
Enabling Wireless Network Support for
Gain Scheduled Control

Sebastian Gallenmüller∗, René Glebke†, Stephan Günther∗, Eric Hauser∗,
Maurice Leclaire∗, Stefan Reif‡, Jan Rüth†, Andreas Schmidt§,

Georg Carle∗, Thorsten Herfet§, Wolfgang Schröder-Preikschat‡, Klaus Wehrle†
∗Technical University of Munich, {gallenmu,guenther,hauser,leclaire,carle}@net.in.tum.de

†RWTH Aachen University, {glebke,rueth,wehrle}@comsys.rwth-aachen.de
‡Friedrich-Alexander University Erlangen-Nürnberg, {reif,wosch}@cs.fau.de
§Saarland Informatics Campus, {andreas.schmidt,herfet}@cs.uni-saarland.de

Abstract
To enable cooperation of cyber-physical systems in latency-critical
scenarios, control algorithms are placed in edge systems communi-
cating with sensors and actuators via wireless channels. The shift
from wired towards wireless communication is accompanied by an
inherent lack of predictability due to interference and mobility. The
state of the art in distributed controller design is proactive in nature,
modeling and predicting (and potentially oversimplifying) channel
properties stochastically or pessimistically, i. e., worst-case con-
siderations. In contrast, we present a system based on a real-time
transport protocol that is aware of application-level constraints
and applies run-time measurements for channel properties. Our
run-time system utilizes this information to select appropriate con-
troller instances, i. e., gain scheduling, that can handle the current
conditions. We evaluate our system empirically in a wireless testbed
employing a shielded environment to ensure reproducible channel
conditions. A series of measurements demonstrates predictability
of latency and potential limits for wireless networked control.

CCS Concepts • Networks→ Network experimentation; • Com-
puter systems organization→ Embedded and cyber-physical sys-
tems.

Keywords edge computing, networking, control, latency-aware-
ness, gain scheduling, reproducible wireless measurements
ACM Reference Format:
Sebastian Gallenmüller, René Glebke, Stephan Günther, Eric Hauser, Mau-
rice Leclaire, Stefan Reif, Jan Rüth, Andreas Schmidt, Georg Carle, Thorsten
Herfet, Wolfgang Schröder-Preikschat, Klaus Wehrle. 2019. Enabling Wire-
less Network Support for Gain Scheduled Control. In 2nd International
Workshop on Edge Systems, Analytics and Networking (EdgeSys ’19), March
25, 2019, Dresden, Germany. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3301418.3313943

1 Introduction
Control methodologies for physical processes, ranging from self-
stabilizing inverted pendulums, over cruise control in cars, up to
maintaining the safe operation of large-scale chemical reactors,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys ’19, March 25, 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6275-7/19/03. . . $15.00
https://doi.org/10.1145/3301418.3313943

were built assuming the underlying hardware and communica-
tion networks behave highly predictable. Shielded, single-purpose
wired connections, as well as synchronous networks [14], enable
controllers to assume that—if not for the failure of some equipment—
their control decisions are both based on the most recent available
sensor readings and executed by the actuators at a specific, prede-
fined time in the future.

Recent advances in communication and systems architecture,
however, have begun to challenge the practicability of this ap-
proach. Instead of operating a cyber-physical system in isolation,
a plethora of embedded systems communicate, coordinate, and
collaborate. A key change in the system architecture is to migrate
control logic to an edge component [16] that has a global view on
all individual systems, and hence allows for more efficient con-
trol algorithms, sophisticated data processing, and also serves as
a bridge to cloud systems while keeping the communication la-
tency low [3, 13]. As a side effect of this trend, the communication
architecture shifts from dedicated wires to wireless connections
for multiple reasons [1]. First, the growing number of devices dis-
allows for expensive point-to-point connections. Second, future
smart systems that are scattered over a large area render wired
links impractical. Third, wireless communication is an essential re-
quirement for mobile systems such as autonomous vehicles. While
wireless networks allow building cost-efficient, large, and mobile
systems, they also make connections less predictable—signals may
degrade due to interference, resulting in information delay or loss.
Controllers unaware of such situations may assume wrong sys-
tem states, causing processes to run out of control with potentially
disastrous consequences.

