
Cocoon: Custom-Fitted Kernel Compiled on Demand
Bernhard Heinloth, Marco Ammon, Dustin T. Nguyen,

Timo Hönig, Volkmar Sieh, and Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

{heinloth,marco.ammon,nguyen,thoenig,sieh,wosch}@cs.fau.de

Abstract
As computer processors and their hardware designs contin-
uously evolve, operating systems provide many different
assembly-level implementations for the same functionality.
This enables support for new platforms and ensures back-
ward compatibility for older ones at the same time. However,
the source code of operating systems grows more complex
and becomes much harder to maintain.
In this paper we explore ways to build made-to-measure

system software by relegating work to the compiler which
has necessary knowledge about the system at hand. We pro-
pose Cocoon, an approach for compiling a system-tailored
and -optimized kernel at boot time. For two operating sys-
tems (i.e., Linux and FreeBSD) we demonstrate the soundness
of the approach by hands of a prototypical implementation.
The implementation shows various aspects of Cocoon, such
as the ability to remove hard-to-maintain code while pre-
serving and even increasing the system performance.

1 Introduction
To efficiently exploit the achievements of new hardware
designs (i.e., performance improvements), made-to-measure
system software [5, 11] is a must. But as complexity grows
[16], it becomes increasingly difficult to provide hand-crafted
software routines that leverage hardware offerings in the
most efficient manner. Instead, system software (i.e., operat-
ing-system kernels) must be adaptable [13] and made-to-
measure with a broad set of tools—in particular, with support
from the compiler [10]. However, it is a chicken-and-egg
problem: Compilers require an operating system (OS) to
build a custom-fitted OS kernel. Hence, general-purpose
OS kernels are commonly prebuilt by the distributor and
shipped in binary format, without tailoring to an individual
system, as shown in Figure 1. This approach, however, rules

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLOS’19, October 27, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7017-2/19/10. . . $15.00
https://doi.org/10.1145/3365137.3365398

C
o
m
p
ile
r

src
int f(int n){
if (n <= 1)

return n;

else

return

f(n-1)+ f(n-2);

}

Source Code
multiple specialized

versions of a function

IR
%2 = alloca i32,

align 4 ;

%3 = alloca i32,

align 4 ;

store i32 %0, i32*

%3, align 4 ;

%4 = load i32, i32*

Intermediate Code

Analysis

Optimization

bin
1000001001100110

1100101111001000

1101111001001001

1010001010000110

1101100011110100

0000110001010000

1011011110010110

Nonspecialized
Machine Code

Synthesis

Distributor

Operating System
with self-modifying code

Hardware

ApplicationApplication

Figure 1. The status quo of today’s OS distribution is ship-
ping a generic binary kernel built by the distributor, while
the system tailoring might be performed by code patching
during run time.

out the efficient use of target-system–specific build-time
optimizations which, for example, exploit extensions to the
instruction set architecture (ISA).

OS distributors provide kernels that are generic for a spe-
cific instruction set architecture. These kernels run on a
broad set of machines and provide support for awide range of
different processors and peripheral devices. The decisive dis-
advantage is that system-specific adjustments (i.e., the use of
available processor extensions and selection of drivers) are re-
located to run time. Therefore, distributors have to simultane-
ously deal with two contrary issues: On the one hand, adding
functionality to support all possible peripheral devices (thus
bloating the kernel), on the other hand, finding the lowest
common denominator of the ISA to achieve machine-code
compatibility—relinquishing all improvements potentially
offered by processor extensions. Today’s operating systems
like Linux work around both issues at run time: Support for
loadable modules reduces the memory footprint by loading
only the required drivers, while self-modification selects the
functions most suitable to the available ISA extension(s). For
example, Linux provides no less than three different variants
of the memory-copy function memcpy on the x86_64 architec-
ture [17, arch/x86/lib/memcpy_64.S]. At run time, the OS
kernel chooses from the available memcpy implementations
in order to efficiently execute memory-copying operations
on different x86_64 CPUs.
The practices mentioned above indicate several issues

with the current state of the art. Firstly, OS kernels currently

https://doi.org/10.1145/3365137.3365398

PLOS’19, October 27, 2019, Huntsville, ON, Canada Heinloth et al.

