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ABSTRACT

Today’s systems offer an increasing number of processor cores,
however, the chance to operate them efficiently by dedicating cores
to specific tasks is often missed. Instead, mixed workloads are pro-
cessed by each core which leads to system noise (i.e., interferences,
scheduling overheads) and yields subpar performance, only.

We therefore propose a system design based on Asynchronous
Abstract Machines (AAMs). An AAM features a light-weight sched-
uler and is dedicated to a specific group of tasks with common
characteristics (i.e., shared code and data). It offers an asynchro-
nous, task-based interface for efficient interaction between AAMs.
Just like applications are built from AAMs, even the OS itself con-
sists of AAMs that are interfaced by applications via asynchronous
messages instead of synchronous system calls. A dedicated OS com-
ponent, which is aware of all AAMs in the system, is responsible
for dynamic and exclusive allocation of cores to AAMs depending
on their current workload. Thus, cores rarely switch between het-
erogeneous workloads of different AAMs. And, at the same time,
frequent switches between homogeneous tasks become fast, local
operations of an AAM, which do not involve the OS kernel.

In this paper, we describe shortcomings of existing operating
systems, our new system design concept, and present evaluation
results of our prototype implementation.
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1 INTRODUCTION

Historically, computer systems featured only a few processor cores
and operating systems had no choice but to schedule heterogeneous
workloads on these cores. However, even today, in the presence
of many-core systems, common operating systems (e.g., Linux)
continue to share processor cores between unrelated threads that
often originate from different processes. In addition, the processing
time assigned to a thread is fragmented into the execution of a
variety of different application or library modules, on the one hand,
and the OS, on the other hand. Even a single system call can have
a significant impact on the perceived user-space performance of an
application for several thousand CPU cycles [24]. While a system
call introduces direct costs in the form of the mode switch and the
time spent inside the kernel, there are also indirect costs that are
caused by executing OS code and accessing OS data in memory.
This interference causes a decreased instructions-per-cycle (IPC)
performance of the CPU directly after a system call occurred and
stems from increased cache/TLB misses and branch mispredictions.
With the introduction of kernel page-table isolation (KPTI) [14] to
mitigate a widespread hardware security bug in Intel CPUs (i.e.,
Meltdown [12]), costs of system calls, and interrupts have increased
even further [21, 22].

But indirect costs are not limited to system calls, they also appear
when switching between different workloads within user space (e.g.,
different application or library modules). Therefore, existing sys-
tems often operate processor cores inefficiently, while at the same
time more cores become available that could as well specialize in a
certain group of tasks and thus avoid expensive transitions between
tasks with heterogeneous workloads.

To solve these problems, we propose Asynchronous Abstract Ma-
chines (or short AAMs) that group tasks with shared resources (i.e.,
data, code) together and execute them on a dedicated set of pro-
cessor cores, to increase cache locality and decrease interference.
The number of cores assigned to an AAM may change dynamically
over time depending on the current workload. To enable efficient
interaction between AAMs, they feature an asynchronous, task-
based interface that even works for communication across isolation
boundaries. Exclusive resource allocation and reduced interference
make the AAM approach and its anti-noise system design espe-
cially interesting for domains like staged server applications and
high-performance computing (HPC).

The paper is structured as follows: Section 2 explains short-
comings of existing operating systems regarding the utilization of
many-core systems. Section 3 describes our approach of building
systems based on AAMs and Section 4 gives an overview of the
prototype implementation and first evaluation results. Section 5
explains identified challenges and states future work in the context
of AAMSs. Section 6 discusses related work, and Section 7 concludes.
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2 PROBLEM STATEMENT

In the following section, we first outline our system model. Subse-
quently, we discuss the three problems, addressed by AAM: The
problems contain (1) the missing native support for threads exe-
cuting homogeneous work in current operating systems, (2) the
performance degradation due to switching between threads in ker-
nel space, and (3) the static pre-allocation of resources (i.e., cores,
threads) leading to poor utilization.

