 01,...,05
02,03]01]05]01,05| 01,...,.05

(a) Full checkpoints

Request execution [Checkp.| Request execution | Checkpointing
R1|01]01,05]05]01] 01,03 [02,05[01]05] 01,05 [01,02,03,05

RZ 01|O1,03|O3|01 O1,03 02,03|01|O5|01y05 01102103105
R3 01|O1,03|03|O1 01,03 02,O3|01|O5|01,05 01102103105
R4]|01]01,05]03]01] 01,05 02,03]01]05] 01,05 [01,02,03.05

time —

(b) Differential checkpoints

|Checkp.| Request execution |Checkp.| Request execution
R[] [LILTTTTTTTTTTTT LTI
Ro [TTTT] [[TTTTTTTTTITTTT] [[TTTTTTTT]
Rs [[TTTTTTTTTT [[TTTTTTTTTITTTT] [[[[]]
R [T [T |
Request execution ICheckp.| Request execution [Checkp.|

(c) Checkpoint rotation

Figure 2. Comparison of state-of-the-art checkpointing techniques for an
example system with four replicas (R1,...,/24) and an application state
comprising five objects (O1,...,05). Request and checkpoint labels indicate
the state object(s) accessed by the corresponding operation.

checkpointing may still lead to considerable service outages,
a problem that in most Byzantine fault-tolerant systems is in-
tensified by the fact that all correct replicas create checkpoints
at the same sequence numbers (see Section III-A).

To improve system availability during checkpointing proce-
dures, Dura-SMaRt [18] applies a strategy in which different
replicas checkpoint their local states at different sequence
numbers (see Figure 2c¢). As a result, the individual check-
points are not directly comparable, making it impossible for
the receiver of a checkpoint (e.g., a new replica) to directly ver-
ify the correctness of the checkpoint’s content in advance. For
this reason, Dura-SMaRt relies on a different approach which
in a nutshell involves the following steps: Having received
a checkpoint for sequence number s, a replica immediately
updates its local state accordingly, without performing any
checks. In addition to the checkpoint, the replica also obtains
and executes all subsequent committed requests with sequence
numbers higher than s, thereby further updating its state.
During this process, every time the replica reaches a sequence
number ¢ > s for which another replica has previously created
a checkpoint C;, the replica retroactively compares its state at
sequence number ¢ to the state announced in checkpoint C;. If
at some point the replica fails to verify the correctness of its
local state, it retries the state transfer based on a checkpoint
and/or requests provided by a different replica. Although this
approach ensures that correct replicas eventually will end
up with a correct up-to-date state, the method also has one
important drawback. It requires a replica to load an unverified
checkpoint and therefore entails the risk of a correct replica
being compromised by a manipulated checkpoint. That is, if
an attacker, for example, manages to introduce a virus via the
provided checkpoint, the replica might become faulty even
before it is able to detect that the checkpoint has been invalid.

C. Requirements

Having analyzed the advantages and disadvantages of ex-
isting solutions, we identify a set of requirements a resilient,
efficient, and flexible checkpointing mechanism should fulfill:

o Resilience: In order to prevent a correct replica from

becoming faulty as the result of a state transfer with a
corrupted checkpoint, a replica must be able to validate
the content of a checkpoint prior to applying it locally.

« Efficiency: The procedure of creating a checkpoint

should impact application performance as little as pos-
sible. In the ideal case, request execution does not have
to be suspended at all while the checkpoint is captured.

« Flexibility: The checkpointing mechanism should sup-

port both full and differential checkpoints, this way offer-
ing the possibility to exploit the advantages of each tech-
nique (i.e., no need to continuously track modifications
for full checkpoints vs. efficient creation of differential
checkpoints) depending on the application scenario.

In the remainder of this paper we present our approach to
meet these requirements, which enables replicas to produce
consistent checkpoints in parallel with request execution. Pro-
viding comparable checkpoints that represent the application
state at deterministic sequence numbers, it can be applied to
systems in which the replicas do not trust each other. We first
discuss the base version of our approach that supports full
checkpoints (Section IV) and then elaborate on how this ver-
sion can be extended to differential checkpoints (Section V).

IV. DETERMINISTIC FUZZY CHECKPOINTS

In this section, we provide details on deterministic fuzzy
checkpoints (DFC), a technique for the efficient creation of
consistent checkpoints in systems that assume arbitrary replica
failures. Apart from outlining our general approach (Sec-
tion IV-A), we describe two possible alternatives to handle the
necessary interaction with the application (Section IV-B), and
furthermore highlight important optimizations (Section IV-C).