Gain scheduling breaks down the controller for a non-linear prob-
lem to a linearized family of controllers, and selects the controller
most closely matching the current operating conditions—a proven,
viable method for adapting to varying operation conditions [8]. Ap-
plications of gain scheduling include autopilots and flight control
systems, or engine control in cars [12], and the approach has long
been shown to guarantee stability, robustness, and performance, es-
pecially for slowly changing operating conditions [15]. In 2004, Tzes
and Nikolakopoulos presented a set of controllers for a wirelessly
controlled system based on the idea of gain scheduling [19], and var-
ious studies thereafter also applied gain scheduling to controllers
facing network delay [17]. While the control theory community
has proposed numerous methods for modeling the delays exhibited
by (wireless) communication channels (cf. [17] for an overview),
to the best of our knowledge, little to no work has been done in
taking actual measured artifacts of wireless communication into
account. We believe that live monitoring of network behavior, e. g.

https://doi.org/10.1145/3301418.3313943
https://doi.org/10.1145/3301418.3313943
https://doi.org/10.1145/3301418.3313943


EdgeSys ’19, March 25, 2019, Dresden, Germany

HostA HostB AP AP Plant

unreliable
wireless
channel

Figure 1. Networked control system topology

network stack or driver behavior, can enable the network conditions
to be more tightly integrated into the set of operating conditions in
gain scheduling, and thus allow the designers of control algorithms
to integrate knowledge about the network’s current and upcoming
behavior into their design process.

In this paper, we explore the possibility of integrating live feed-
back from a wireless communication network into the gain sched-
uling approach to controller generation from a technical point
of view. We start by illustrating a typical networked control sys-
tem (Section 2) and present related work on control over wireless
networks (Section 3). We then design and implement a prototypical
framework that enables the live monitoring of delays and channel
conditions of a wireless network based on the combination of an
instrumentable real-time transport protocol (Section 4) and an au-
tomated shielded testbed for wireless communication (Section 5).
Afterwards, we provide an empirical evaluation of our approach
to the collection of channel state information (Section 6) before
reasoning on the optimization potential for gain scheduled control
approaches based on our method.

2 System Model
Figure 1 shows a physical system or plant attached to a network
via a radio link. Two hosts A and B are connected to the network
differing in their distance (number of hops) to the plant. Adding
a control application, running on either of the hosts, turns this
into a networked control system. The plant itself and the inherent
properties of the actual control process determine the requirements
for the network connection, such as maximum delay, number of
exchanged messages, and maximum packet loss.

We propose to place the control application as close as possible
to the controlled plant to reduce potential network delay or avoid
network bottlenecks. In case of the system in Figure 1 we would
prefer HostB over HostA for running control application due to the
lower distance from the plant. Despite shortening the link between
the host and the plant, network behavior may change over time
especially if wireless links are involved. Gain scheduling allows us
to react to these changes by selecting a control application which
fits best to the current operating conditions of the underlying net-
work. In this work, we do not provide a complete network control
system that dynamically adapts to rapidly changing network condi-
tions and solves all issues of networked control systems in general.
We rather focus on two important aspects of such a system: First,
we investigate a protocol equipped with in-band live-monitoring
features that can be used to collect the information necessary for
gain scheduling (Section 4). Second, we evaluate how this protocol
behaves on a wireless link, through a series of reproducible network
experiments (Section 6). Due to the unreliable nature of wireless
links, this part of the network connection is the most challenging
component of the control system.