2.1 System Model

Domains where many-core systems are already prevalent are server
applications and high-performance computing (HPC). Server appli-
cations typically handle a massive number of independent requests
per second that mostly consist of short-lived tasks with intense
OS interaction. HPC applications, in contrast, utilize these cores
for computation-intense workload while the OS only provides in-
frastructure for I/O or communication and should apart from that
not generate any overhead or interference with the computation-
intense workload at all. In fact, isolating the OS noise from the HPC
application is of such a big concern, that often a full-weight kernel
(e.g., Linux for I/O) is combined with a light-weight kernel (LWK)
running on different cores of the same machine [9, 17, 23, 30].
The AAM concept is orthogonal to any OS architecture, be it
monolithic or based on nano-, micro-, macro-, or exokernels. We
rely on a monolithic architecture targeting shared-memory systems.

2.2

Especially server applications can often be partitioned into dis-
tinct computation stages [10, 27] (e.g., receiving, handling, and
answering requests). In order to parallelize these stages and uti-
lize available cores, one common approach is to employ thread
pools [25, 28]. They are used together with work queues (for the
individual jobs) to reduce the frequency of costly thread creations
and context switches. However, we argue that thread pools often
lack native OS support (just like many operating systems lack sup-
port for user-level scheduling in general) and that an adaption of
the concept is required to operate many-core systems efficiently.
Since an OS like Linux has no notion of thread pools and their work
queues, it is unaware of the fact that these threads form a team [5, 6]
of equivalent workers and their current workload (i.e., number of
jobs). Threads that could process homogeneous workload without
interference from other threads are therefore often intermixed with
unrelated threads on the same core.

Our Approach: We form groups of homogeneous tasks that are
handled by AAMs. As AAMs and their current workload are known
to the OS that can optimize core assignments to these AAMs and
therefore avoid frequent, expensive transitions between machines
and their heterogeneous workload.

Missing OS-level Support for Teams

2.3 Heavy-weight Threads and System Calls

Switching between kernel-level threads (e.g., because of a blocking
system call or synchronization primitives) is expensive, since it is
a kernel-space operation [1, 15]. Preemptive scheduling increases
the scheduling overhead even further. Furthermore, in a process-
based system, those threads may consume a lot of memory for the
kernel and user stacks even when they are inactive (e.g., waiting
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for their first execution). User-level scheduling can eliminate most
of these disadvantages. However, without native support from the
OS, user-level scheduling is prone to the blocking anomaly [20].
That anomaly occurs when a system call has to block execution
and its thread therefore becomes temporarily unavailable for the
user-level scheduler and its tasks.

Our Approach: We use light-weight tasks with run-to-completion
semantics. To schedule these tasks, we leverage user-level schedul-
ing and lazy context allocation. Therefore, frequent task switches
between the short-lived tasks of an AAM are performed without
involvement of the OS kernel. Lazy context allocation guarantees
that a task occupies a stack only when it is actually running or
currently blocked. System calls are based on asynchronous requests
and waiting for their responses can easily be done in user space
without suffering from a blocking anomaly.

2.4 Static Allocation of Resources

A common practice to reduce interference from the OS is to offload
system functionality to a number of dedicated OS cores [3, 29].
However, we argue that static partitioning of resources is inherently
susceptible to sub-optimal utilization when the distribution of the
workload varies over time. Static allocation of cores therefore either
leads to a bottleneck for I/O intensive tasks or under-utilized cores.

Similar problems occur when determining the size of a thread
pool [25]. Decisions are typically based on assumptions regarding
the expected workload of the thread pool and the load in the rest
of the system. Often, more threads are allocated than cores are
utilized, since threads may become (at least temporarily) unavailable
when they are blocked because of a system call or lock. While
switching between threads is already an expensive operation, the
fixed number of threads represents another problem: It limits the
ability to adapt to changing workloads. Since each thread comes
with a kernel and user stack, changing workloads may lead to
wasted memory, an increased scheduling overhead, or idling cores.

In order to improve locality, applications and runtime libraries
tend to pin their threads to specific cores [16]. While this may
actually increase cache locality in certain scenarios, an applica-
tion is only aware of its own threads. Other applications following
the same strategy can still interfere and therefore pinning can ulti-
mately even increase contention for resources of a specific CPU (e.g.,
CPU time, cache, branch predictor).