A. General Approach

As discussed in Section III-C, a resilient checkpointing
mechanism allows replicas to verify the content of a check-
point without having to load the checkpoint first. DFC
achieves this by ensuring that all correct replicas in a system
create consistent and comparable checkpoints in deterministic
sequence-number intervals. To do this with minimal impact on
service availability, DFC performs state capturing in parallel
with request execution, as illustrated in Figure 3. With the
application continuously processing client requests during this
procedure, in contrast to traditional checkpointing approaches
a captured DFC snapshot is fuzzy, that is, in itself the snapshot
usually is not a consistent representation of the application
state at a specific point in time. Therefore, to make checkpoint
contents comparable across replicas, DFC includes a second
phase in which the captured snapshot is later adjusted to
fit to a predefined sequence number. In the following, we
present each of the two DFC checkpointing steps (i.e., state
capture and checkpoint completion) in more detail.

Checkpoint Checkpoint

Request execution Request execution Request execution
oy L L L L L T T L LT
SC CcC SC CcC
o LT LR P T PP LT LT
SC CC SC CC
o LT L TP TP T LTI EL -
SC CC SC CcC
o, LT LR P T PP L LR T -
SC CcC SC CcC
time —

Figure 3. Deterministic fuzzy checkpointing with four replicas (Rj,...,R4):
Both state capture (SC) and checkpoint completion (CC) are coordinated by
each replica individually and performed in parallel to request execution.

State Capture. To create a checkpoint C for a sequence
number s using DFC, a replica ¢ starts to capture the ap-
plication state at an earlier sequence number p; < s. As
further discussed below, the sequence number p; is selected
by each replica individually without any coordination with
other replicas in the system. Once the replica has processed
the request with sequence number p;, it starts a dedicated
checkpointer thread that, for a full checkpoint, iterates over the
entire application state and creates a copy of each state object.
In addition, starting with sequence number p; + 1 the replica
also records all subsequent modifications to the application
state up to and including sequence number s. The particular
method used to identify and store these modifications, as well
as the properties they need to provide, depend on the interface
between replication library and application (see Section IV-B).
However, in all cases, when the state-capturing process is
complete the checkpoint C; = (S, s, Mp,11,...,s) consists
of two parts: (1) a snapshot S,) comprising a set of state-
object copies that each represent the state of their respective
object at some point between sequence numbers p; and s
as well as (2) a list M, 11, s of all state modifications by
requests with sequence numbers between p; + 1 and s.

The goal of a replica is to select the starting sequence
number p; in such a way that the checkpointer thread finishes
its work shortly before the application reaches the sequence
number s for which the checkpoint should be created. If the
checkpointer thread takes longer than expected, the replica
must temporarily suspend request execution after sequence
number s in order to ensure that no effects of later requests
are introduced into the checkpoint for s. On the other hand,
if the starting sequence number is chosen too low and the
checkpointer thread terminates early, the list of state modifi-
cations may grow unnecessarily large. To address this problem,
a replica using DFC dynamically determines the starting
sequence number for a checkpoint interval based on measure-
ments conducted in the previous interval. Specifically, a replica
counts the number of sequence numbers d the application has
actually processed while the checkpointer thread was running.
For the next checkpoint interval ending with sequence num-
ber s, the replica then selects p, = s’ —min(\-d+9, Icp) with
0 and A being configurable numbers serving as an additional
buffer and Iop representing the global checkpoint interval.

Selecting the starting sequence number for state capture this
way has several benefits: First, unlike the use of static starting
points, the adaptation allows a replica to minimize overhead in
the presence of varying application-state sizes. Second, the for-
mula on the one hand ensures that the size of the state-capture
range can be adjusted in both directions, but on the other hand
still prevents two checkpoint intervals from overlapping. Fi-
nally, with each replica selecting its starting sequence number
individually, DFC is able to handle scenarios in which the
costs for state capture are not uniform across replicas, for
example, as a result of the system comprising heterogeneous
servers with different performance capabilities [9].

Checkpoint Completion. As replicas perform the state cap-
turing for a DFC checkpoint C = (S, M) in parallel with
request execution, the contents of the state-object snapshots .S
created by different replicas can differ. This has two reasons:
(1) Different replicas are allowed to choose different starting
sequence numbers for the state-capturing process and (2) the
interleaving between application and checkpointer threads is
likely to vary across replicas, resulting in some replicas
capturing earlier states of an object than others in cases where
the object is modified after the capturing started. The former
reason generally causes the list of state modifications M to
differ in length between individual replicas. However, with all
correct replicas respecting the agreement protocol’s total order
of requests, DFC guarantees that the list M; of a replica ¢ is
a suffix of the list M; captured by a replica j if p; > p; is
true for their respective starting sequence numbers.

Although the immediate results of the state-capture phase
may not be directly comparable across correct replicas, they
nevertheless already contain all information necessary for each
of these replicas to produce a consistent checkpoint. For this
purpose, a replica takes the state-objects snapshot S and
applies all intermediate changes in the order in which they
appear in the list of modifications M. Due to the way both the
snapshot and the state-modification list have been constructed,
the output of this checkpoint-completion procedure is identical
for all correct replicas. Consequently, the resulting checkpoints
can be used in the same manner as traditional full checkpoints
even though the DFC checkpoints have been created while the
application was continuously running. As another benefit, the
checkpoint completion can also be performed in parallel to
request execution. Furthermore, it may be deferred to a point
in time when another replica actually needs the checkpoint,
for example, to join the system or recover after a failure.

