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ABSTRACT
The need for high performance in embedded devices grows at a
breathtaking pace. Embedded processors that satisfy the hunger for
superlative processing power share a common issue: the increasing
performance leads to growing energy demands during operation.
As energy remains a limited resource to embedded devices, it is
critical to optimise software components for low power. Low-power
software needs energy models which, however, are increasingly
difficult to create as to the complexity of today’s devices.

In this paper we present a black-box approach to construct
precise energy models for complex hardware devices. We apply
machine-learning techniques in combination with fully automatic
energy measurements and evaluate our approach with an ARM
Cortex platform. We show that our system estimates the energy
demand of program code with a mean percentage error of 1.8 %
compared to the results of energy measurements.

CCS CONCEPTS
• Hardware → Power estimation and optimization; • Com-
puting methodologies → Machine learning; Neural networks; •
Computer systems organization → Embedded systems; Embed-
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1 INTRODUCTION
The demand for increasing processing power in embedded devices
is at an on-going, breathtaking pace [3, 29]. New fields of applica-
tion in professional work environments and private spheres ask for
incredible processing power right at the data source (e.g., CMOS im-
age sensors). New embedded processors designs which satisfy this
hunger for superlative processing power share a common issue: the
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increasing computation performance comes with extreme energy
demands during operation [9]. The urgently needed revolution in
energy storage technologies, however, never happened [14]. This
led to desperate efforts, such as cramming lithium-ion batteries
into tiny enclosures with catastrophic results, for example, tens of
thousands of dangerous explosions [27].

Instead of waiting for a revolution in energy storage technologies,
researchers actively explore new ways of increasing the energy
yield. To exploit available energy resources in the greatest extent
possible, recent research has focused on improving the energy
demand of system software and applications [3, 17]. In this field,
energy models [21, 25] are essential for program-code analysis
and low-power optimisations as energy models estimate the energy
demand of program code for specific hardware platforms [25]. With
the increasing complexity of processor designs [5], however, it
becomes highly difficult to actually create energy models in general,
that provide accurate energy demand estimates in particular. For
example, recent (heterogeneous) multi-core processors that are
common for embedded devices (i.e., IoT devices, smart phones)
have up to eight general-purpose processor cores (e.g., ARM Cortex
A73), they feature pipelines with no less than 15 stages, two-way
branch prediction, and out-of-order execution.

Semiconductor manufacturers are very thin-lipped about the
specific power and energy characteristics of their CMOS chips. It is
common for semiconductor companies to provide examples how
the hardware designs operate under ideal conditions for a few test
cases, only. This lack of information leads to the need of apply-
ing reverse engineering techniques to understand the electrical
properties of individual CMOS devices [26]. The engineering ap-
proach to reversely explore the power and energy characteristics
entails expansive and manual measurements. And yet, due to the
complexity of today’s processors and hardware platforms, such
methods of analysis yield incomplete results, only. Each individual
hardware feature (e.g., instruction-level parallelism, multi-staged
pipelines, out-of-order execution, multi-level caches, and so forth)
contributes to the complexity of hardware devices and their indi-
vidual energy-demand characteristics, and consequently increases
the work required to establish robust energy models. In the light of
the rising number of different platforms the effort becomes bigger
and bigger and one has to ask the question: can we invest the effort
to build a energy model for every new CMOS device at all?

In this paper, we present an approach to address the challenge
of creating precise energy models even for complex hardware plat-
forms. Our contribution applies machine-learning techniques to
cope with the complexity of today’s CMOS devices and analyses the
hardware in a black-box approach during the construction of en-
ergy models. The contributions of this paper are threefold. First, we
present a systems approach to tackle the challenge of constructing
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precise energy models even for modern, complex CMOS devices.
Second, we discuss the implementation of our approach which
exploits machine–learning techniques. Our implementation runs
automated energy measurements for the training of deep artificial
neural networks which subsequently predict the energy demand
of program code. Third, we evaluate our approach at the example
of an ARM Cortex platform and compare energy demand estima-
tions of our generated energy models with a state-of-the-art energy
modelling technique which requires manual labour.

The remainder of this paper is structured as follows: Section 2
discusses the current state of the art of energy-demand analysis and
presents knowledge on artificial neural networks. In Section 3 we
outline the system architecture and present the implementation of
our approach. In Section 4 we evaluate our current implementation
and discuss the evaluation results. Related work and prior research
is presented in Section 5, and Section 6 concludes the paper.