src
int f(int n){
if (n <= 1)

return n;

else

return

f(n-1)+ f(n-2);

}

Source Code
generic, high-
level functions

IR
%2 = alloca i32,

align 4 ;

%3 = alloca i32,

align 4 ;

store i32 %0, i32*

%3, align 4 ;

%4 = load i32, i32*

Intermediate Code

Analysis

Optimization

Distributor

Compiler

Operating System

Hardware

ApplicationApplication

Figure 2. When compiling the OS’s intermediate-
representation code during run time, the kernel can fully
utilize the features of the target hardware.

include hand-crafted, manually optimized program code for
providing different implementations of various functions.
This bloats the source code and requires very high mainte-
nance efforts. Secondly, the segregation of drivers in separate
compilation modules as well as the integration of assem-
bly code in high-level programming-language source code
act as a barrier for compiler analysis. Thus, optimizations
leveraging additional context knowledge cannot be applied.
Both maintenance efforts and optimization barriers can be
mitigated by providing generic high-level implementations
while relocating system-specific adjustments exclusively to
the compiler. This leads to a drastic change where generic
OS kernels are transformed to highly system-specific ones.
By following this path, however, OS distributors would have
to provide an OS kernel for each individual system config-
uration instead of one kernel per supported ISA. As this is
infeasible due to the large amount of different ISA-peripheral
configurations—and hence kernels—this paper presents a so-
lution to the problem.
Instead of using pre-compiled OS kernels, we propose

Cocoon, a custom-fitted kernel compiled on demand approach
for operating-system kernels. Our approach exploits that
compiling an OS kernel on target systems themselves is only
a matter of seconds (cf. Section 5.2) with today’s technology
and that state-of-the-art compilers are capable of building
highly optimized kernel binaries (cf. Section 5.3). Compiling
OS kernels on the target system yields necessary insight with
regards to available hardware and allows the kernel to adapt
data structures and synchronization techniques already at
compilation time. Cocoon only includes necessary kernel
code, since available peripheral devices are known. Thus,
loadable-module support can be omitted completely.
Cocoon integrates with existing system designs and ex-

tends the bootstrapping process by an additional step. During
this step, Cocoon builds and compiles a highly optimized
system-specific OS kernel. The resulting OS kernel is used
henceforth until there are changes to the kernel, such as a
version update or the availability of a security fix. Cocoon
either works at the level of source code (e.g., C) or at the
level of intermediate representation (IR), a partially trans-
lated source code, as shown in Figure 2. The latter is not

only sufficient, but also reduces the kernel build time as
the compiler-frontend’s tasks and most optimizations have
already been performed.
The contributions of this paper are threefold: Firstly, we

present Cocoon, an approach aiming for target optimization
by custom-fitting kernels, compiled on demand. Secondly,
we present the implementation of Cocoon as an extensible
framework which creates the necessary bootable build envi-
ronment and utilizes this environment in conjunction with
two open-source operating systems (i.e., Linux and FreeBSD).
Thirdly, we evaluate the overall approach in two different
scenarios: (1) we analyze and compare the start-up time of
kernel images built by Cocoon and (2) we analyze and com-
pare the performance of memory-copying functions Cocoon
achieves in comparison to stock OS kernels.
To encourage additional research on this topic, we pub-

lished our tool as open-source software1.
The paper is structured as follows: Section 2 discusses

background information and related work. Section 3 presents
a high-level overview of the Cocoon approach, while im-
plementation details are shown accordingly in Section 4. In
Section 5, we evaluate the current prototype of Cocoon in
real-world scenarios. Section 6 concludes the paper.

