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ABSTRACT
As system complexity grows, embedded operating systems increas-
ingly face the challenge to adhere to various non-functional con-
straints, such as response times and power limits. These require-
ments sometimes contradict and, often, no solution satisfies all
constraints under all conditions. Changes in environmental condi-
tions, application-level requirements, and user response time ex-
pectation hence demand for system-wide adaptions to resource
management. We find that process synchronization constitutes a
simple yet effective leverage point to balance between timing-re-
lated and energy-related constraints. This paper presents Earl, an
implementation of reconfigurable locks in Linux that enables seam-
less transitions between high-performance and low-power operat-
ing modes.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Hardware→ Power estimation and optimization; • Software
and its engineering→ Software organization and properties.

KEYWORDS
Energy-aware systems, Dynamic reconfiguration,Mutual exclusion

ACM Reference Format:
Stefan Reif, Phillip Raffeck, Heiko Janker, Luis Gerhorst, TimoHönig, andWolf-
gang Schröder-Preikschat. 2019. Earl: Energy-Aware Reconfigurable Locks.
In EWiLi 2019 – The Embedded Operating Systems Workshop, October 17,
2019, New York, USA.. ACM, New York, NY, USA, 6 pages.

1 INTRODUCTION
With breathtaking speed, multiprocessor systems-on-chips (MP-
SoCs) are pervading many different fields of application. For exam-
ple, large-scale Internet-of-Things (IoT) systems [14] employ MP-
SoCs just like cyber-physical systems [16, 30] do. With increasing
cost pressure, MPSoCs additionally become state of the art in the
embedded domain, such as the automation and automotive indus-
try [5, 28]. Configurations with 103 and more processors on a chip
arise on the horizon [4]. These devices will be heterogeneous in
terms of on-chip processors, communication facilities, and mem-
ory organization. Shared and distributed memory will coexist on a
single chip. At a certain level, cache coherence is no longer imple-
mented in hardware analog to Intel’s single-chip cloud computer.

As to different applications and operational domains, embed-
ded systems are exposed to varying requirements and therefore
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must operate under a multiplicity of different constraints. For ex-
ample, real-time constraints must be adhered to while consider-
ing additional non-functional system properties such as power1
demand [27]. As system constraints are often dynamic, the non-
functional properties of the systems must be adapted at run-time.
This puts the system software into the spotlight of dynamic re-
source management for MPSoCs: available system resources (e.g.,
processor cores, memory) must be allocated dynamically, and cor-
responding hardware devices must be configured efficiently (e.g.,
DVFS, sleep states, heterogeneity [20, 31]). Hence, the enablement
of massively-parallel applications that efficiently utilize MPSoCs
becomes a non-trivial challenge to the system software.

A key problem in those applications is contention of interact-
ing processes, that is, simultaneous processes that (directly or indi-
rectly) interact with each other through a shared variable or by ac-
cessing a shared resource. The number of contentious processes is
application-dependent and has a major impact on the effectiveness
of their coordination at all levels of a computing system. Overhead,
scalability and degree of specialization of the synchronization func-
tions are decisive performance-influencing factors. This influenc-
ing variable not only causes varying process behavior, but also dif-
ferent power demands. The former leads to noise or jitter in the
program flow: non-functional system properties, which are partic-
ularly problematic for highly parallel or real-time-dependent pro-
cesses. The latter has, on the one hand, economic weight (higher
costs for the power supply and cooling) as well as ecological effects
(greater environmental impact due to increased power demand for
the computing system) and, on the other hand, affects the limits in
the scaling of multi-core processors: dark silicon [11]. These limits
are ultimately set by measures to prevent possible overheating or
even ”meltdown” of the processor.

To solve this problem, various options are under discussion [32]:
(1) shrinkage of the semiconductor chip, (2) down-regulation of cir-
cuit areas (dim silicon), (3) use of otherwise idle circuit areas for
specialization by coprocessors and (4) the ”Deus ex Machina” in
the form of an entirely new semiconductor technology. Except for
(1) and (4), the other options also require software measures, espe-
cially in operating systems. With regard to (2), for example, speed
control of processes [34] or their ”evacuation” to a colder proces-
sor core [25]. The extreme case of circuit area down-regulation is
the deactivation of entire areas of processor cores, in order to leave
them lying idle and thus to create ”channels” for a better heat trans-
fer. With it, processor allocation techniques and partitioning meth-
ods known from very large HPC systems [21] make their way into
operating systems for high-scale MPSoCs.

1Throughout this paper we use the terms power and energy (i.e., power over time)
according to the respective context.



EWiLi ’19, October 17, 2019, New York, USA Stefan Reif, Phillip Raffeck, Heiko Janker, Luis Gerhorst, Timo Hönig, and Wolfgang Schröder-Preikschat

Contention creates hot spots, in the true sense of the word.That
is how the paper focuses on the energy-aware synchronization of
interacting processes. Starting point of the approach is a series
of measurements of the performance and power characteristics of
locking parameters. In a second step, the obtained information is
applied in a run-time system for energy-aware reconfigurable locks
(Earl) that dynamically adapts to the current operating conditions
and requirements (e.g., degree of contention, amount of available
resources, or required responsiveness). Contribution is (1) a con-
cept of dynamic lock reconfiguration for energy awareness, (2) a
practical implementation of this concept in Linux, and (3) an eval-
uation of this implementation on Raspberry Pi 4 based on actual
energy measurements to demonstrate trade-offs between perfor-
mance and power demand and to motivate the design decisions.