2 BACKGROUND
This section discusses the current status of energy-demand analy-
sis of computing systems (i.e., energy models at different levels of
abstraction) and presents background on (deep) artificial neural net-
works, specifically fully-connected feed-forward neural networks.

2.1 Energy-Demand Analysis
The energy-demand analysis of embedded and power-constraint
computing systems is done at various levels of abstraction and
depends on the individual use case. Thus, energy-demand analysis
is either performed with little or no abstractions at hardware level
through to higher abstractions at software level. In consequence to
the varying degree of abstraction of the individual energy-demand
analysis approaches, respective energy models are established at dif-
ferent levels of abstraction. Energy models at low levels of abstrac-
tion (i.e., hardware energy-models) provide precise energy-demand
estimates, but at the same time they are pinned down to a certain
hardware platform. In contrast to this, energy models at a higher
level of abstraction (i.e., software energy-models) commonly trade
off precision against generality and thus enable energy-demand
analysis of software independent from a specific hardware platform.

At the hardware level, instruction-based energy models [21, 25]
describe the energy demand for executing individual CPU instruc-
tions. At a higher level of abstraction, energy models with the
granularity of basic blocks1 are used to include inter-instruction
effects [25] on the energy demand. For embedded devices, such
energy models are suitable as they exactly characterise the energy
demand of the underlying hardware platform [18, 22]. In particular,
energy models with the granularity of basic blocks are suited to
bridge the gap towards higher abstraction levels (i.e., function- or
process level). Energy models for wireless links and networks [20]
use packet-based energy models. State-based energy models and
approaches which consider the energy demand of components after
use, so-called tail energy [1], considerably improve the results as
asynchronous system activities are tracked across different lay-
ers (i.e., software, hardware). The energy efficiency of software

1A basic block is a sequence of CPU instructions that contains a single entry point and
has no branches except at the exit.
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Figure 1:An artificial neural network consists of neurons (arranged
in layers) and links between neurons. The output y of a neuron is
calculated by applying the weighted sum of all input values xi to
an activation function f .

components often is described at function-level [8] or process-
level [28]. Recent works that analyse the energy demand of embed-
ded operating-systems [13] and mobile applications [2] consider
the energy demand at system- and platform-level.

With the increasing number of functionalities that are imple-
mented by embedded devices, the complexity of the individual hard-
ware components (i.e., CPU, GPU, memory, wireless network) is
growing steadily, too. The rising complexity at component-level and
platform-level hence requires adequately complex energy-models
which in turn influence the energy-demand analysis at all levels of
abstraction. To reduce the engineering efforts for generating energy
models at component-level and platform-level we use machine-
learning techniques which exploit artificial neural networks to
explore energy-demand characteristics in a black-box approach.

2.2 Artificial Neural Networks
Machine learning techniques have been successfully applied in vari-
ous fields of research and application (e.g., text or image recognition,
classification, and processing), especially over the past few years.

I. Training

Basic Blocks

Energy Data

CFG 1 CFG2

II. Operation

Basic Blocks

Energy Data

Untrained/Trained Neuron Basic Block (Code Sequence)

Figure 2: Our system uses basic blocks to train an artificial neural
network to learn energy characteristics of an unknown hardware
platform (I. Training). Subsequently, the trained network calculates
the energy demand estimates for unknown inputs (II. Operation).
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Figure 3: Illustration of the creation of an energy model based on basic blocks and an artificial neural network. First, basic blocks are derived
from basic blocks of applications, generated, and automatically deployed on the device under test (DUT). Automatic energy measurements
are used to determine the energy demand of each basic block. Both information, the structure of the basic block and its energy demand, are
stored in a database. Subsequently, the database is used to train an artificial neural network to estimate the energy demand of basic blocks.

In particular, (deep) artificial neural networks currently experience
a big renaissance [10, 12]. With increasing processing resources
of today’s computing systems such techniques can not only be
used for classical machine learning problems [16], but to process
complex tasks solving extraordinarily complex problems [19].