3 Related Work
Our work focuses on the synergies and challenges when combin-
ing network and control in networked cyber-physical systems. A
recognized area of problems (cf. [5]) analyzes real-time capabili-
ties of different QoS schemes in IEEE 802.11 wireless systems and
finds that the mechanisms are unsuitable even in low-demand situa-
tions. To this end, research proposes various cross-layer interaction
schemes to overcome some of these challenges. Nakashima et al. [9]
propose utilizing the deterministic nature of TDMAmulti-hop wire-
less systems to account for delay and round trip propagation times
in their control design. Nikolakopoulos et al. [10] utilize gain sched-
uled control with the help of the wireless hop count in a multi-hop
wireless network to schedule different controllers. Xia et al. [20] use
properties of the wireless PHY layer together with deadline miss-
ratios of the control application to design a cross-layer adaptive
feedback scheme that dynamically adapts to the channel. While
these works share the ideas to utilize cross-layer synergies, the
assumptions on the wireless channels and their operating princi-
ples are often idealized and only simulated. In contrast, our work
utilizes commodity wireless adapters in an actual testbed to inves-
tigate the effects of the interplay of communication and control for
gain scheduled systems. Especially, the periodicity of control traffic
promises valuable insights into the synergies of communication
and control. For instance, Tian and Tian [18] develop a Markov
model for real-time periodic traffic together with the IEEE 802.11
MAC layer and compare it to NS-2 simulations. While such models
are valuable to control, it is not known how well these models map
to real-world systems where the interplay of hardware alone may
alter theoretic constraints. Therefore, our work strives to make
the first step towards a fully reproducible real-world analysis of
networked control and communication to foster the applicability
of gain scheduled control to wireless control systems.

4 Design and Implementation
We create a run-time support system to enable gain scheduling in
wireless networks of cyber-physical systems. As a basis, we use the
openly available Predictably Reliable Real-time Transport (PRRT)1
protocol [11], which provides partial reliability and in-order de-
livery, and at the same time allows making statements about the
timing characteristics. The timing behavior is influenced by require-
ments an application has with respect to, for instance, the maximum
tolerable latency. Thereby, one controller instance designed for a
specific latency can communicate this requirement to the run-time
system and the protocol.

Traditionally, only the control application—but not the network
stack—is aware of latency requirements that are a constraint of the
physical process it is designed to control. IP-based control applica-
tions can choose between two services: First, they can use a fully
reliable transport protocol, such as TCP or QUIC, which retransmits
messages even if the latency demands cannot be met any longer.
Second, it can use an unreliable transport protocol, namely UDP,
which does not retransmit at all, even if latency demands would al-
low it. PRRT allows an application to use a service that is in between
these two extremes, providing partial reliability with predictable
timing. Using the PRRT stack, the application passes its latency
requirements to the network stack, which can handle retransmis-
sions respecting latency requirements. If latency requirements of
1http://prrt.larn.systems

http://prrt.larn.systems


Enabling Wireless Network Support for
Gain Scheduled Control EdgeSys ’19, March 25, 2019, Dresden, Germany

a message cannot be met any longer, PRRT discards it—thereby
avoiding waste of time and energy.

Naturally, there are operating conditions that do not allow for
a fulfillment of these constraints, e. g. meeting a 1ms end-to-end
deadline on a wireless link with 5ms propagation time. In these
cases, PRRT makes this issue transparent to the application, letting
the application pick a remediation, e. g. triggering emergency rou-
tines or adapting its general control strategy. In the case of gain
scheduling, this notification is the latest point in time to switch to a
different controller instance that can handle the current conditions.
A more efficient way to trigger the controller switch is to continu-
ously probe the run-time system for a change in observed latencies
or to register an event handler.

As long as the operating conditions allow for PRRT to fulfill its
requirements, PRRT uses two techniques to do this in a reliable
and predictable way: (a) error control and (b) a combination of
congestion and rate control.