Our Approach: A dedicated OS component—the Machine Man-
ager—is responsible for dynamic core allocation to machines. It is
aware of all machines that compete for resources and their current
workload. Even the OS implements its services in the form of AAMs
that offer their functionality via an asynchronous interface.

3 THE AAM APPROACH

A system designed according to the AAM approach is shown in
Figure 1. Applications are composed of one or more AAMs, whereas
the OS kernel consists of at least one AAM and the Machine Man-
ager. AAMs perform the actual work by scheduling their respective
tasks and providing their functionality to other AAMs in the form of
a task-based interface (cf. Section 3.2). This interface allows AAMs
to trigger predefined tasks on other AAMs. Since AAMs are encap-
sulated components that offer a well-defined interface, AAMs can



Workshop Presentation

Application 1 Application 2
Y Application
]
il loeee— E
§
> Machine #N Library

System Machine

Machine Manager

Kernel Space
%n;
(e}

Operating System @) Active/ldle Core

Figure 1: Asynchronous Abstract Machines and their allo-
cated cores

be reused just like libraries. Typically, all AAMs of an application
reside within the same address space. However, for low-overhead
communication via the task-based interface it is sufficient when the
server machine can access the address space of the client machine.
This property enables one-sided isolation between AAMs in the
form of nested address spaces and the protection of OS services.
The Machine Manager is part of the OS and responsible for re-
source allocation to AAMs and signaling between AAMs. Being
aware of all machines and applications, the Machine Manager is
well-prepared to assign processor cores and memory in an effi-
cient manner. While AAMs and their interfaces are instantiated
dynamically during runtime, their definition occurs at design time.
In the current implementation, it is the responsibility of the devel-
oper to partition the application into AAMs by identifying suitable
components. The selection is based on the following considerations:

o duration and cache behavior of an operation

e shared data or functionality between operations
e distinct computation stages or system boundaries
e required privileges and isolation requirements

Although the current implementation requires manual partition-
ing of the system into reusable AAMs, we see potential to auto-
matically partition the system into application-specific AAMs [11],
which is part of future work.

3.1 Components of an AAM

Figure 2 shows all important components of an AAM. In addition
to the machine-specific task implementations, an AAM features
an independent light-weight task scheduler, a task-based interface,
and a dedicated memory allocator to reduce interference between
machines and improve locality.

The confined interface between AAM and Machine Manager al-
lows each machine to implement its own tailored task scheduler and
memory allocator, but typically AAMs use the optimized default
implementation and infrastructure provided by the AAM frame-
work. Migrating existing modules or libraries into an AAM can
therefore be performed with minimal effort and often boils down
to specifying the interface.
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Figure 2: Software components of an Asynchronous Ab-
stract Machine

3.2 Inter-machine Communication (IMC)
and Machine Calls

The machine interface allows other machines to perform machine
calls and thereby schedule a predefined list of tasks on a remote
machine (e.g., the SQLite AAM offers tasks for database operations).
As efficient communication between machines is essential for the
overall system performance, we use task-based interfaces that avoid
costly system calls in the common case.

Figure 3 visualizes that regular inter-machine communication
(IMC) is performed directly between two AAMs via queues that re-
side in the address space of the client machine. The server machine
may reside in the same or another address space, as it suffices if
the server machine has access to the address space of the client
machine. This characteristic, for example, allows efficient machine
calls to OS machines while still preserving isolation between the
OS and applications.

The queues of the interface allow to communicate tasks from
the client to the server machine and finished tasks, including their
results, back from the server to the client machine. An indicator
flag per queue allows the sender of a message to identify if the
receiver is actively monitoring the queue. If that is not the case,
inter-machine signaling (IMS) is necessary to make sure that the
request or response is actually handled. Performing IMS involves
interaction with the Machine Manager in the form of a synchronous
system call.