Artificial neural networks (ANN) can be considered as a simpli-
fied version of biological neural networks. They have great capabili-
ties in learning patterns from data and creating robust models, even
if the underlying data contain noise or outliers. Figure 1 shows an
example for an ANN. The network consists of neurons and links
between neurons. Every neuron has various input and output links
from and to other neurons. Usually, neurons are arranged in lay-
ers, where every layer can have an arbitrary number of neurons
and every neuron of a layer is connected with every neuron of
the previous layer. Hence, such networks are called fully-connected
feed-forward neural networks, as there are no cyclic dependencies
and all neurons between two adjacent layers are connected.

The input is fed to a network through the input layer and passes
through a network-specific number of so-called hidden layers. A
single neuron calculates its output y by attaching a weight on each
input xi and adding up all weighted input values. The calculated
sum is used as an input for an activation function f , which calcu-
lates the output y of the neuron. One typical activation function is
a rectifier function, which is a positive ramp function and widely
used in deep artificial neural networks. This output y of a neuron
is either input for other neurons or it is one of the output values of
the network, if the neuron it is part of the output layer.

A network is trained by comparing the output of the network
with a label (i.e., the desired output), both specific for one input.
Subsequently, the weights of the neurons are adjusted to reduce
the distance (i.e., difference or error) between the label and the
output of the network by a backward propagation of errors [15].
If the training data set is sufficiently large, the network learns the
underlying principles for its model. Subsequent to its training, a
network makes accurate predictions for unknown inputs, which
have not been part of the training set.

The depth of a network describes the number of hidden layers,
which is an important factor for the capability to learn complex
features. Usually, the closer a hidden layer is to the output layer, the
more abstract are learned features. A specific layer uses the inputs as
provided from the previous layer (i.e., raw input or preceding hidden
layer) to generate more abstract features. Starting from raw input
with every layer the abstraction level rises up to the final output
of the network. Networks with a large number of hidden layers,
so-called deep artificial neural networks (DANN), provide strong
results, especially in fields of image and speech processing [10, 12].

With a growing number of hidden layers the training of the net-
work becomes increasingly complex and the required computation
resources rise as the back-propagation algorithm needs to be exe-
cuted for more layers. Therefore, the ideal shape of a network must
consist of enough layers to respect the complexity of the problem to
be solved and simultaneously be small enough to be trained using
a reasonable amount of computation resources.

3 SYSTEM ARCHITECTURE
In this section we present the system architecture and the imple-
mentation of our prototype. We use deep artificial neural networks
to model the energy demand of code sequences at basic-block level
and we measure the energy demand on a development system to
generate input data for training a neural network.

3.1 Overview
Figure 2 illustrates the general approach to utilise an artificial neural
network for estimating the energy demand of applications which
are composed of basic blocks. First, basic blocks are either generated
or they are extracted from call function graphs (CFGs), for example,
by applying tool support from the compiler (e.g., LLVM) and used to
train the neural network (I. Training). After training, the network is
used to estimate the energy demand for basic blocks, which, in sum,
resemble the structure of CFGs, and that are different from the ones
used during the training phase of the neural network and hence
estimate the energy demand for unknown software (II. Operation).
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The architecture of our systems relies on two main components.
First, our approach relies on an energy measurement device which
performs automated energy measurements of different code se-
quences (i.e., thousands of different basic blocks). Second, our ap-
proach uses an artificial neural network to learn energy charac-
teristics which are specific to the device under test (DUT) while
executing the sequences of code. Subsequent to its training, the
network can estimate the energy demand of unknown sequences
of code. Figure 3 shows an overview of our system architecture.

Initially, we generate a sufficient amount of data for the training
phase of the artificial neural network (cf. Section 3.2). The training
data consists of different basic blocks that are derived from basic
blocks of applications and their respective energy demands. The en-
ergy demands are retrieved by automated energy measurements of
the individual basic blocks that are performed on the DUT (cf. Sec-
tion 3.4). Both information, that is, the basic block and the measured
energy demand, are stored in a database.

Subsequently, the database is used to train our system with
energy-demand data of the different code sequences (cf. Section 3.3).
We choose to train our system at the level of basic blocks (code
sequence with no branches) to see whether our trained network
can model non-deterministic effects (e.g., cache misses) and inter-
instruction effects. During operation and after its training, the
neural network estimates the energy demand of basic blocks which
have not been part of the training set. Hence, the network can be
used to estimate the energy demand for a multitude of different
basic blocks, which, in sum, resemble the structure of an application.