Error control is implemented as a block-based hybrid ARQ scheme,
so PRRT aggregates multiple packets to a block. The packets them-
selves are sent out as fast as they arrive and proactive redundancy
is sent as soon as a block is filled. Afterwards, reactive transmis-
sions of redundancy are triggered if no acknowledgments arrive
within a round-trip time plus processing margin. The arrival of a
sufficient number of data or redundancy packets for a block allows
reconstructing all packets of the block, e. g. previous sensor read-
ings or actuator inputs. While the relevance of any sensor reading
older than the latest is zero for Markovian controllers, our solution
targets controllers where either (a) there is no Markovian model
and the history is important (e. g. to detect temperature trends) or
(b) the controller is fitting such a model during operation. Using
error control, the protocol can optimize resilience under the given
latency constraints.

Congestion and rate control minimize queuing that would lead to
excessive delays by controlling both the amount of data in-flight as
well as the rate of packets. This combined approach aims to avoid
both self-induced as well as contention-based queueing delays, a
well-known problem of loss-based TCP congestion control [7].

The controller-supplied latency constraint is further used as a
deadline for messages, i. e., messages that have already exceeded the
deadline or are going to exceed it with certainty are not processed
further. Thereby, perturbations of the end-to-end latency that lead
to a single packet not arriving in time do not impede subsequent
packets that can still make the deadline. Additionally, the recv()
calls have a receive_window parameter to filter packets that are
ready to be delivered, namely those that expire in between now and
now + receive_window .

This timing-awareness within PRRT enables our run-time system
to select controller instances dynamically depending on the cur-
rent operating conditions. The cooperation between the transport
layer and the control application is hence symbiotic: the transport
protocol provides timing measurements for controller selection
while the control application dynamically reconfigures latency and,
indirectly, error control parameters.

PRRT measures the network round-trip time using an algorithm
similar to NTP by including timestamps in its metadata as well as
feedback packets and compensating for processing time. Simultane-
ously, PRRT tracks the current data rate by estimating the delivery
rate on the sender side, leveraging a mechanism presented in a
recent IETF draft [4]. The implemented congestion control follows

plant controller

testbed controller

shielded box shielded box

Internet

1

Figure 2. Simplified testbed setup

the design of BBR [2], including adaptations of recent fixes in the
Linux kernel code for TCP-BBR. This congestion control, together
with rate control through packet pacing, aims to avoid queueing at
all stages of the communication, minimizing latency and jitter.

In summary, our run-time support system exploits PRRT, a par-
tially reliable and latency-aware transport protocol, for gain sched-
uling. It enables control applications to adapt dynamically to the
currently faced communication latencies. Simultaneously, the con-
troller selection allows the transport protocol to minimize the error
rate as well as jitter.

5 Testbed and Measurement Setup
Towards comparable benchmarks of our run-time system at dif-
ferent settings, a reproducible test environment is essential. Since
wireless networks are affected by many different factors such as
noise, networks on the same or neighboring channels, fading chan-
nel conditions, and radar detection, it is challenging to guarantee
comparable conditions across different measurements. Note that
we use this testbed setup to ensure reproducibility of our evaluation
runs, but it is not required to operate our system.

To allow comparisons between benchmarks of PRRT at differ-
ent settings, we use the setup depicted in Figure 2 consisting of
two wireless test nodes (plant and controller) placed in shielded
boxes. The antenna port of the controller is connected to a shielded
coaxial cable that is connected to an antenna placed in the plant’s
shielding box. An air gap between that antenna and the antenna
of the plant within the shielded box ensures constant channel con-
ditions resembling an undisturbed wireless network allowing for
repeatable wireless conditions across all measurements. We use
IEEE 802.11g (54Mbit/s) in ad-hoc mode and generate PRRT pack-
ets with a constant sampling interval. The test nodes use Debian
Linux (linux-4.8) and are equipped with AMD GX-412TC CPUs (4 ×
1GHz “Jaguar” cores), QualcommAtheros AR958x IEEE 802.11abgn
wireless network adapters, and Intel I210 NICs.