2 Background
Even though target-specific compilation of software is al-
ready quite common in some domains of computer science,
most of the research focuses on user space applications. Tar-
get optimization in user space is either obtained by manually
compiling all required software, or by using software based
on the principle of just-in-time (JIT) compilation. However,
those concepts can also be adopted and used to enhance the
performance of an OS kernel.
Hunt and Larus developed the Singularity operating

system written in a variant of the C# language, which is well
suited for JIT compilation [7]. Even though they focused on
building an operating system in a type- and memory-safe
language, their approach can also be leveraged for target
optimization. Their research group developed isolated ker-
nel components which are translated from an IR to machine
code at the time of installation, when all hardware features
are known. The approach explores a wide range of concepts
which impact the operating system’s performance and secu-
rity positively. Yet, the Singularity kernel and all software
(both user and kernel space) are deeply coupled to C# and
other concepts they introduce as part of their application
binary interface. Hence, it is not possible to migrate already
existing operating systems and applications.

In order to overcome the shortcomings of JIT compilation
(e.g., high start-up latency) Nuzman et al. describe the con-
cept of fat binaries, which are the combination of compiled
programs and their respective IR in one file [12]. This enables

1https://gitlab.cs.fau.de/i4/pub/cocoon

https://gitlab.cs.fau.de/i4/pub/cocoon

Cocoon: Custom-Fitted Kernel Compiled on Demand PLOS’19, October 27, 2019, Huntsville, ON, Canada

starting the program immediately while also being capable of
optimizing and recompiling certain parts of the application
during execution when using a suited run-time environment.
Nuzman et al. build upon the LLVM IR used by the clang
compiler, as we do in our approach for the FreeBSD operat-
ing system. As their JIT compiler coexists with the running
application, it is possible to perform optimizations based
on its behavior at run time, especially for hot paths. This
approach favors already existing software projects, as it does
not require to change the software’s source code. Instead,
modifications to the build system are sufficient. Nonetheless,
due to their sole focus on user-space applications, using their
approach for kernel development is difficult.
Another approach for increasing an operating system’s

performance is described by Pu et al.: They recognized un-
used potential in the implementation of system calls, which
are traditionally built in a generic fashion [14]. Instead, they
design a kernel which synthesizes routines, capable of han-
dling specific system calls, on demand. This enables them to
create routines incorporating knowledge about the request-
ing process and environment. Their prime example is the
open system call and subsequent read/write calls: When-
ever an application calls open on a file, the kernel can create
read/write-routines associated with the file descriptor. The
synthesized routines can omit checks and inline specific code
paths, such as the file system, based on the run-time knowl-
edge. Even though Pu et al. achieve promising results, this
approach requires a specific kernel design inmind and a great
deal of manual labor has to be spent in implementing those
optimizations. Cocoon uses modern compiler technology to
improve the performance and maintainability of historically
grown operating systems, without having to make invasive
changes to the underlying source code.

A research group of Stony Brook University also tried to im-
prove the FreeBSD operating system by adding JIT-compiler
capabilities to compile the kernel from LLVM IR [1]. In ad-
dition, it was planned to use the JIT compiler to recompile
certain modules of the kernel based on user interaction.
Bellard released the small boot loader TCCBOOT as a

proof-of-concept for compiling a Linux kernel at boot time [2].
While the packaged C compiler TinyCC achieves fast compi-
lation and boot times for Linux 2.4.26, neither target-specific
tailoring nor optimizations are performed. Due to compiler
shortcomings, it requires changes to the build system and
source code.

3 Approach
Boot loaders often pass through multiple stages in order to
load an operating system present as a binary executable. We
introduce an additional stage in which we build the actual
operating system before seamlessly executing it, as shown
in Figure 3. In this stage, we first load a simple and generic
kernel together with a minimal environment tailored to the

N
et

b
o

o
t

L
eg

a
cy

HW init

BIOS

UEFI

Boot loader
Stage 1

PXE

MBR

Stage 2

PXE-
Linux

GRUB
(menu)

Stage 3

Cocoon
generate

config for
system

and build
tailored
kernel

Operating
System

target-

optimized

Kernel

build in memory

Figure 3. Cocoon acts as an additional boot-loader stage
and integrates with common ways of booting a system.

requirements of the kernel’s build system, with all necessary
tools (such as the compiler). Then, a script automatically
performs all steps required to build the kernel.

Depending on the preferredway of distribution, the source
code of the kernel can be acquired from either a local storage
device or downloaded on demand from network locations.