To issue a machine call, the following steps are required: cre-
ating a task; enqueuing it into the interface; waiting for the re-
sult. However, the task-based interface is actually hidden from the
programmer and instead exposed in the form of three interface
variants:

e asynchronous: returns immediately with a future [8] and
therefore allows for latency hiding and batching

e synchronous: calling task waits for completion and another
task is scheduled in the meantime

o event-based: schedules a specified task on completion and
delivers the result to this task

It is important to note that these different interface variants do
not require an enormous redundant implementation effort within
the machines (like the individual software subsystems for synchro-
nous IO and AIO in Linux) but instead essentially come for free.

Regarding the ordering of tasks issued to the interface, it is up
to the client machine to specify whether the task order should be
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preserved implicitly (e.g., for multiple writes to a file descriptor)
or whether it ensures the correct order explicitly on its own. In
addition, the server machine may limit the number of tasks that
are processed concurrently for a certain client machine.

3.3 Inter-machine Signaling (IMS)
and Machine Scheduling

The Machine Manager is part of the OS and aware of all AAMs in the
system. It is responsible for resource allocation and Inter-machine
Signaling (IMS). Interaction with the Machine Manager, for example
to send a signal, is performed with a few synchronous system calls
that have a run-to-completion semantic and therefore come with
minimal indirect costs.

IMS allows AAMs to notify other AAMs of an event and po-
tentially activate them. In particular, IMS is used to communicate
these events: registration of new interfaces and availability of new
messages in queues. Machine signals consist of a signal number
that encodes the event type and an arbitrary parameter. They are
delivered to the destination AAM asynchronously and stored in
a machine-local buffer for handling (e.g., between the execution
of two tasks). Signal handling does therefore not involve traps or
synchronous system calls. However, if the destination AAM is cur-
rently inactive a machine activation is triggered by the Machine
Manager which may involve waking a processor core.

Machine scheduling is responsible for the allocation of process-
ing cores to AAMs and is guided by two goals: maximizing locality
and minimizing interference. As switching between two machines
comes with direct and indirect costs and may require the instal-
lation of a different address space, frequent transitions between
machines on a core are avoided. Instead, AAMs typically occupy
cores for an extended period of time and schedule several tasks
before releasing the core to the Machine Manager for reassignment.
A task switch, machine call or interrupt does typically not require
a machine switch. Instead, a machine switch takes place when a
core would start to idle, since the task scheduler ran out of tasks,
or when rebalancing of the core allocation becomes necessary. As
a side effect, exclusive core allocation may hinder side-channel at-
tacks and improve timing behavior while still keeping the overhead
for isolation to a minimum.

To optimize utilization, further reduce the number of machine
switches, and enable load-based scheduling decisions, AAMs and
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Machine Manager share additional information. Data structures
mapped into the address space, e.g., allow the Machine Manager
to communicate the number of idle cores to AAMs and enable
AAMs to communicate their current workload (i.e., number of tasks
ready for execution) to the Machine Manager. The Machine Manager
is thus aware of all AAMs including their cores and workload.
Together with the knowledge about previous core assignments,
it has a global view of the whole system alongside the required
insight into machines. We currently evaluate different scheduling
strategies and implementations that leverage this knowledge to
optimize for non-functional properties like locality, performance,
and throughput.

3.4 Scheduling Tasks inside AAMs

Since the AAM approach aims for best system performance even
in the presence of a large number of short-lived tasks, two require-
ments become visible: First, the memory footprint of a task should
be small because many of these tasks may reside in a queue before
actually being executed. Secondly, the scheduling overhead has to
be minimized in order to efficiently schedule tasks that run only
for a short period of time.

Task scheduling is therefore performed locally inside AAMs and
without the involvement of the OS kernel. It is based on a light-
weight scheduler and lazy context allocation, as shown in Figure 4.
A task consists of a handler function, parameters, and a future to
enable other threads to wait for completion of the task and retrieve a
return value. It comes without an execution context (i.e., stack) and
thus consumes a minimal amount of memory, when it is awaiting
its execution. Instead, a context is assigned to it dynamically when
it is first dispatched. Because of the run-to-completion semantic of
tasks, only tasks that are in active execution or currently blocked
occupy a context. Therefore, it is often possible to reuse the context
of the previous task. An additional kernel stack per task is not
required at all. The AAM-local scheduler is free to accept tasks
from the interface queues in alignment with its scheduling strategy.