3.2 Training Data Generation
In order to obtain a sufficient amount of data, we implemented
a tool to derive basic blocks from applications. The structure of
typical basic blocks depend greatly on the utilised tool chain and
its parameters (e.g., compiler, assembler, and optimisation level)
and the structure of the software (e.g., focus on memory accesses
or data processing). Figure 4 shows an example of the same basic
block and compiler with different optimisation levels. The basic
blocks differ in utilised instructions types, number of instructions,
and complexity. Based on the analysis of basic blocks of software
running on our DUT, our tool derives new basic blocks, which are
comparable to basic blocks as extracted from applications.

The instruction pool, from which instructions are selected, con-
tains all types of instructions, such as, data processing instruc-
tions (e.g., add), data comparison instructions (e.g., cmp), and mem-
ory instructions (e.g., load/store). Furthermore, the instruction
pool contains different addressing modes (i.e., immediate values,
register and, in case of load/store instructions, memory locations).

Every basic block consists of a various number of instructions
of the instruction pool. The only constraint for basic block gener-
ation is the placement of push and pop instructions, which need
to be placed in a well-formed order (i.e., the same number of both
instructions and for every pop instruction a push instruction must
be executed beforehand) for stack-integrity reasons. We assign a
unique hash value to each basic block, which we test before includ-
ing the basic block in the data set, to avoid identical basic blocks.
The input for the hash function are the mnemonics of the assembler
instructions representing the basic block.

Optimisation O0 Optimisation O3 Optimisation Os

main.entry:
push r7, lr
mov r7, sp
sub sp, 16
movs r0, 0
str r0, [sp,12]
str r0, [sp,4]
movs r1, 5
str r1, [sp,0]
str r0, [sp,8]
b.n label

main.entry:
sub sp, 4
movs r0, 5
str r0, [sp,0]
ldr r0, [sp,0]
cmp r0, 0
it lt
movlt r0, 0
addlt sp, 4
bxlt lr

main.entry:
sub sp, 4
movs r0, 5
str r0, [sp,0]
ldr r0, [sp,0]
blt.n label

Figure 4: Entry basic block of the main() function compiled at
different optimisation levels. The basic blocks differ in utilised
instruction types, number of instructions, and complexity.

Each basic block is embedded in a test framework and deployed
on our DUT. The test framework executes each individual basic
block in a loop and simultaneously conducts an energy measure-
ment, which measures the energy demand during execution. The
energy measurement is started an stopped by a single instruction
directly before and after the execution of the basic block under test,
respectively, in order to maximise the precision of the measure-
ments. These measurements represent the energy demand of the
basic blocks on the DUT and the measurement data is basis for the
neural network to draw conclusions about the energy demand of
unknown basic blocks (i.e., basic blocks which are not included in
the training set).

3.3 Energy Model
To estimate the energy demand of a basic block, we feed its in-
structions into the deep artificial neural network as an input value.
Feed-forward artificial neural networks expect, by design, a fixed
number of input values. In contrast, basic blocks have varying
numbers of instructions per basic block. To meet the design of the
neural network we developed a two-staged process. First, every
basic block is normalised to a fixed size by adding null instructions
(an instruction not included in the instruction set architecture of
the processor, but indicating the neural network that this is not a
real instruction). The fixed size is chosen sufficiently large to cover
almost all basic blocks size usually created during the compilation
of software. However, basic blocks exceeding this size can be split

1© Control Interface (Serial Connection to Host PC)
→ synchronise with host PC
→ transmit application information

2© Measurement Device (MeasureAlot)
→ based on a current mirror
→ current-to-frequency conversion

3© Device Under Test (ST STM32F429 Discovery)
→ ARM Cortex-M4
→ three-stage pipeline

4© Data Transmission, Power Supply (2 x 5V DC)

Figure 5: Our evaluation setup comprises a measurement device
(left), a device under test (DUT, right), and a host PC (not shown).
The neural network learns the energy characteristics of the DUT
(dashed box) in a black-box approach.
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Figure 6: Energy demands of basic blocks included in the training data set ordered by energy demand. The minimum and maximum energy
demand equals 2 nJ and 288 nJ, respectively. The average energy demand equals 83 nJ.

into two blocks. Subsequently, every instruction of the basic block
is encoded using one bit per possible instruction type and an ad-
ditional bit for the null instruction. For every instruction, the bit
representing the type of the instruction is set to one and all other
bits are set to zero, which is called a one-hot encoding. This allows
the artificial neural network to distinguish different instruction
types and especially to easily detect and ignore null instructions.