After verifying its integrity, the configuration phase starts:
At this point, we can gather further knowledge about the
target system to tailor the OS kernel to the actual hardware.
The available information not only includes specific instruc-
tion sets but also attributes about symmetric multiprocessing
(e.g., number of cores) and connected peripherals (for driver
selection). Tailoring to the required components leads to a
better adjusted system and additionally reduces both compi-
lation time and unnecessary memory usage during run time
due to the smaller kernel size.

Now we configure a new kernel for the system according
to the information collected earlier. With this knowledge,
selecting the correct number and model of CPUs and pick-
ing the drivers required for buses and I/O extension boards
present in the system is possible. As kernels are targeted
towards a wide variety of hardware, configuration options
often include “generic” options, ignoring model-specific ca-
pabilities. With our approach, specialized options are chosen
instead. Because hot-pluggable devices (such as USB hard-
ware) may not be present on system start-up, driver support
for them is always included.
Following the configuration step, the actual compilation

starts. Here, the compiler optimizes as much as possible,
since it has knowledge about the exact CPU type. During
linking, we are able to improve the performance even further
by applying link-time optimization (LTO), as only a single
static kernel binary (without modules) is built.

Because system responsiveness and background services
are not important in the building environment, we can fully
employ all available system resources for the build process.
However, there are several additional improvements that al-
low speeding it up even further: To deal with minor changes
in the source code (such as patches with small bug fixes),

PLOS’19, October 27, 2019, Huntsville, ON, Canada Heinloth et al.

using a persistent compiler cache can have a significant im-
pact on performance. Similar to hidden recovery partitions,
we require a reserved partition for the build artifacts such
as the kernel binary and debug information. In case no re-
compilation is required, we are able to immediately proceed
with the previously compiled kernel.

Depending on the capabilities of the compiler, the source
code can even be distributed in an intermediate representa-
tion. This not only avoids time-consuming lexical and syntac-
tical analysis of several files, but also allows applying some
optimizations beforehand.

As a final step, we map the new kernel into memory and
boot it by jumping to the entry point.

This approach allows to automatically perform even cum-
bersome optimizations which require multiple runs of the
operating system—these have previously been limited to
experienced users due to the manual interaction necessary.
For example, on initial execution, generation of profiling
information can be enabled. The resulting data will be taken
into account on subsequent builds to improve either the
compilation [18] or selecting kernel features [9].
Any platform capable of self-hosting is suitable for this

approach: The only requirement is the ability to compile and
load the target operating system.

4 Implementation
To be able to support a wide range of existing tools, we
implement the approach based upon a small Linux kernel
with a temporarymemory-based file system—the initial RAM
disk (initramfs)—providing the build environment. We use
the initramfstools of the Debian GNU/Linux distribution
to create the compressed RAM disk.

Through hooks in the creation process, the compiler and
all tools required for the build process are copied into the en-
vironment. Currently, we include either the GNU Compiler
Collection (GCC) or the LLVM Compiler Infrastruc-
ture (in particular clang), but additional compilers can be
added easily. Commonly required by the build system are
basic Unix utilities provided by the GNU Core Utilities or
BusyBox as well as build-automation tools like GNU Make.
Additionally, we include GNU Wget or Git to retrieve the
target operating system’s source from remote locations.

A customizable shell script, instructing the retrieval of the
source, configuration and build process, constitutes the heart
of the approach and is executed automatically during boot.
While usually only a small amount of sequential commands
is sufficient to build the kernel, our script also performs so-
phisticated steps to better tailor the target operating system
to the hardware. Since user interaction is possible but usually
not desired in this step, boot parameters can be used as a
flexible way of guiding the script.
After a successful build, we employ kexec to start our

freshly created kernel: Using this system call, we can load

the new binary kernel file into memory and directly boot it
by jumping to its entry position, without any additional hard-
ware initialization. The kexec-tools [3] provide a command-
line interface for this functionality and support different
protocols, such as the Multiboot Specification [6].
We demonstrate the universal applicability of our ap-

proach with two open-source operating systems on the i386
and x86_64 architectures.