Both nodes are connected via Ethernet to a testbed controller
which is connected to the Internet for remote testbed operation.
The testbed uses the pos framework [6] to execute the network
experiment. It orchestrates a set of measurements by performing
the following steps:

1. After each measurement run, the test nodes are completely
reset by power cycling and booting a live system via PXE



EdgeSys ’19, March 25, 2019, Dresden, Germany

L1 – PHY

L2 – MAC

L3 – Network

L4 – Transport

L7 – App
Plant (P)

L1 – PHY

L2 – MAC

L3 – Network

L4 – Transport

L7 – App
Controller (C)

Wireless channel

mPC
1

mCP
6

mPC
2

mCP
5

mPC
3 mCP

4 mPC
4 mCP

3

mPC
5

mCP
2

mPC
6

mCP
1ICℓC

IP ℓP

1

Figure 3. Stack with timestamping vantage points

from the testbed controller, eliminating any residual effects
of the previous measurement run such as the firmware of
wireless devices being initialized with unwanted settings.

2. When the nodes are booted, clocks are synchronized once us-
ing the Precision Time Protocol (PTP) utilizing the hardware
support of the I210 NICs. This is crucial to obtain comparable
timestamps on both nodes. Starting with a deviation below
1 µs after synchronization, the clocks’ deviation does not
exceed 10 µs after a single test run of 2min.

3. When all preparations are finished, the test nodes are ready
to execute the actual measurement software.

The software works with two independent threads: the first thread
only transmits and receives packets, while the second thread cap-
tures packets using libpcap. This architecture ensures that packets
are processed as soon as they are received to keep the timestamps
as accurate as possible.

In order to evaluate PRRT, we integrated it into our measurement
software, which allows recording timestamps at various locations
throughout the protocol stack, as shown in Figure 3. Considering
the direction from plant to controller (denoted as PC), we obtain
the timestamps
• mPC

1 when the app transmits a message,
• mPC

2 when a frame becomes visible by libpcap at the trans-
mitting node, i. e., before it is actually transmitted,
• mPC

3 when the echo frame2 including the sender’s radiotap
header becomes visible at the transmitting node,
• mPC

4 when a frame is received,
• mPC

5 when the received frame becomes visible through libp-
cap at the receiving node, and
• mPC

6 when the measurement software receives a message.
The radiotap header thereby contains various information about
how a frame has been transmitted, e. g. the chosen transmit rate.
The same holds for the reverse direction (denoted as CP ). Using
these timestampswe can derive delays that are difficult to determine
under ordinary circumstances. For instance, tPCd =mPC

6 −mPC
1 is

the one-way delay from plant to controller, which is all but sym-
metric for wireless networks. This one-way delay is of particular
interest for the evaluation of PRRT as it allows to verify whether
or not datagrams are within the defined receive window. Similarly,
the delaymPC

3 −mPC
2 is primarily influenced by the media access

time, which can be determined precisely when the serialization
time of frames is known.
2By echo frame we refer to the frame including the radiotap header provided by a
wireless card’s driver when a frame has been transmitted successfully.

Table 1. Parameters of the delay measurement set

Parameter Minimum Maximum Steps
Packet-to-packet time (I ) 1ms 10ms 5
Payload size (ℓ) 20 B 1400 B 5
PRRT target delay 1ms 10ms 5
PRRT receive window 0.1ms 2ms 6

0 5 10 15 20100

101

102

Experiment time [s]

O
ne
-w

ay
de
la
y
[m

s]

mPC
5 −mPC

1
mPC

6 −mPC
1

1

Figure 4. 1ms packet-to-packet time, 20 B payload size, 10ms tar-
get delay, 1.62ms receive window

In case PRRT is not able to deliver a packet within the desired in-
terval due to delays on the wireless channel or within the operating
system, the packet is discarded. If a packet is discarded for that rea-
son on the way from the plant to the controller, the timestampmPC