The network has a single output value, which represents the
estimated energy demand of the basic block. The hidden layers
of our network are fully-connected feed-forward layers and the
number of neurons per layer varies with the position of the layer. In
general, layers near the output layer have less neurons than layers
near the input layer. This respects the rising abstraction level and
leads to a single output value.

Given that our input and output features contain no hardware
specific data, but only (a) the structure of the basic blocks (i.e., the in-
structions of each basic block) and (b) the individual energy demand
for each basic block during execution on the DUT, our network can
be considered as a black-box model. Thus, we put no engineering
effort into modelling hardware specific details. The model auto-
matically extracts and learns hardware specific details from the
provided training data. This makes our approach very convenient
to be used with arbitrary hardware platforms, by only substituting
the training data set and retraining the network for the different
platform (i.e., new DUT), without a need to change the general neu-
ral network architecture. For a DUT utilising a different instruction
set architecture, only the basic block normalisation and the input
layer of the neural network must respect the changed number of
instruction types. The rest of the architecture remains unchanged.

For the evaluation, we split our data in three data sets (i.e., a
training set, a validation set, and a test set). The training data set
is used to train our model to estimate the energy demand of basic
blocks. Therefore, the basic blocks are fed into the neural network
as input values and the measured energy demands are provided as
expected output values and the network adapts its weights in way
that the inputs lead to the expected outputs. During the training
phase, the validation data set is used to continuously evaluate the
quality of our model, by estimating the energy demand of basic

blocks from the validation data set, which are not part of the training
set, hence unknown to our model, and compare the estimation with
the actual energy demand. This allows an continuous evaluation of
the training progress and to countervail overfitting and optimise
training parameters, respectively. To avoid indirect overfitting to
the validation data set, the test data set is finally used once to
evaluate the quality of the final artificial neural network.

3.4 Implementation
To generate our training, validation, and test data sets, we per-
formed energy measurements on an ARM platform, namely the
STM32F429I-DISC1 Discovery Board from STMicroelectronics. The
board powers a 32-bit ARM Cortex-M4 processor which has a three-
stage pipeline and serves as DUT (cf. Figure 5) during our eval-
uation (cf. Section 4). The layout of the board allows to directly
measure the energy demand of the processor, without interferences
from other circuitry parts of the board.

To perform energymeasurements of the processor, we use a high-
precision measurement device, the MeasureAlot2. It runs energy
measurements by exploiting a current mirror [11] and offers a
trigger mechanism which implements a fine-grained signalling of
the start and end of energy measurements. The DUT controls the
measurement device (i.e., sending control signals to start and stop
energy measurements) and a host PC retrieves measurement results,
automatically. The setup allows us to perform a high number of
energy measurements in an automated manner and without manual
efforts by an engineer. Our implementation further interconnects
the energy measurements with training of the neural network and
evaluates the quality of the trained network by comparing the
energy estimations with samples (i.e., energy measurements).

To implement the neural networks for our energy model we use
the TensorFlow machine learning framework3. TensorFlow pro-
vides a high-level API to create, train, and run different types of arti-
ficial neural networks. The training of our deep feed-forward neural
network is performed on a Linux desktop computer due to the need
of sufficient computation power for the training phase. During

2www4.cs.fau.de/Research/MeasureAlot/
3www.tensorflow.org
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Figure 7: Energy demands for basic blocks included in the test data set ordered by the measured energy demand. Both, the measured energy
demand (blue) and the energy demand as estimated by the neural network (green), are shown. The mean percentage error between energy
measurements and energy estimations equals 1.8 %.

operation (i.e., estimating the energy demand of basic blocks) the
network can be deployed either on the Linux desktop computer or
even on the DUT.

For the training of our neural network we assign a unique iden-
tifier (UID) to each instruction type and feed the basic blocks into
the neural network. To determine the best performing network we
tried networks with different topologies, from two up to six hidden
layers. The number of neurons per layer is between 512 and 2048
neurons, depending on the position of the layer. After training of
the neural networks we compared the training and validation error
of these networks and chose the neural network with five hidden
layers and a total number of 5633 neurons for our evaluation.

4 EVALUATION
The evaluation of our implementation is performed on a setup
consisting of an energy measurement device, the device under
test, communication interfaces to the host PC, and power supply
connections. The setup is shown in Figure 5.