4.1 FreeBSD Target
As FreeBSD supports being built with the LLVM-based clang
compiler and its related toolchain, it offers us the possibility
of using the intermediate representation emitted by the com-
piler as starting point. Compared to the traditional approach
commencing from the original high-level–language code,
several analysis and general optimization steps have already
been performed ahead of time.

Due to some peculiarities in the build process of FreeBSD,
it cannot be booted directly by the kexec system call. There-
fore, it is necessary to add a boot-loader stage in-between
Cocoon and the generated kernel binary. As FreeBSD’s build
system depends on its specific tooling, it does not run in a
Linux-based environment. In order to generate IR files based
on the kernel’s source code and to extract the commands
required for compiling and linking, slight modifications to
the build system are needed. We apply these modifications
to the 11.2 release for the i386 architecture.

4.2 Linux Target
In the case of Linux, we can boot into the latest kernel by
updating the source code directly from Linus Torvalds’s Git
source tree [17] every time. The configuration is adjusted to
the system, for example the CPU type and number of cores.
While Linux has only rudimentary compile-time support for
the ISA extension, we are able to apply patches that allow
aggressive machine-specific compile optimizations [4].

To speed up the compilation process, we prevent arbitrary
value changes in the source files (e.g., timestamps or version
counters) and use a compiler cache [15] to access previously
compiled fragments instead of recompiling them.

Performing the whole building process is by no means nec-
essary: It is sufficient for us to build only the kernel binary
itself (vmlinux) and omit the time-consuming steps of com-
pressing and packaging the kernel with a loader (bzImage).

5 Evaluation
To show the broad applicability of our approach, we evaluate
Cocoon with the popular open-source operating systems
FreeBSD and Linux on different processor architectures (i386
and x86_64, respectively), followed by an in-depth analysis
of the memory-copy function in Linux.

Cocoon: Custom-Fitted Kernel Compiled on Demand PLOS’19, October 27, 2019, Huntsville, ON, Canada

5.1 FreeBSD in Cocoon
We measure potential benefits in boot duration when using
an IR as the basis, as opposed to source code. The tests were
conducted with the FreeBSD source code. The linker used in
this scenario is GNU gold (v1.14). Furthermore, we integrate
LLVM 8.0.0 with the corresponding clang compiler and lld
linker into Cocoon, allowing the usage of LTO and IR. As
source files written in assembly cannot be transformed to IR,
we generate traditional object files for those.

When compiling to object files, commencing with the 1875
C files takes 382 seconds while using the derived IR takes
about a third of the time (127 seconds). Thus, a substantial
decrease in compilation time can be achieved. 1621 source
files have been translated into the IR of LLVM.

Linking of the resulting object files takes about 2 seconds
in both scenarios. When using LLVM’s LTO capabilities for
compiling and linking the IR code the overall duration is
about 242 seconds. For testing, we employ an Intel Core
i5-4570 (4 cores at 3.2GHz) with 32GB RAM. However, all
actions were performed sequentially, only utilizing one core.

5.2 Linux in Cocoon
For all Linux-based tests, an Intel Core i5-8400 CPU (6 cores
at 2.8GHz) with 16GBDDR4 RAM and a 500GB SSDwas uti-
lized. Note that both dynamic frequency scaling and energy-
saving features were disabled and the CPU lacks support
for simultaneous multi threading, all of which are common
sources of unwanted benchmarking jitter.

Boot times with Cocoon generally fall into two categories:
The initial build of the kernel and—if there are no changes
to source code, configuration, or optimization settings—the
subsequent boots with the previously compiled one. The
first category’s boot duration is influenced by the degree of
optimizations performed, the latter is invariant. As a con-
sequence, we measure full build times for a general and a
target-tailored/-optimized kernel, as well as the boot time if
the kernel is reused. Since the applied configuration can heav-
ily influence compile times, comparable configuration files
are mandatory: The unoptimized kernel uses the defconfig,
a very basic configuration provided by the kernel developers.
The optimized kernel utilizes a further tailored configuration
and employs the -march=native compiler option for tuning
the emitted code to the ISA extensions at hand.
A fresh, complete build takes 190 seconds from selecting

Cocoon in the stage 2 boot loader until the login prompt of
the booted operating system appears. If optimizations are
enabled, this boot period is further extended by 3 seconds.
In contrast, subsequent booting only takes 33 seconds. How-
ever, it is still slower than a traditional, direct boot into the
operating system, lasting about 10 seconds. While this might
be impractical for daily use on a mobile computer, for other
systems, such as servers, this overhead is negligible.