6
is missing as PRRT dropped the respective packet due to a violation
of the desired time interval. The same holds formCP

6 when a packet
in the reverse direction is dropped. The timestamps in between
m1 andm6 are useful to investigate the channel’s characteristics
or influences of the OS independently from PRRT. They can aid in
comprehending why PRRT, for instance, was not able to deliver
specific packets in time. The delay tproc_s =mPC

2 −mPC
1 gives an

insight how long PRRT needs to process packets from the applica-
tion and hand it over to the network stack. Correspondingly, the
delay tproc_r =mPC

6 −mPC
5 shows how long packets are delayed

before being handed back to the application.
After a measurement run has finished, the files from the test

nodes containing the timestamps are copied to the testbed controller
and the parameters of the test run are logged.

6 Evaluation
We investigate the behavior of PRRT through a series of measure-
ments using a combination of four configuration parameters: the
packet-to-packet time (I ) specifies the sampling time of a control
process, the payload size (ℓ) sets the data transmitted by the con-
trol process, the PRRT target delay defines the time data should
arrive at the control process, and the PRRT receive window defines
a grace period (cf. Section 4). Table 1 contains the values for the
measurement parameters. All possible combinations result in 750



Enabling Wireless Network Support for
Gain Scheduled Control EdgeSys ’19, March 25, 2019, Dresden, Germany

Lo
ss

ra
te

[%
]

0

20

40

60

80

100 × Average

Re
ce
ive

wi
nd
ow

[m
s]

Target delay [ms]

0.1
0

0.4
8

0.8
6

1.2
4

1.6
2

2.0
0

0.1
0

0.4
8

0.8
6

1.2
4

1.6
2

2.0
0

0.1
0

0.4
8

0.8
6

1.2
4

1.6
2

2.0
0

0.1
0

0.4
8

0.8
6

1.2
4

1.6
2

2.0
0

0.1
0

0.4
8

0.8
6

1.2
4

1.6
2

2.0
0

1.00 3.25 5.50 7.75 10.0

×
× × × × ×

×

× × × × ×

×

× × × × ×

×

× × × × ×

×

× × × × ×

1

Figure 5.Measurements of PRRT with varying target delay and receive windows

20 365 710 1055 1400
Packet Size [B]

Lo
ss

ra
te

[%
]

0

20

40

60

80

100 × Average

× ×

× × ×

× × × × ×

1

Figure 6. Measurement of PRRT for different packet sizes, receive
window of 480 µs, target delay of 1000 µs (black) and 3250 µs (red)

distinct measurement runs. For the measurements, we only con-
sider one-way delays as our environment creates almost symmetric
channel conditions in both directions due to shielding both test
nodes from interference with other networks.

Packet-to-packet time: Figure 4 shows a single measurement run
with a sampling time of 1ms, a payload size of 20 B, a receiving
window of 1.62ms, and a target delay of 10ms as a time series
over 20 s with different delays on a logarithmic ordinate. The delay
from the sending application to the network stack of the receiving
node (mPC

5 −mPC
1 ) is depicted as the blue line and the delay to the

receiving application (mPC
6 −mPC

1 ) as the black scatterplot. The
receive window is visible as upper and lower bounds (red horizontal
lines). If the delay to the receiving network stack already violates
the target delay, as seen in Figure 4 at approximately 7 s, the packet
can obviously not arrive in time. In such a case PRRT will not
deliver the packets to the application which manifests as gaps in
the scatter plot.

A closer investigation of the delays between network stack and
driver (mPC

3 −mPC
2 ) reveals an increase during the periods of packet

loss. Further investigations of the packet delay (mPC
4 −mPC

3 ) show
that the (lower-layer) transmission time between the NICs may
exceed the investigated packet-to-packet time of 1ms. This leads
to a buffer overload scenario on the NICs as their buffers cannot
be drained fast enough, which results in delay violations on the
application layer. This disposition for overloading is a property
we cannot solve within PRRT. However, PRRT can provide the
means to detect such situations. Based on that information, gain
scheduling can select a different controller instance that operates

at a lower sampling frequency to allow stable control performance
in such cases.