B. Interaction with the Application

DFC efficiently creates consistent checkpoints based on a
combination of state-object snapshots and state modifications.
In the following, we discuss two alternatives for retrieving this
information from the application through generic interfaces
that enable some parts of the processing to be implemented in
an application-agnostic way inside the replication library. Our
first variant DFC,,,, applies copy-after-write and requires only
a small amount of application-specific functionality, while our
second variant DFCpq is based on updates provided by the

/* Application interface */
interface CAW_Application {
/% Request execution x/
RESULT invoke (REQUEST r);

/* Checkpointing */
BYTE[] object(OBJECTID oid);
void apply(OBJECTID[] oids, BYTE[][] objects);

}

/% Replication=library callback interface */
12 interface CAW_Callback {

13 void modified (OBJECTID oid);

14 }

_ =
—_— O O 00 N NN R W N =

Figure 4. Interfaces between replication library and application if determin-
istic fuzzy checkpoints are implemented based on copy-after-write (DFCcaw).

application and therefore offers additional means to improve
checkpointing efficiency with a tailored implementation.
Variant I: Copy after Write (DFC.,,). The main idea
behind DFC,,, is to enable the replication library to track
each modification to a state object, thereby making it possible
for the library to coordinate the checkpoint creation process
itself. In particular, this approach allows the library to learn
which object changes while the state capture is in progress
and later specifically request these objects to be copied again.

As shown in Figure 4, DFC.,, uses an application interface
similar to the ones that can already be found in existing
Byzantine fault-tolerant systems [11]. To process a request, the
replication library hands it to the application via invoke ()
and obtains a result once the execution finished. In order to
snapshot an object, the library calls object () passing the
corresponding object id. This method either returns a copy of
the requested object in an application-specific serialized form
or nil in case the object currently does not exist. Finally, the
application offers means to apply a checkpoint after it has
been successfully verified (apply ()). In addition to these
methods provided by the application, the replication library
comprises a callback method modified () that is invoked
by the application before it changes the state of an object.

Using these interfaces, DFC.,, implements deterministic
fuzzy checkpoints as follows. At all times, the replication
library maintains a set of ids referring to the state objects
that currently exist in the application. The library adds new
ids when it learns them via modified () and removes old
ids if object () returns nil. When request execution reaches
the starting point of the state-capture phase, the library starts
a checkpointer thread that iterates over the application state
and for each known id copies the corresponding state object
using object (). At the same time, the library begins to
record the ids of newly modified objects in a separate set. As
soon as the checkpointer thread has produced the state-objects
snapshots S and the application has processed all requests
up to the checkpoint sequence number, the replication library
triggers the creation of the final state-modification list M.
For this purpose, the library in a last step temporarily pauses
request execution and once again calls object () for all
objects that have been modified in the meantime.

At the end of the state-capture phase a full DFC.,, check-
point thus has the following properties: (1) For all objects that
have not been modified during state capture, the set of object
snapshots S contains a copy of their current state. (2) For all
other objects, S may either include the newest version or an
earlier one; however, the modifications list M is guaranteed
to include the latest state for these objects. Therefore, creating
a deterministic full DFC.,, checkpoint is straightforward, all
a replication library needs to do is to replace the copies of
modified state objects in S with their latest version from M.

The copy of an object must reflect the object’s state between
the execution of two requests. Usually the most efficient
way to achieve this is to implement object-level locking
directly in the application. However, the replication library can
also implement a coarse-grained variant by simply alternating
between normal request execution and object-state capturing.

Although relying on a similar interface between replication
library and application, DFC’s copy-after-write significantly
differs from the copy-on-write (COW) approach used by ex-
isting replication libraries [3], [19] to create full checkpoints.
Most importantly, while COW creates a checkpoint for the
sequence number marking the start of the state-capture phase,
DFC..w produces a checkpoint for the sequence number at
which state capturing ends. Consequently, if an object that so
far has not yet been captured is about to change, COW must
delay request execution and immediately copy the object to
ensure that it retrieves the object’s original version. DFC
on the other hand needs to track the ids of objects that already
have been captured and are modified afterwards; copying these
objects (a second time) in this case may be done later. Another
major difference between the two approaches is the delay with
which a checkpoint becomes available. Once a replica reaches
the checkpoint sequence number, COW has to perform the
entire checkpoint creation process, whereas DFC.,, at this
point typically has already captured the application state and
directly can proceed to completing the checkpoint.

Variant II: Updates (DFC,p4). In contrast to DFC,y,
in our second variant for implementing deterministic fuzzy
checkpoints, DFC 4, the replication library does not know
about the identities and contents of the objects an application
state consists of. Instead, during the state-capture phase the
library receives and maintains a list of application-specific
updates which (if necessary) it can later apply to the captured
object snapshots in order to make the checkpoint deterministic.