We have generated and executed 10 000 basic blocks for the
evaluation and consequently performed the same number of mea-
surements on the device under test to determine the energy demand
of each basic block. These 10 000 basic blocks are split into three
data sets, that is, the training, validation, and test data set contain-
ing 9000, 500, and 500 basic blocks, respectively. Our instruction
pool consists of over a hundred instruction types. The number of
instructions per basic block varies from 3 to 328 instructions and
covers all typical sizes of basic blocks.

Figure 6 shows the results of the energy measurements sorted
by energy demand for the training data set. For all basic blocks
part of our training set, we measure an average energy demand of
83 nJ, with a minimum and maximum energy demand of 2 nJ and
288 nJ, respectively. The basic block with lowest energy demand
and the basic block with highest energy demand differ by a factor
of 144. The varying energy demand of the basic blocks results from
the individual energy demand of different instructions, different
basic block sizes, diverging addressing modes, and variable inter-
instruction energy costs. The main reason for the range of energy

demands is the size of the basic blocks, but also the structure of
a basic block influences the energy demand. For example, simple
data processing instructions working on registers or intermediate
values (e.g., add, shift) usually consume less energy than instruc-
tions containing memory accesses (e.g., ldr, pop) or more complex
calculations (e.g., mul). An analysis of the energy demands of basic
blocks with a fixed number of instructions (i.e., ten instructions)
showed, for example, that the number of memory access influences
the energy demand of the basic block. A basic block consisting of ten
instructions with two memory accesses had an energy demand of
6 nJ, whereas a basic block consisting of ten instructions with seven
memory accesses had an energy demand of 16 nJ. Additional energy
demand is also induced by inter-instruction effects (e.g., cache and
pipeline events) which depend on the specific order of instructions.
This leads to strong differences in energy demand for basic blocks,
even if the basic blocks contain the same number of instructions.
In fact, the average energy demand per instruction in the training
data set varies from 0.4 nJ to 1.6 nJ, which confirms our assumption
that not only the basic block size, but also the instruction types and
inter-instruction effects are important factors.

We further split our data set in three subsets. First, the training
data set contains 9000 unique basic blocks and is used to train our
neural network. Second, the validation data set contains additional
500 unique basic blocks. The validation data set serves as a verifica-
tion for energy demand estimations of the trained neural network
during training. Third, a test data set of another 500 unique basic
blocks is used to run the final evaluation after the training phase.
The basic blocks are distributed randomly among all three data sets
to avoid any selection bias.

We examined several feed-forward neural networks of individual
shape. The best performing neural network consists of five hidden
layers with 2048 neurons for the first and second hidden layer,
1024 neurons for third hidden layer, and 512 neurons for the fourth
hidden layer. The last layer consists of a single neuron emitting the
energy demand estimation. Hence, the neural network consists of
5633 neurons in total. While networks with less than five hidden
layers performed worse, networks with more than five hidden
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Figure 8: Absolute difference of the energy demand measurements and the estimations made by the artificial neural network (green) and
the instruction-based energy model (red), respectively. The estimations of the instruction-based energy model show a significantly higher
divergence from the energy measurements.

layers performed similarly well, but required significantly more
time for training. Therefore, we chose the neural network with five
hidden layers for the remainder of the evaluation. The training was
executed on a Intel Core i5 and utilized the adam optimizer4 with a
learning rate of 0.001 and two momentum values of 0.5 and 0.75,
respectively. All neurons utilize rectified linear units (ReLUs). For
each training step a batch of 2500 basic blocks were fed into the
neural network and in total 7400 steps of training were executed.

Out of all possible basic blocks (approximately 10199 combina-
tions) our training data set covers a small number, only. However,
the evaluation results show that the comparatively small training
set is already large enough to properly train the network. After its
training, the neural network precisely estimates the energy demand
of basic blocks which were not included in the training data set.
In the evaluation, we verify the energy demand estimations of the
neural network by a test data set which contains 500 basic blocks.
We validate the energy demand estimates of the trained neural net-
work for each basic block of the test data by comparing the energy
demand estimation of the neural network with the actual energy
demand of the basic block (i.e., as conducted by measurements).