3.5 User-level vs. Kernel-level Machines

There are only minor differences between user-level and kernel-
level AAMs. Kernel-level AAMs run in privileged mode and there-
fore have full access to memory and do not require system calls to
interact with the Machine Manager. To reduce the noise for user-
level machines, the Machine Manager configures the underlying
hardware to direct device interrupts to cores that are either idle or
executing a kernel-level machine. This configuration makes sense
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since interrupts are handled by driver code, which resides in OS
machines, and therefore machine switches are avoided.

Like in other operating systems, kernel-level AAMs have to vali-
date parameters and pointers that are provided by user-level AAMs
for security reasons. Additionally, tasks retrieved from an interface
have to be copied into kernel space to prevent concurrent modifi-
cation by user-space AAMs. These precautions are omitted when
both interacting machines reside in the same isolation domain.

4 IMPLEMENTATION & EVALUATION

The following section describes our prototype implementation of an
AAM-based system together with tooling support for development
and system profiling. Subsequently, we discuss evaluation results
in the form of microbenchmarks.

4.1 Prototype System

Our approach has been implemented in a prototype for two archi-
tectures: the x86-64 architecture in the form of a native OS and the
Linux user space in the form of a 64-bit application binary. The
latter uses threads and signals inside a Linux process instead of
CPUs and interrupts. While the native variant is suitable for per-
formance measurements, the Linux variant simplifies development
and debugging of applications or system components like AAMs.

In addition to the implementation of the Machine Manager with
basic core-assignment strategies and support for IMS, the AAM
framework was developed. Most notably, we implemented a de-
fault task scheduler that combines core-local ready queues (i.e.,
round-robin scheduling) with optional work stealing. The sched-
uler accepts tasks from interface queues (with a FIFO strategy in
accordance with the round-robin scheduling) when no other task is
available. The basic idea behind this strategy is locality awareness
and reducing noise due to negative cache effects. That is, we focus
on finishing short-lived tasks instead of gathering a huge number
of tasks that consume resources and interfere with each other.

The introduction of a generic enqueue handler, that is always
executed after a context switch, allowed us to keep locking in the
critical paths of the scheduler to a minimum. This handler is ex-
ecuted in the context of the next task and responsible to either
enqueue the previous task into a ready queue or to register it with a
synchronization primitive. It therefore makes sure that a task only
becomes visible to other cores after it actually ended the execution
on its stack and in addition offers implementations of synchroniza-
tion primitives a generic mechanism to target the lost wake-up
problem. Thus, the enqueue handler allowed us to implement cru-
cial synchronization primitives like future and counting signal in a
wait-free fashion.

In addition to the implementation of the AAM framework and
the Machine Manager, the following reusable AAMs have already
been integrated:

e User-level Machines
— SQLite
— AES Encryption
— ZLIB/LZO Compression
e Kernel-level Machines
— TCP/IP Stack
— File System
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4.2 Important Tools

During the development of the prototype, multiple tools were cre-
ated that either simplify the packaging of machines or allow deep
insight into the system. With the help of the igen tool, the interface
of an AAM may be specified in a C-compatible IDL file. This prop-
erty allows the reuse of existing interface declarations by including
regular C-header files into the IDL file. During the build process of
a machine, the igen tool parses the IDL file and generates all the
interfaces and data structures required.

The profiling infrastructure of our prototype and tools like sview
enable us to browse the timeline of events and inspect scheduler
behavior. The GUI of sview is shown in Figure 5. It visualizes
the current load of individual AAMs (1), the assignment of cores
to machines (2), and how these machines utilize their cores to
schedule specific tasks (3). Other profiling tools enable us to collect
information from the OS (e.g., the number of machine switches or
inter-machine signals) and CPU performance counters (e.g., cache
misses or the IPC) to either retrieve per-machine metrics or for
deferred processing with Linux tools like perf. The insight gained
from these tools has proven to be invaluable when designing or
debugging scheduling on machine and task level.