Table 1. Comparison of three Cocoon-compiled kernels
in multiple perf bench microbenchmarks (where higher
values are better for epoll/wait and mem/memcpy, lower
values are better otherwise): A traditional vanilla kernel,
a kernel with a memcpy implementation in C as well as a
target-optimized kernel with C memcpy.

Benchmark Linux Kernel
Vanilla C C-opt.

epoll/wait 287 476 283 117 292 120 [Op/s]
futex/requeue 8.2 9.1 8.1 [µs]
mem/memcpy 42.5 14.2 42.5 [GB/s]
sched/messaging 1132 1137 1010 [ms]

As the Cocoon approach ultimately not only strives to
enhance performance but also to improve the kernel source
code’s maintainability by reducing dependencies on hand-
written assembly code, we evaluate the performance impact
of using a memcpy implementation provided in the C lan-
guage as well as target-specific compiler optimizations. We
compare three different kernels, all based on Linux 5.0.0
and compiled with Cocoon: A vanilla kernel with the orig-
inal assembly implementations compiled with no further
optimizations is used as a baseline for comparison to an
unoptimized and a target-optimized kernel with a standard
implementation in C. Furthermore, the same kernel config-
urations as in the boot time evaluation are used. We mea-
sure the actual results with the kernel-provided perf bench
tool [17, tools/perf], which comprises several microbench-
marks evaluating the performance of common operations,
such as inter-process communication and futex handling.
Additionally, it provides an easy way to measure memcpy
performance from user space.
The insights gained from our results (see Table 1) are

threefold: (1) We learn that a compiler-optimized memcpy
implementation in C can achieve the same throughput as
the kernel’s hand-written assembly routine. (2) When ana-
lyzing all results, the importance of memcpy in overall kernel
performance is evident: In all microbenchmarks, the kernel
with an unoptimized C implementation performs worse than
the traditional, assembly-based kernel, which is otherwise
completely identical. (3) Furthermore, the overall kernel per-
formance can be increased through target-specific compiler
optimizations. We conclude that, despite having the same
memcpy throughput, the natively optimized kernel achieves
better results overall compared to the default one.

5.3 Memory-Copy Function
The well-known memcpy function, as shown above, is a prime
example for optimization at compile time: As copying data in
memory is an essential part of almost every application and
operating system, both software and hardware manufactur-
ers have a strong interest in improving its performance. Thus,

PLOS’19, October 27, 2019, Huntsville, ON, Canada Heinloth et al.

#61 395 #60 369

#76 429

#18 652

#86 316

#6 709 #19 350

1 B 4 B 32 B 64 B 256 B 1024 B 4096 B
0%

100%

200%

300%

1
1
0
%

9
7
%

7
0
%

4
6
%

2
3
%

1
6
%

1
4
%

2
9
6
%

2
7
0
%

2
0
1
%

1
0
7
%

4
0
%

1
3
%

7
%

1
5
9
%

1
4
6
%

1
0
5
%

5
7
%

2
5
%

9
%

6
%

1
0
8
%

1
0
6
%

8
1
%

4
9
%

2
8
%

1
6
%

1
4
%

9
7
%

8
9
%

6
7
%

3
9
%

2
5
%

9
%

6
%

Payload size

D
u
ra
ti
on

(c
yc
le
s)

Linux’s memcpy orig

Linux’s memcpy

Linux’s memcpy erms

Compiler (optimized)

Compiler (const size)