Figure 5 presents the interface between replication library
and application in DFCp. Compared with DFC,,,, the
invoke () method offers a second parameter to initiate the
creation of an update that represents the state modifications
triggered by a request during execution. If a request changes
multiple objects, the corresponding update comprises infor-
mation on each of these modifications. Using fuzzy (), the
library obtains a fuzzy application-specific snapshot of all cur-
rent state objects. Upon request the library uses this snapshot
as basis for a complete checkpoint (complete ()), which
then can be used to initialize another replica (apply ()). As
all required information is exchanged through snapshots and

interface Upd_Application {
/% Request execution /
[RESULT, UPDATE] invoke (REQUEST r, boolean createlUpd) ;

SNAPSHOT fuzzy();
SNAPSHOT complete(SNAPSHOT s, UPDATE[] u);

1

2

3

4

5 /* Checkpointing */
6

7

8 void apply(SNAPSHOT s);
9

}

Figure 5. Interface between replication library and application if deterministic
fuzzy checkpoints are implemented based on updates (DFCypq).

updates, in DFC 4 there is no need for the application to call
back the replication library when a state object is modified.
To avoid redundant work the replication library only in-
structs the application to produce updates during the state-
capture phase. Once created, the library adds these updates
to its local list of state modifications, thereby preserving the
request order. In parallel, the library executes a checkpointer
thread that copies the application state by calling fuzzy ().
As a result, at the end of the state-capture phase a full DFC ypq
checkpoint either comprises a copy of the latest state of each
object or it contains an earlier state accompanied by a list of
updates that transform the previous state into the latest state.
DFCyp¢ does not require updates to possess a specific
format as long as it is guaranteed that applying all updates to
the fuzzy snapshot in the determined order results in identical
checkpoint contents on all correct replicas. In particular, this
must be true independent of whether the obtained object copy
initially represents the state of the object at the beginning,
middle, or end of the state-capture phase. One solution to
achieve this, for example, is to maintain per-object version
counters that the application increments on each modification.
Adding these version numbers to the corresponding updates
later enables an application to skip updates which are already
reflected in the object state when completing the checkpoint.
Requiring consistency of individual state objects, DFC g
updates impose comparably weak restrictions. In contrast,
the request sequences included in hybrid checkpoints [3], for
example, are only executable on a consistent application state
and therefore could not be used to complete a fuzzy snapshot.
Comparison. Even though both DFC,, and DFC,q produce
deterministic fuzzy checkpoints in parallel with request execu-
tion, the two approaches differ in two main aspects: the degree
to which the replication library has knowledge about state
objects as well as the way of representing state modifications.
Using DFC,,y, a replication library sees the individual objects
the application state consists of and therefore is able to handle
large parts of state capture and checkpoint completion in
an application-agnostic manner. While this generalizability
requires DFC .,y to track and model modifications at the gran-
ularity of entire objects, DFC,4, by leaving object handling
and modification tracking to the application, allows a replica to
manage state changes at a much finer level. Therefore, DFC
and DFC 4 represent the two ends of the spectrum of feasible
ways to implement deterministic fuzzy checkpoints; additional
variants combining ideas from both approaches are possible.

C. Optimizations

In the following, we present optimizations that further
improve the performance and/or efficiency of DFC.

Object-specific Modification Tracking. As discussed in Sec-
tion IV-A, to produce a comparable checkpoint a replica uses
the previously captured snapshot and applies all recorded state
modifications. This way, the replica can ensure that the state of
each object in the final checkpoint is up to date, even though
for some objects the fuzzy snapshot might comprise an earlier
version. Building on this insight, it is possible to speed up
checkpoint completion by only recording and applying the
modifications that actually result in newer object versions. In
particular, a replica can ignore modifications for an object that
occur after the beginning of the state-capture phase but before
the checkpointer thread creates a copy of the object. That is,
a replica may select for each object individually the point in
time at which it starts to track modifications for the object,
depending on the progress made by the checkpointer thread.

Throttled Checkpointing. Using DFC, a replica is able to
create checkpoints while continuously processing requests. To
further minimize the impact checkpointing procedures have
on performance, a replica may deliberately throttle the state-
capture process by introducing short pauses between copying
two state objects. As a consequence of the prolonged state
capture, the costs for obtaining an application-state snapshot
do not have to be payed at once, but instead are distributed
over an extended period of time. This approach is especially
effective in cases in which the checkpointer thread and the
application contend for shared resources such as the CPU.

V. DETERMINISTIC DIFFERENTIAL FUzZY CHECKPOINTS

In this section, we present details on how our approach
can be extended to create deterministic differential fuzzy
checkpoints (DDFC), that is, checkpoints that only cover the
application-state changes made since the previous checkpoint.

General Approach. To create a differential checkpoint, a
replica needs to identify recently modified parts of the appli-
cation state. For DDFC, we solve this problem by introducing
an additional monitoring phase (“state observation”), which a
replica executes prior to performing the two main checkpoint-
ing steps (i.e., state capture and checkpoint completion).