PRRT target delay and receiving window: Figure 5 shows the
loss rate over a series of measurements with varying target delay
and receive windows. Loss rates for a target delay of 1ms have
a median above 80 %, which can be attributed to the target delay
being too close to the lower layer transmission delay. A narrow
receive window also has an influence on the loss rate: for 0.1ms,
the loss rate reaches 25 % independent of the target delay. For wider
receive windows and target delays above 3.25ms, the loss rate
stays below 3%. These results indicate that the achievable target
delay has the highest impact on the loss rate. However, even if high
target delays are combined with narrow receive windows, packet
loss may still remain high. If the packet loss rates are unacceptable
for a controller instance, gain scheduling can switch to another
controller instance respecting both target delay and receive window
sizes.

Payload size: To investigate the influence of the payload size
on the loss rate, we pick two examples from Figure 5 for a closer
investigation. Figure 6 shows an example for a receive window
size of 0.48ms and a target delay of 1ms in black. Only for low
payloads of 20 B and 365 B a loss rate of below 20% can be achieved.
For higher payloads, the loss rate steeply rises to over 80 %. The
second example in Figure 6 shows the scenario with a receive
window of 0.48ms and a target delay of 3.25ms in red. There, the
packet size has only little influence on the loss rate, rising up to
1.75% in the worst scenario using 1400 B packets. As the packet size
has only little influence on the loss rate—compared to the previous
parameters—gain scheduling should consider packet size as a minor
input factor.

7 Conclusion
Migrating control applications into edge computing systems allows
for the cooperation of cyber-physical systems. This paper considers
these edge controllers utilizing wireless communication links for
mobile cyber-physical systems, introducing unpredictability with
respect to latency, jitter, and error rate into the control process.

Our novel approach combines two techniques for counteract-
ing the negative influence of the wireless links—gain scheduling
and a link monitoring system. Our system monitors the channel
properties at run-time, utilizing the PRRT protocol and cooperates
with the control application to select the best available controller
instance, i. e., gain scheduling. Measurements investigate four main
levers—sampling frequency, target delay, receiving window, and



EdgeSys ’19, March 25, 2019, Dresden, Germany

packet size—influencing the loss rates on wireless connections and
identifying potential bottlenecks. Our fully automated evaluation
procedure uses shielded boxes to create reproducible results in a
well-defined environment for wireless measurements. We identify
sampling frequency and target delay as the most important impact
factors on loss rate as long as receive windows are not chosen too
narrow. Packet size only has limited influence on loss rates.

This work has demonstrated the applicability of our run-time
system to control problems. As future work, we plan to evaluate
the impact of the run-time system and the automated controller
selection on the quality of control of realistic control applications.
Particular attentionwill be put on the dynamics caused by switching
the controller instance and how this switching can be synchronized
to the channel dynamics. In this work, we conducted our mea-
surements only under optimal conditions for the wireless network.
Future measurements will involve a more realistic environment
investgating the effect of interferences, channel occupation, and
other effects that lead to varying latencies. Furthermore, we plan to
examine the impact of our approach on resource-constrained edge
controllers, where only a limited set of controller instances can be
allocated to a single node at the same time and additional controller
instances are downloaded on-demand from a large-scale backend
system, e. g. a cloud.

Acknowledgments
TheGerman Research Foundation (DFG) supported this workwithin
the priority programme 1914 Cyber-Physical Networking (CPN) un-
der grants CA 595/71, HE 2584/4-1, SCHR 603/15-1, and the RE-
FLEXES project.