Figure 4. OS memory-copy performance of Linux implementations and compiler-generated routines (-O3 optimized with and
without context information) relatively to a traditionally optimized (-O2) byte-copy loop at different payload sizes. The bars in
the background present the average number of memcpy calls during Linux boot (assigned to the closest payload size as shown).

in recent microarchitectures, both new instructions and im-
provements to existing ones have been introduced—and have
made their way into the Linux kernel, such as the REP String
Enhancement [8, Section 2.6.6] in memcpy and Enhanced REP
MOVSB Operation [8, Section 3.7.6] in memcpy_erms. During
boot, Linux uses live patching to select the most appropriate
assembly memory-copy function. While this mechanism can
achieve high performance, it both adds complexity to the
codebase and requires the operating-system programmer to
know the most efficient implementation. Traditionally, this
task lies within the domain of compiler developers.

char * memcpy(char * restrict to,

const char * restrict from , size_t len) {

for (size_t p = 0; p < len; p++)

to[p] = from[p];

return to;

}

Listing 1. Simple and clean memcpy implementation

Hence, we compare the throughput of all three Linux
memcpy implementations with compiler-optimized versions
of a simple, high-level memory-copy implementation—a loop
copying data byte by byte from source to destination—as
presented in Listing 1.
Our testing environment is based on Linux 5.0 with Gcc

8.3.0 on an Intel Core i5-8400 processor. As software in user
space can be affected by other processes on the same system,
all measurements are performed in a kernel module with
both interrupts and task scheduling disabled on the current
CPU. Other impacts on performance assessments include
hardware factors such as dynamically changing clock speeds
and power-saving features, all of which were disabled.

The results presented in Figure 4 demonstrate that recent
compilers are able to generate efficient code. Actually, having
the right conditions, current compilers emit the same code

as provided by Linux. By employing techniques such as con-
stant propagation, it is often possible to determine the size
at build time, thus enabling the compiler to choose the best
implementation considering the available enhancements.
Furthermore, due to additional factors (e.g., the start-up

costs of REP operations), the results clearly indicate that
there is no universal superior implementation—it strongly
depends on the payload size.

During boot of a Linux kernel, 94 % of the executed memcpy
calls copy less than 1 kB, which—on most hardware—results
in using a version inferior to the one suggested by the com-
piler. Profiling might be a sufficient way to gather such
knowledge for further compiler improvements.

6 Conclusion
Cocoon makes a fundamental change to the development
and distribution of made-to-measure operating-system ker-
nels. With the approach presented in this paper, optimization
capabilities of modern compilers are exploited to tailor the
OS to the underlying hardware. Hand-crafted assembly rou-
tines are no longer required in order to utilize a system’s
potential performance—all this by using high-level language
source code, only. To take advantage of improvements of
future microarchitectures, updating the OS is no longer nec-
essary: Upgrading to a newer compiler version is sufficient.
For future work, we will take the approach to a further

level by letting the compiler reside in memory. This would
enable features such as automatic hot-spot optimization and
adapting to non-functional requirements (i.e., high perfor-
mance, low power consumption) during run time.

Acknowledgments
This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – project number
146371743 – TRR 89 ”Invasive Computing” as well as the
individual research grant SCHR 603/13-1.

Cocoon: Custom-Fitted Kernel Compiled on Demand PLOS’19, October 27, 2019, Huntsville, ON, Canada

References
[1] Varun Agrawal, Amit Arya, Michael Ferdman, and Donald E. Porter.

2013. JIT Kernels: An Idea Whose Time Has (Just) Come. Poster pre-
sented at the 24th ACM Symposium on Operating Systems Principles
(SOSP poster).

[2] Fabrice Bellard. 2004. TCCBOOT: TinyCC Boot Loader. https://

bellard.org/tcc/tccboot.html

[3] Eric Biederman, Albert Herranz, and Jesse Barnes. 2019. Kexec Tools.
https://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git/

[4] Alexey Dobriyan. 2019. Linux 5.0-ad1: -march=native support. https:

//lkml.org/lkml/2019/3/4/698

[5] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin,
and Olin Shivers. 1997. The Flux OSKit: A Substrate for Kernel and
Language Research. In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles. 38–51.