State Observation. As shown in Figure 6, when a replica has
completed the state capture for a checkpoint it immediately
starts the state-observation phase for the next checkpoint.
During this phase, the replica does not yet record the ac-
tual contents of state modifications, but it already collects
knowledge on the state parts that changed. How exactly this
state-observation-phase information is maintained by a replica
depends on the specific implementation of DDFC. In case of
the copy-after-write variant DDFC.,, the replication library
accumulates the ids of modified state objects. For the update-
based variant DDFC g4, on the other hand, the library asks the
application to generate a meta update for every processed write
request. In contrast to regular updates, a meta update solely
contains meta-data information on the state parts affected,

Checkpoint Checkpoint

Request execution Request execution Request execution
HERRENERERENRRERENRRRNNNERENNRERNENERNN
Ry SO SC SO SC SO
CC CC
HERREEERERENRRERENRERNNNERENNRERNENEENN
Ry SO SC SO SC SO
time —> QCC S

Figure 6. Three phases of deterministic differential fuzzy checkpointing: state
observation (SO), state capture (SC), and checkpoint completion (CC).

but lacks the newly written contents. Consequently, meta
updates are typically much smaller than regular updates and
can be created more efficiently. This significantly minimizes
redundant work in scenarios where the same state parts are
repeatedly modified within the same state-observation phase.

State Capture. Similar to the approach for full check-
points (cf. Section IV-A), to create a checkpoint for sequence
number s using DDFC a replica ¢ starts the state-capture phase
at an individually selected sequence number p; and records all
state modifications My, 11,... s between p; and s. However, in
this case the captured checkpoint D ; = (App, o, Mp, 41,....s)
contains a fuzzy snapshot A, ;) that only comprises copies of
objects that have been modified since the previous checkpoint.
To identify these objects, a replica relies on the information
obtained during state observation, that is, object ids and meta
updates for DDFC,, and DDFC 4, respectively.

Checkpoint Completion. Except for being limited to a subset
of state objects, at the end of the state-capture phase a
differential fuzzy checkpoint possesses the same properties as
a full fuzzy checkpoint. In particular, for each modified object
the captured checkpoint either includes (1) a copy of the latest
object state in the snapshot A or (2) one or more changes in
the modification list M that bring the captured object copy up
to date. As a result, by applying the modifications to the fuzzy
snapshot a replica is able to produce a differential checkpoint
that is comparable across replicas. The resulting differential
checkpoint is then merged with the last full checkpoint in
order to yield an up-to-date full checkpoint.

VI. EVALUATION

In this section, we experimentally evaluate DFC in com-
parison to state-of-the-art approaches for creating checkpoints
in replicated systems that tolerate arbitrary faults.

Environment. Our prototype implementation is based on the
REFIT replication library [8], [9], which we configure to rely
on the PBFT [2] agreement protocol to provide Byzantine fault
tolerance. For this paper, we extend the library to support
the DFC,, and DFC,y interfaces as well as differential
checkpoints. All experiments run on a cluster of five servers
that are connected via switched Gigabit Ethernet. While one of
the servers (Intel Xeon E5645, 2.4 GHz, 32 GB RAM, Ubuntu
18.04.2 LTS, Java 11) runs 100 client instances, the other
four (Intel Xeon CPU E3-1275, 3.6 GHz, 16 GB RAM, Ubuntu
18.04.2 LTS, Java 11) each host a replica.

10 [

ot

=
ot

=
(e}

[-| DFC

(o4}

Throughput [kReq/s] Throughput [kReq/s] Throughput [kReq/s]

0 L L L L L
0 20 40 60 80 100 120
Time [s]

(a) Throughput

1

=, | |[— BFTq
9] —— DFCcaw
E 5[]~ DRCyp 0.5
Q
é 2| o heae o
g1 T a1
= e aioank Al
0 20 40 60 80 100 120

Time [s]

(b) Latency (3 GB state)

Figure 7. Full checkpoints: Comparison of throughput and latency results for
BFTgy, DFCeaw, and DFCupd for checkpointing states of 1 GB and 3 GB.

To evaluate the efficiency of our DFC variants, we com-
pare them against two baselines: (1) BFTy, represents the
approach used in traditional Byzantine fault-tolerant sys-
tems [4], [8], [9] by suspending request execution while cre-
ating a full checkpoint. (2) BFT 4 also pauses the application
during checkpointing, but in contrast to BFTyg,; generates
differential checkpoints [2], [11]. To obtain meaningful and
comparable results, both BFTy,; and BFTg share the same
code base as our DFC implementations. We do not ex-
perimentally evaluate Dura-SMaRt’s approach of configuring
replicas to create checkpoints for different sequence numbers.
Experiments in the Dura-SMaRt paper [18] indicate that this
method is efficient with regard to performance, however, as
discussed in Section III-B, it also introduces a vulnerability
due to requiring replicas to load unverified checkpoints.