References
[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. 2012. Fog Computing and Its Role

in the Internet of Things. In MCC 2012. ACM, 13–15.
[2] N. Cardwell, Y. Cheng, C. Gunn, S. Hassas Yeganeh, and V. Jacobson. 2016. BBR:

Congestion-based congestion control. ACM Queue 14, 5 (2016), 50.
[3] Y. Chen, Q. Feng, and W. Shi. 2018. An Industrial Robot System Based on Edge

Computing: An Early Experience. In HotEdge 18. USENIX Association.
[4] Y. Cheng, N. Cardwell, S. Hassas Yeganeh, and V. Jacobson. 2017. Delivery Rate

Estimation - IETF DRAFT.
[5] R. Costa, P. Portugal, F. Vasques, C. Montez, and R. Moraes. 2015. Limitations of

the IEEE 802.11 DCF, PCF, EDCA and HCCA to handle real-time traffic. In INDIN
2015.

[6] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich, and G. Carle.
2018. High-Performance Packet Processing and Measurements (Invited Paper).
In COMSNETS 2018. Bangalore, India.

[7] J. Gettys and K. Nichols. 2011. Bufferbloat: Dark buffers in the Internet. ACM
Queue 9, 11 (Nov. 2011), 40:40–40:54.

[8] D. Leith and W. Leithead. 2000. Survey of gain-scheduling analysis and design.
Internat. J. Control 73, 11 (2000), 1001–1025.

[9] K. Nakashima, T. Matsuda, M. Nagahara, and T. Takine. 2017. Cross-layer design
of an LQG controller in multihop TDMA-based wireless networked control
systems. In PIMRC 2017. 1–7.

[10] G. Nikolakopoulos, A. Panousopoulou, A. Tzes, and J. Lygeros. 2005. Multi-
hopping Induced Gain Scheduling for Wireless Networked Controlled Systems.
In CDC 2005. 470–475.

[11] S. Reif, A. Schmidt, T. Hönig, T. Herfet, and W. Schröder-Preikschat. 2018. ∆elta:
Differential Energy-Efficiency, Latency, and Timing Analysis for Real-Time Net-
works. In ECRTS RTN 2018 (RTN). ACM SIGBED, Barcelona, Spain, 6.

[12] W. Rugh and J. Shamma. 2000. Research on gain scheduling. Automatica 36, 10
(2000), 1401 – 1425.

[13] M. Satyanarayanan. 2017. The Emergence of Edge Computing. IEEE Computer
50, 1 (Jan. 2017), 30–39.

[14] A. Schimmel and A. Zoitl. 2010. Real-Time Communication for IEC 61499 in
Switched Ethernet Networks. In ICUMT 2010. IEEE, 406–411.

[15] J. Shamma and M. Athans. 1991. Guaranteed properties of gain scheduled control
for linear parameter-varying plants. Automatica 27, 3 (1991), 559 – 564.

[16] W. Shi and S. Dustdar. 2016. The Promise of Edge Computing. IEEE Computer
49, 5 (May 2016), 78–81.

[17] S. Srinivasan, M. Vallabhan, S. Ramaswamy, and Ü. Kotta. 2013. Adaptive LQR
controller for Networked Control Systems subjected to random communication
delays. In ACC 2013. 783–787.

[18] G. Tian and Y. Tian. 2010. MarkovModelling of the IEEE 802.11 DCF for Real-Time
Applications with Periodic Traffic. In HPCC 2010.

[19] A. Tzes and G. Nikolakopoulos. 2004. LQR-output feedback gain scheduling of
mobile networked controlled systems. In ACC 2004, Vol. 5. 4325–4329 vol.5.

[20] F. Xia, L. Ma, C. Peng, Y. Sun, and J. Dong. 2008. Cross-Layer Adaptive Feedback
Scheduling of Wireless Control Systems. Sensors 8, 7 (Jul 2008), 4265–4281.


	Abstract
	1 Introduction
	2 System Model
	3 Related Work
	4 Design and Implementation
	5 Testbed and Measurement Setup
	6 Evaluation
	7 Conclusion
	Acknowledgments
	References