4.3 Evaluation Results

Local task scheduling and machine calls are both frequently used
operations and key features of our approach. In order to determine
the direct costs and the overall latency involved when using these
mechanisms, several microbenchmarks have been executed. These
microbenchmarks have in common that an application task sched-
ules another no-op task and waits for the result of its execution by
blocking on a future. The no-op task itself does not perform actual
work but instead terminates immediately returning a timestamp.
It is either executed locally on the same machine (and core) or on
a remote machine (and a different core) by issuing a machine call.
Each microbenchmark was executed 10000 times and we ensured
that no other tasks were active in the system.

The hardware used for our evaluation featured an Intel Xeon
CPU (E3-1275 v3 @ 3.50 GHz), 32 GiB RAM, and 4 cores with
hyper-threading (8 logical cores), which is more than sufficient for
these microbenchmarks. Table 1 shows the direct costs that are
perceived by the caller to issue a task for execution (in the form
of CPU time) and the overall latency until it is presented with the
result of the task execution (using the arithmetic mean and standard
deviation). The table distinguishes between the case when both
machines are actively monitoring their interface task and result
queues throughout the benchmark (no IMS required) and the case
when both machines are allowed to idle immediately when no tasks
are available for execution (IMS required). Table 2 serves as orien-
tation and shows the typical costs of frequent system operations
on Linux (measured with kernel version 4.4 on the same hardware
and all threads/processes pinned to the same core): context switch
between two threads of the same process, context switch between
different processes, overhead of the system call mechanism, local
costs of thread creation.

The following observations are made: (1) Creating a local task is
about 3 times faster than the gettid system call on Linux. (2) The
latency introduced for scheduling a task locally and waiting for its
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Figure 5: Machine load (1), core assignment (2), and task scheduling (3) over time as visualized by AAM’s sview tool

Table 1: Direct costs and total latency of frequent operations Table 2: Typical costs of system operations on Linux
in AAM systems (arithmetic mean and standard deviation)

Operation Duration
Operation Direct Costs  Total Latency Context switch (thread) 1250 s
) Local task execution 56 +5ns 277 +10ns Context switch (process) 1725 ns
2 Machine Call (appl.) 74 + 23 ns 868 + 80 ns System call (gettid) 174 ns
< Machine Call (OS) 75 + 26 ns 882+ 68 ns Thread creation (pthread_create) 6980 ns
Local task execution 57 £5ns 278 £10ns
Q .
= Machine Call (appl.) 276 £ 10ns 2808 + 99 ns
=
Machine Call (OS) 294 +5ns 2787 + 24 ns 5 CHALLENGES & FUTURE WORK

Our evaluation in the form of microbenchmarks (cf. Section 4.3)
and other synthetic benchmarking applications yielded promising
results. Subject of ongoing work is the analysis of AAMs to run
macrobenchmarks and applications. For example, we have already
implemented a key-value store that is based on SQLite and the
TCP/IP stack, which we ported and encapsulated into AAMs previ-
ously. Comprehensive evaluations against related approaches (e.g.,
Linux) are part of future work.

To enable a fair comparison, we currently work on isolation sup-
port, enhanced scheduling algorithms (cf. Section 5.1) and efficient
inter-machine communication (cf. Section 5.2). Together with more
extensive evaluation scenarios, we will demonstrate and quantify
the positive impact of the AAM approach on system noise and IPC
performance. In the following, we discuss two core challenges that
we have identified and will address in future work.

result is about 5 times less than the duration of a context switch on
Linux. (3) The direct costs for issuing a machine call are only slightly
larger than the costs for creating a local task when the machine is
active. (4) Issuing a machine call to a machine that is currently not
active comes with additional costs in the form of IMS. (5) The latency
introduced by the machine-call mechanism itself is smaller than the
duration of a context switch on Linux but significantly larger than
the overhead of a regular synchronous system call. (6) The latency
introduced by the machine-call mechanism increases roughly by
a factor of 3 when IMS! is required to wake inactive machines.
(7) Since application machines and OS machines share the same
mechanisms and have the same overhead for IMS right now!, their
performance is almost identical.