As application scenario for our experiments we rely on a
key-value store, which is used by clients to save and retrieve
data in chunks of 4 kilobytes. Each request accesses a single,
randomly selected key-value pair. Unless stated otherwise,
the clients issue equal shares of save and retrieve operations.
Besides managing the actual data, the store for each key-value
pair also maintains a small set of metadata such as a last-
accessed timestamp. For DFC, each key-value pair represents
an individual state object that is uniquely identified by its
key. To capture the state of an object, the replication library
serializes both data and metadata into a byte buffer. Using
DFC 4, updates (in serialized form) only include the pieces

BFT giff
..... 50,000
— 100,000

|| DDFCcaw

----- 50,000
—— 100,000

o

Throughput [kReq/s] Throughput [kReq/s] Throughput [kReq/s]

0
15
10
5 || DDFCypg
..... 50,000
— 100,000
0 L L L L
0 20 40 60 80 100 120
Time [s]
(a) Throughput
= ° BET, 1
o 41— Dm%‘ﬁf.,w
g 3 ||— PPFCypa 0.5 |
(9]
2 2| AL
2 0 s A
¢ I]
m 0 — N
0 20 40 60 80 100 120
Time [s]

(b) Latency (checkpoint interval: 100,000 sequence numbers)

Figure 8. Differential checkpoints: Comparison of BFTgir, DDFCecaw, and
DDFCupd for checkpoint intervals of 50,000 and 100,000 sequence numbers.

of data or metadata that actually changed. In all cases, the key-
value pairs currently retained by the application are stored in
a SQLite database that keeps them in memory. As the state
already resides in memory and does not have to be fetched
from disk, creating a checkpoint is comparably efficient. That
is, our configuration minimizes the time it takes to capture the
state, which is favorable for the baselines BFTg,;; and BFT ;.
Full Checkpoints. In our first experiment, we evaluate the
impact of creating full checkpoints on performance depending
on application-state size. For this purpose, we vary the number
of stored key-value pairs, creating a 1 GB setting that main-
tains 250,000 objects and a 3 GB setting with 750,000 objects.
Figure 7 shows the results recorded after an initial warm-
up phase. In this experiment, replicas produce a checkpoint
every 100,000 sequence numbers, which due to the replica-
tion library applying request batching [2] translates to about
400,000 requests and a time interval of about 40 seconds.
As illustrated in Figure 7, although all the data is stored
in memory it takes BFTy; about 1.3 seconds to serialize
the 1GB state. During this time, BFTy, suspends request
processing in order to create a consistent checkpoint, causing
the application to become unavailable. For the 3GB state,
the checkpointing duration increases to about 4.7 seconds
and results in a significant service disruption. In contrast to
BFT¢y1, both DFC.,, and DFC,q4 capture the state in parallel
with request execution and thus maintain high throughput even
during the creation of full checkpoints for large states.

Producing the fuzzy snapshot while the application is run-
ning temporarily affects throughput due to the synchronization
required between checkpointer thread and key-value store.
In addition, for DFC.,, our measurements indicate small
latency spikes of less than 700 milliseconds that are the
result of DFC,,,’s last state-capture step which once again
copies all state objects that have been modified during the
capture of the fuzzy snapshot (see Section IV-B). Including
only the most recently changed objects, this step typically
consumes a limited amount of time. However, as we discuss in
Section VII, if necessary it is possible to mitigate the effects of
the step by modifying DFC,,,, to execute additional rounds of
object copying. With DFC,q collecting state updates during
snapshot capture, unlike DFC,y, DFC,p does not need a
corresponding step of additional object copies, enabling low
latency throughout the entire checkpointing process.
Differential Checkpoints. In the second part of our evaluation,
we focus on differential checkpoints and therefore rely on
BFTg as baseline. With differential checkpoints only cap-
turing the changes since the previous checkpoint, the duration
of the checkpointing process does not depend on the total
size of the application state, but instead on the checkpoint
interval and the extent to which the request workload modifies
the state. Figure 8 presents the measurement results for an
experiment with a 3 GB state in which we vary the checkpoint
interval between 50,000 and 100,000 sequence numbers. In
both scenarios, BFT;s is able to produce a checkpoint with
less overhead than BFTyg, in the previous 3 GB experiment.
Nevertheless, if more than 200,000 objects change since the
last checkpoint it still takes BFTg; more than a second to
capture them, which shows that even differential checkpointing
can cause considerable service disruptions. Operating BFT gis
with tiny checkpoint intervals in general does not solve this
issue, because such an approach would reduce state-capture
duration at the expense of a decreased overall throughput
that is the result of a replica copying state objects at high
frequency. Using DDFC,, and DDFC,y4, in contrast, the
performance impact of creating a differential checkpoint is
limited to the short state-capture phase that is executed in
parallel with request processing. As our results from additional
experiments confirm (see Figure 9), the maximum response
times of DDFC.,, and DDFC,q vary with the number of
modified objects, however, the absolute values are significantly
smaller than the maximum response times induced by BFT .