[6] Bryan Ford and Erich Stefan Boleyn. 1995–96. Multiboot Specifica-
tion version 0.6.96. https://www.gnu.org/software/grub/manual/

multiboot/multiboot.html

[7] Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking
the Software Stack. SIGOPS Oper. Syst. Rev. 41, 2 (April 2007), 37–49.
https://doi.org/10.1145/1243418.1243424

[8] Intel Corporation. 2019. Intel® 64 and IA-32 Architectures Optimization
Reference Manual. Number 248966-041.

[9] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth,
Valentin Rothberg, Andreas Ziegler, Wolfgang Schröder-Preikschat,
Daniel Lohmann, and Rüdiger Kapitza. 2013. Attack Surface Metrics
and Automated Compile-Time OS Kernel Tailoring. In Proceedings of
the 20th Network and Distributed System Security Symposium (NDSS ’13),
The Internet Society (Ed.). 1–18. http://www4.cs.fau.de/Publications/

2013/kurmus_13_ndss.pdf

[10] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). IEEE Computer
Society, Washington, DC, USA, 75–. http://dl.acm.org/citation.cfm?

id=977395.977673

[11] H.Massalin and C. Pu. 1989. Threads and Input/Output in the Synthesis
Kernel. In Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles (SOSP ’89). 191–201.

[12] Dorit Nuzman, Revital Eres, Sergei Dyshel, Marcel Zalmanovici, and
Jose Castanos. 2013. JIT Technology with C/C++: Feedback-directed
Dynamic Recompilation for Statically Compiled Languages. ACM
Trans. Archit. Code Optim. 10, 4, Article 59 (Dec. 2013), 25 pages. https:

//doi.org/10.1145/2541228.2555315

[13] David Lorge Parnas. 1976. On the Design and Development of Program
Families. IEEE Transactions on Software Engineering SE-2, 1 (March
1976), 1–9.

[14] Calton Pu, Henry Massalin, and John Ioannidis. 1988. The Synthesis
Kernel. Computing Systems 1, 1 (1988), 11–32. http://www.usenix.org/

publications/compsystems/1988/win_pu.pdf

[15] Joel Rosdahl and Andrew Tridgell. 2019. ccache — a fast C/C++ com-
piler cache. https://ccache.dev/

[16] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang
Schröder-Preikschat. 2011. Feature consistency in compile-time-
configurable system software: facing the linux 10,000 feature problem.
In Proceedings of the Sixth ACM European Conference on Computer
Systems 2011 Conference (EuroSys ’11). ACM, 47–60.

[17] Linus Torvalds et al. 2019. The Linux Kernel. https://git.kernel.org/

pub/scm/linux/kernel/git/stable/linux.git

[18] Pengfei Yuan, Yao Guo, and Xiangqun Chen. 2014. Experiences in
Profile-guided Operating System Kernel Optimization. In Proceedings
of 5th Asia-Pacific Workshop on Systems (APSys ’14). ACM, New York,
NY, USA, Article 4, 6 pages. https://doi.org/10.1145/2637166.2637227

https://bellard.org/tcc/tccboot.html
https://bellard.org/tcc/tccboot.html
https://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git/
https://lkml.org/lkml/2019/3/4/698
https://lkml.org/lkml/2019/3/4/698
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://doi.org/10.1145/1243418.1243424
http://www4.cs.fau.de/Publications/2013/kurmus_13_ndss.pdf
http://www4.cs.fau.de/Publications/2013/kurmus_13_ndss.pdf
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/2541228.2555315
https://doi.org/10.1145/2541228.2555315
http://www.usenix.org/publications/compsystems/1988/win_pu.pdf
http://www.usenix.org/publications/compsystems/1988/win_pu.pdf
https://ccache.dev/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
https://doi.org/10.1145/2637166.2637227

	Abstract
	1 Introduction
	2 Background
	3 Approach
	4 Implementation
	4.1 FreeBSD Target
	4.2 Linux Target

	5 Evaluation
	5.1 FreeBSD in Cocoon
	5.2 Linux in Cocoon
	5.3 Memory-Copy Function

	6 Conclusion
	References