We therefore conclude that avoiding indirect costs (by offloading

. 5.1 Interaction between Machine and Task
work to a machine on another core) does not come for free and

that the latency overhead of the machine-call mechanism increases Scheduling

even further, when the machines are currently inactive. In addition, Experiments and insights gained with the aforementioned tool-
the actual latency of a machine call in a system heavily depends ing infrastructure revealed that an overcommitment of cores to
on the load of the machines. However, depending on the offloaded a machine may not only result in subpar resource utilization but
task, the overhead of the mechanism may actually be negligible and may actually decrease the overall performance of the machine (de-
since the core becomes available to the issuing task (or machine) pending on the strategy of the task scheduler). We are therefore
after a short period of time, it might be possible to perform latency currently focusing on utilization-based allocation, where the Ma-
hiding or schedule other tasks in the meantime. chine Manager assigns cores to machines depending on their recent

core utilization and the overall load in the system. The task sched-
The current prototype does not implement privilege separation, so the final costs for uler is aware of all cores that are currently aSSIgned to its machine.
IMS might be slightly higher due to the required mode switch. It can freely operate these cores (even across short idle phases) until
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the Machine Manager reassigns the core to another machine and
notifies the task scheduler of the machine with an IMS.

Further, the joint use of user-level scheduling and machine sched-
uling leads to two different levels of scheduling within the system.
The existence of two scheduling levels bears challenges and op-
portunities (i.e., increased design space) likewise. We consider the
following key issues to be most relevant for AAMs:

e When to trade noise reduction and task locality for core
utilization?

e How to maintain fairness between multiple applications re-
garding the core assignment to their machines and regarding
system tasks?

e Where to position machines within a non-uniform memory
access (NUMA) system?

e How to handle shortages of cores?

e Which information is shared between the two schedulers?

Besides our efforts to achieve swift multi-level scheduling by
addressing the above challenges, we also work on improvements
for IMC and IMS between AAMs that run on individual CPU cores.

5.2 Efficient IMC and IMS between Cores

As IMC performance is crucial for an AAM-based system, its scala-
bility and the latency introduced by the communication mechanism
itself is important. Scalability is obtained by adding more interface
task and result queues as this reduces contention on the respec-
tive queues. However, communication and signaling latencies are
also limited by the hardware. Whenever IMS is required (e.g., as
an interface queue is not monitored), a synchronous system call
and possibly an inter-processor interrupt is required to wake the
receiving machine. Currently, we minimize the chances that IMS is
required by keeping task and result queues of the interface in the
pool of monitored queues for a limited time even when no messages
are retrieved from the interface.

Performance improvements are often achieved by utilizing hard-
ware mechanisms that accelerate necessary system-level operations.
For example, synchronous system calls benefit from hardware sup-
port in the form of specialized CPU instructions for the required
mode switch (e.g., sysenter). In the context of AAMs, a hardware-
accelerated queue with advanced signaling capabilities is beneficial.
On the one hand a hardware-accelerated queue can speedup IMC, on
the other hand it can avoid IMS under most circumstances. Here, we
benefit from our prior work on hardware-accelerated queues [19].
Such a specialized queue is characterized by the following features:
the queue is software-defined in the form of a queue descriptor
that resides in main memory (i.e., the address space of the des-
tination machine). The enqueue and dequeue operations on the
hardware-accelerated queue are allowed even across isolation do-
mains, that is, enqueueing to AAM’s interface queues that reside in
different address spaces. Furthermore, the queue’s automatic signal-
ing mechanism ensures that the destination machine is activated
for processing tasks if required. To summarize, by reducing the
cost of IMC and avoiding IMS with hardware-accelerated queues,
AAM’s costly operations can be mitigated.

25

ROSS’19, June 25, 2019, Phoenix, AZ, USA

6 RELATED WORK

Native OS support for user-level scheduling and mitigations for
blocking anomalies are addressed by several approaches [7, 15],
most notably by scheduler activations [1]. AAM builds upon these
insights and adds native OS support for task groups within user
and kernel space to reduce interferences between heterogeneous
workloads (e.g., the OS noise perceived by application tasks).