To further examine the differences between DDFC.,,, and
DDFC 4, we conduct an experiment with two distinct work-
loads consisting of (1) requests that retrieve values and thus
only modify metadata (i.e., a key-value pair’s last-accessed
timestamp) and (2) requests that store new values and change
both metadata and data. As the results in Figure 10 illustrate,
the fact that DDFC,pq relies on application-specific updates
enables it to only capture the actual changes, thereby im-
proving state-capture efficiency. This is especially beneficial
for scenarios such as the metadata-only workload (more than
25 % speedup) where there is a notable difference between the
size of an object and the parts that have been modified.

[l 280k objects (37 %)
[l 225k objects (30 %)
[75k objects (10%)
[37k objects (5%)

(&)

Max. response time [s]
-

(=)

BFTqife

DDFCeaw

DDFCypq

Figure 9. Observed maximum response times depending on the number of
modified state objects that need to be captured for a differential checkpoint.

=5 §20
) o
£ & 15
g3 5
3 alo
52 £
ul %05
s :
<0 =

metadata+data

metadata

metadata+data

metadata

Figure 10. State-capture durations (left) and throughputs (right) of DDFCeaw
and DDFC,pq for different workloads modifying different parts of an object.
The metadata workload has a higher throughput and capture time as its
requests are smaller than those of the metadata+data workload, which results
in larger request batches and thus more object accesses between checkpoints.

Discussion. A comparison of our results to previously pub-
lished numbers reveals that the cost of snapshotting the
application state in our experimental environment is low and
therefore favorable to BF Ty, and BFTg;¢. Bessani et al. [18],
for example, reported service downtimes of several seconds for
checkpointing a 1 GB state to memory, instead of 1.3 seconds
in our case, and disruptions of more than ten seconds when
saving a snapshot to disk or SSD. This indicates that the
benefits of deterministic fuzzy checkpointing over traditional
techniques may even be larger in other replicated systems.

VII. RELATED WORK

To our knowledge, DFC is the first approach leveraging
fuzzy checkpoints in the context of Byzantine fault tolerance.
So far, they have only been used in crash-tolerant systems
including in-memory databases [12], [13], [14] and coordina-
tion services [20]. Due to replicas in such systems trusting
each other, there is no need for synchronizing checkpoint pro-
cedures across replicas. Without further interaction, a replica
can snapshot its own state at any given time and transfer the
checkpoint to another replica. For tolerating Byzantine faults
this is not an option as a replica must be able to verify a re-
ceived checkpoint. DFC allows a system to generate a proof of
correctness for a checkpoint by ensuring that all correct repli-
cas produce comparable checkpoints for the same sequence
number. In contrast to the crash-tolerant systems mentioned
above, DFC for this purpose does not require the application
to implement state modifications in the form of transactions.

In high-performance computing (HPC) clusters, checkpoint-
ing also plays a vital role in the handling of component
failures, however its usage differs in several aspects from that
in replicated systems: (1) For a checkpoint, an HPC system
commonly saves the full state of each application process [21],
whereas a replicated system only captures the application’s
data. (2) HPC applications and their states are spread across a
large number of servers, resulting in each server to contribute

a unique piece to the overall checkpoint; ensuring that the
sum of these pieces represents a consistent checkpoint requires
cluster-wide coordination [21]. In contrast, in replicated sys-
tems each server maintains a consistent copy of the entire
application state, making checkpoints directly comparable.
(3) With each server providing a unique checkpoint part, to
tolerate crashes HPC systems must store each newly created
snapshot on several machines, thereby possibly minimizing
storage and performance overhead using erasure codes [22]
and a hierarchy of heterogeneous storage devices [23]. A
replicated system on the other hand only needs to transfer
a checkpoint when a new or recovering replica demands it.
The Byzantine fault-tolerant systems VM-FIT [6] and
77 [24] run each replica inside a virtual machine and exploit
file-system snapshots to reduce checkpoint-creation overhead.
Unlike DFC, this approach is only effective if an application
already maintains large parts of its state on disk. DFC, on the
other hand, does not make any assumptions on where the state
of an application resides. Furthermore, it does not pose special
restrictions on the functionality provided by the underlying
file system, thereby offering the opportunity to implement the
technique as part of a platform-independent replication library.
Being able to capture the state of a component without
suspending execution is not only beneficial in replicated sys-
tems, but also for the live migration of virtual machines. Clark
et al. [25], for example, propose a multi-round approach to
transfer the memory pages used by a running virtual machine
to another server. In particular, after an initial round that
copies all affected memory pages, their mechanism executes
several transmission rounds involving intermediate modifi-
cations. Similarly, the last step of DFC,,,’s state-capture
phase (i.e., the final copying of recently modified state objects)
could be split into multiple rounds. As a result, fewer state
objects would have to be copied once the application has
reached the sequence number at which the checkpoint is due.
In this paper, we focused on creating verifiable checkpoints,
which is usually the first problem to be solved to enable a
reliable state transfer between replicas. Other authors aimed
at improving subsequent steps limiting transmission to the
state parts that are actually required by a replica [2] or
enabling a replica to parallelize state transfer by fetching dif-
ferent parts from different replicas [26]. With completed DFC
checkpoints being identical to traditionally created check-
points, such techniques can be directly combined with DFC.