Figure 7 shows both, the energy demand as measured by the
measurement device and the corresponding energy demand esti-
mation of the artificial neural network for all basic blocks included
in the test data set. The figure illustrates that the neural network
precisely estimates the energy demand for all basic blocks consist-
ing of all instructions types and sizes. The minimal and maximal
number of instructions for the test data set was 4 and 244 instruc-
tions, respectively. The mean percentage error is 1.8 % compared
to energy measurements. Our system yields similar amounts of
under- and overestimations (232 and 268). Considering a set of
basic blocks (e.g., by extracting basic blocks from a call function
graph), the estimation errors compensate themselves quite well.

Furthermore, we compared our approach with a typical instruc-
tion-based energy model. Therefore, we determined the average en-
ergy demand per instruction using the same evaluation setup as for
the energy demand measurements for the basic blocks. Specifically,

4https://arxiv.org/abs/1412.6980

we executed instructions of all instruction types and measured the
energy demand during execution. Subsequently, we divided the en-
ergy demand by the number of executed instructions resulting in an
average energy demand per instruction of 1.4 nJ. This instruction-
based energy model shows significantly worse results compared to
our approach utilising an artificial neural network. This is due to the
fact, that an instruction-based energy model works on a different
level of abstraction (instructions instead of instruction sequences).
In fact, the mean percentage error was 64.4 % compared to the 1.8 %
shown above for our approach. Figure 8 further illustrates the differ-
ences between the estimations made by the artificial neural network
and the instruction-based energy model for basic blocks included in
the test data set. On the y-axis the absolute difference between the
energy demand measurement and the respective energy demand
estimations is given. The difference of the instruction-based model
between measurement and estimation is for almost all basic blocks
significantly higher compared to the estimations made by the artifi-
cial neural network. These results show, that the instruction-based
model can be used to estimate the order of magnitude of the en-
ergy demand of basic blocks, but lacks precision for fine-grained
energy analyses. In contrast, our approach based on artificial neural
networks is capable of fine-grained energy demand estimates for
arbitrary basic blocks.

In sum, the evaluation results demonstrate that our neural net-
works are well-suited to establish energy models at the level of
basic blocks, even for complex hardware platforms. Furthermore,
the energy demand estimations are precise enough to be used as
base-energy models for energy models at a higher level of abstrac-
tion (e.g., function level).

5 RELATEDWORK
Machine-learning techniques have been subject of several research
works related to the prediction and reduction of computer systems’
energy demand. To the best of our knowledge, the work presented
in this paper is the first to exploit machine learning techniques
to automatically extract precise energy models of CMOS devices
and hardware platforms. Early work by Chung et al. [6] explores
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the use of adaptive decision trees to predict idle periods at run-
time and control strategies of the dynamic power management in
order to efficiently power down unused devices (e.g., hard drives).
Tesauro et al. present a reinforcement learning approach [23] which
uses neural networks to control multiple criteria (i.e., power and
performance) of web application servers by throttling CPUs. Further
run-time optimisations have been proposed by Berral et al. [4]. The
authors propose an energy-aware task-scheduling approach for data
centre workloads and analyse the trade-off between power-savings
and the fulfilment of service level agreements. At data-centre level,
DeepMind [7] demonstrates a reduction of energy use by up to
40%. The researchers working on DeepMind train deep artificial
neural networks at different operating scenarios and parameters to
optimise the efficiency of Google’s data centres. The authors of [24]
propose a prediction scheme which uses artificial neural networks
to predict the energy demand of HPC kernels.

Basic blocks as basis for energy demand estimations have been
utilised by prior work for energy models. Shnayder et al. [18] decon-
struct basic blocks to estimate the number of executed CPU cycles
and used simulations to determine execution counters for all basic
blocks of an application. The total number of estimated CPU cycles
is used to estimate the energy demand. Steinke et al. [22] transfer
instructions on basic block level into an energy-efficient scratchpad
memory and achieve an energy demand reduction compared to
the execution in main memory or in caches. Section 2.1 discusses
further research on energy models at abstraction levels other than
basic blocks (e.g., instruction and process level).

6 CONCLUSION
In this paper we presented an approach to automatically construct
precise energy-models for modern, complex CMOS devices. Our
approach exploits deep artificial neural networks for creating en-
ergy models of complex hardware in a black box approach. We
apply automated energy measurements of code sequences to train
a neural network with five layers. Subsequent to its training in
the evaluation, the neural network was able to predict the energy
demand of unknown code sequences with a mean percentage error
of only 1.8 % compared to energy measurements.
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