FOS [29] and Corey [3] are operating systems based on space
sharing that focus on scalability of system services on future many-
core systems. Their static or explicit allocation of cores to OS ser-
vices and applications allows the reduction of interference between
workloads. In contrast to AAMs, these approaches do not exploit
the potential for further core specialization within applications and
the static core allocation can negatively impact the utilization of
available computing resources, too.

Solutions like exception-less system calls for Linux, as proposed
in FlexSC [24], and the NIX [2] approach, applied to the Plan 9 [18]
OS, allow dynamic specialization of cores in OS or application
tasks. Both approaches use message-based system calls that lever-
age shared-memory architectures and therefore implement a similar
interface as AAM. But unlike AAM and limited by the existing sys-
tem architecture neither of these approaches introduces a generic
concept for the management of heterogeneous workloads that of-
fers further specialization of cores within applications or the OS.

Computation spreading [4] introduces a broader vision of special-
ization. It is based on thread migration and allows for additional
core specialization within user and kernel space. However, the im-
plementation of computation spreading requires hardware support
and is limited to separation of OS and application tasks.

In contrast to the previous approaches, cohort scheduling [10] and
staged event-driven architectures [27] target core specialization in
user space only, by either scheduling tasks of distinct computation
stages in cohorts or on dedicated cores. AAMs and stages share
the focus on executing homogeneous workload by performing
local scheduling and queue-based interactions. However, stages
are limited to the user space, they use a thread pool, and they lack
native OS support.

Tessellation [13] focuses on space-time partitioning by subdivid-
ing the system into partitions that either execute applications or
system services and by enforcing message-based communication be-
tween partitions. The partition manager—a privileged component—
is responsible to assign cores to individual partitions for extended
periods of time. While partitions have similarities with AAMs as
they possess their own scheduler, our approach actually decou-
ples resource management (i.e., core assignment) from the address
space. This allows multiple AAMs to exist within a single address
space. Thus, further specialization of application cores without in-
troducing additional overhead for communication can be achieved.
Cores within Tessellation partitions are guaranteed to be scheduled
simultaneously, a property that can be enforced for AAMs by the
Machine Manager. However, this is not inherently guaranteed or
required. Furthermore, an AAM-based system typically features
one or more privileged OS machines whereas Tessellation offers
system services in the form of unprivileged user-space partitions.

HPC systems commonly isolate OS noise from application work-
loads by dividing up available cores of the machine. A subset of
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cores is assigned to a full-weight kernel for I/O (e.g., Linux) while
the remaining cores are utilized by a light-weight kernel that is ded-
icated to the HPC application code [9, 17, 23, 30]. Such approaches
facilitate the use of specialized kernels that are strictly optimized
for HPC workloads while keeping full I/O support and minimizing
the effort to support the latest hardware platforms. AAMs are a
compelling alternative to the coexistence of two operating systems
side-by-side, as our approach inherently provides an isolation of the
system noise and offers the strong flexibility of custom user-level
scheduling within individual machines.

Finally, thread clustering [26] schedules threads based on sharing
patterns. Such patterns are identified during runtime by leveraging
hardware performance counters of the CPU. With AAM, the system
architect identifies tasks and self-contained subsystems with ho-
mogeneous workloads during design time and specifies machines
accordingly. Only the instantiation of these machines and the re-
source allocation to these machines occurs dynamically at runtime.

7 CONCLUSION

In this paper, we presented a system design concept that is based on
Asynchronous Abstract Machines. AAMs offer native support for dy-
namic core specialization to reduce system noise. It is motivated by
the observation that cores are often shared between heterogeneous
workload and therefore operated inefficiently because of interfer-
ence. It targets the following shortcomings of existing systems:

o missing OS-level support for teams
e heavy-weight threads and system calls
e static allocation of resources

To accomplish the goal of dynamic core specialization within
user and kernel space, we propose AAMs that focus on a limited
set of homogeneous tasks that share a lot of code and data. AAMs
feature local task scheduling and a task-based interface to interact
with other AAMs efficiently. A dedicated OS component assigns
cores to AAMs depending on their current workload. I/O and other
functionality of the OS is provided by dedicated kernel-level AAMs.
This approach to anti-noise system design had been implemented
in a prototype and an evaluation showed promising results.
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