VIII. CONCLUSION

DFC enables Byzantine fault-tolerant systems to efficiently
create deterministic application checkpoints in parallel with
request execution. Supporting the method requires additional
logic as well as computing and memory resources compared
with the straightforward approach of suspending the appli-
cation during state capture, but in return offers increased
availability. As shown in this paper, DFC is flexibly applicable
to both full and differential checkpoints. Depending on the
use case, DFC can either be closely integrated with a generic
replication library or optimized for a specific application.

REFERENCES

[1] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp- 299-319, 1990.

[2] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. on Computer Systems, vol. 20, no. 4,
pp. 398-461, 2002.

[3] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche, “UpRight cluster services,” in Proc. of SOSP '09, 2009, pp.
277-290.

[4] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine replication for

the masses with BFT-SMaRt,” in Proc. of DSN ’14, 2014, pp. 355-362.

P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo,

“Resilient intrusion tolerance through proactive and reactive recovery,”

in Proc. of PRDC 07, 2007, pp. 373-380.

T. Distler, R. Kapitza, and H. P. Reiser, “State transfer for hypervisor-

based proactive recovery of heterogeneous replicated services,” in Proc.

of SICHERHEIT 10, 2010, pp. 61-72.

T. Distler, R. Kapitza, I. Popov, H. P. Reiser, and W. Schroder-Preikschat,

“SPARE: Replicas on hold,” in Proc. of NDSS '11, 2011, pp. 407-420.

[8] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient Byzantine fault
tolerance,” IEEE Trans. on Computers, vol. 65, no. 9, pp. 2807-2819,
2016.

[9] M. Eischer and T. Distler, “Scalable Byzantine fault-tolerant state-

machine replication on heterogeneous servers,” Computing, vol. 101,

no. 2, pp. 97-118, 2019.

J. Dean and L. A. Barroso, “The tail at scale,” Communications of the

ACM, vol. 56, no. 2, pp. 74-80, 2013.

M. Castro, R. Rodrigues, and B. Liskov, “BASE: Using abstraction to

improve fault tolerance,” ACM Trans. on Computer Systems, vol. 21,

no. 3, pp. 236-269, 2003.

R. B. Hagmann, “A crash recovery scheme for a memory-resident

database system,” IEEE Trans. on Computers, no. 9, pp. 839-843, 1986.

K. Salem and H. Garcia-Molina, “Checkpointing memory-resident

databases,” in Proc. of ICDE ’89, 1989, pp. 452-462.

J.-L. Lin and M. H. Dunham, “Segmented fuzzy checkpointing for main

memory databases,” in Proc. of SAC ’96, 1996, pp. 158-165.

L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-

lem,” ACM Trans. on Programming Languages and Systems, vol. 4,

no. 3, pp. 382-401, 1982.

T. Distler and R. Kapitza, “Increasing performance in Byzantine fault-

tolerant systems with on-demand replica consistency,” in Proc. of

EuroSys ’11, 2011, pp. 91-105.

B. Li, W. Xu, M. Z. Abid, T. Distler, and R. Kapitza, “SAREK:

Optimistic parallel ordering in Byzantine fault tolerance,” in Proc. of

EDCC’16, 2016, pp. 77-88.

A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia, “On the

efficiency of durable state machine replication,” in Proc. of USENIX

ATC’13, 2013, pp. 169-180.

T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An

engineering perspective,” in Proc. of PODC '07, 2007, pp. 398-407.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free

coordination for Internet-scale systems,” in Proc. of USENIX ATC 10,

2010, pp. 145-158.

E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance

of consistent checkpointing,” in Proc. of SRDS 92, 1992, pp. 39-47.

J. S. Plank and K. Li, “Faster checkpointing with N+1 parity,” in

Proceedings of IEEE 24th International Symposium on Fault- Tolerant

Computing, 1994, pp. 288-297.

A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “De-

sign, modeling, and evaluation of a scalable multi-level checkpointing

system,” in Proc. of SC 10, 2010, pp. 1-11.

T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet, “ZZ

and the art of practical BFT execution,” in Proc. of EuroSys’11, 2011,

pp. 123-138.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield, “Live migration of virtual machines,” in Proc. of

NSDI 05, 2005, pp. 273-286.

R. Kapitza, T. Zeman, F. J. Hauck, and H. P. Reiser, “Parallel state

transfer in object replication systems,” in Proc. of DAIS 07, 2007, pp.

167-180.

[5

[6

=

[7

—

[10]

(11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

Acknowledgments: This work was partially supported by the German
Research Council (DFG) under grant no. DI 2097/1-2 (“REFIT”).