The rest of the paper is organized as follows. Section 2 gives fur-
ther background information and discusses related works.The con-
cept of reconfigurable locks is explained in Section 3, followed by
remarks on the opposing dependency of performance and power
demand in Section 4. An evaluation of the prototype implementa-
tion is presented in Section 5, and Section 6 concludes.

2 BACKGROUND AND RELATEDWORK
Process synchronization has been a research topic for more than
half of a century [10]. However, most research focused on large-
scale computers rather than embedded systems, since they adopted
the principles of parallel processing on multi-core hardware much
quicker. In consequence, a plethora of algorithms for mutual exclu-
sion has been designed for server-class machines [8, 18, 19, 24, 26],
rather than embedded systems.

Falsafi et al. [12] propose “MutexEE”, an energy-efficient syn-
chronization algorithm. While this paper is inspired by their find-
ings, they focus on large-scale server platforms rather than em-
bedded systems, with differences in system scale (regarding both
power demand and performance [13]), instruction-set architecture,
and benchmark applications.

To allow for mutual exclusion algorithms in hard real-time sys-
tems, research has worked towards analyzing blocking bounds [2,
3, 33, 35].Most of this research is oblivious to actual lock implemen-
tations, except that they typically assume first-in first-out (FIFO)
lock provisioning. However, FIFO interacts poorly with passive
waiting, which is often energy efficient [29]. Hard real-time sys-
tems are usually tailored to guarantee latency constraints, rather
than energy efficiency. This paper, therefore, focuses on soft real-
time systems, which use operating systems like Linux [23].

To allow for both energy-efficient and high-performance oper-
ating modes, we propose system-wide lock reconfiguration. Typ-
ically, lock reconfiguration is performed on lock granularity or
process granularity (e.g. [1]) to optimize for performance. As an
example, glibc [17] provides “adaptive” mutexes that spin in user-
space for a flexible amount of time to avoid the performance over-
head of system calls. However, we argue that energy-saving behav-
ior adaptions should be system-wide and mandatory. Otherwise,
adaption-aware applications face a performance penalty while un-
aware or non-cooperating processes are not affected by a perfor-
mance degradation. As an approach that is similar to Earl, glibc
provides “tunables”: These options allow fine-tuning of internal
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Figure 1: Overview of the memory mapping mechanism for
dynamic reconfiguration via a shared configuration file.

glibc settings at process creation time via environment variab-
les [6]. For tunables, modification of the behavior at run-time is
not yet supported.

3 LOCK RECONFIGURATION
To enable embedded real-time systems to react and adapt to envi-
ronmental changes and their effect on application constraints, we
propose lock reconfiguration that works system-wide and at run-
time. First, performing reconfiguration at system level comes with
several advantages, compared to application-level approaches.The
most important benefit is the simultaneous effect on every appli-
cation (i.e., “system-wide”), forcing applications to comply with
the current system-wide power/performance settings. Otherwise,
non-cooperative applications could harm the system by ignoring
power-saving settings. Additionally, the reconfiguration mecha-
nism in Earl is completely transparent to the applications in func-
tional terms, as there is no need for changes in the systemAPI.This
obviates the need for the integration of specific adaption mech-
anisms in applications. Second, reconfiguration at run-time (i.e.,
“dynamic”) removes the need to re-start applications, which is cru-
cial for embedded systems with real-time constraints.

For dynamic reconfiguration, Earl uses the existing memory-
mapping functionality in Linux. Thereby, configuration values are
stored in files, which are located in an in-memory file system. As
Figure 1 depicts, a configuration file is mapped as read-only into
the address space of every process that uses the pthreads library.
Hence, configuration parameters are easily accessible with mini-
mal overhead.

The use of sharedmemory ensures that reconfiguration happens
on the fly without restarting applications. In particular, real-time
systems benefit from the negligible overhead and minimal, pre-
dictable interference of reconfiguration via shared-memory com-
munications compared to, for example, signal-based mechanisms.

A dedicated configuration tool (Earl-tool) facilitates the re-
configuration process by adapting lock parameters at run-time and
also provides means to display the configuration state. Thereby,
all read and write accesses to the configuration variables happen
atomically. The Earl-tool thus ensures that invalid intermediate
configuration states cannot exist, which is an important invariant
because it eliminates the need for explicit inter-process synchro-
nization for the reconfiguration.

Our approach is extensible to multiple different configurations
by allowing applications to specify an Earl domain, short “earl-
dom” at process creation. Internally, each domain maps to an indi-
vidual configuration file, so that parameter changes in one domain
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Parameter Name Range Description
retry_adaptive bool force adaptive locking
retry_max uint lock-retry limit
unlock_unfair bool enable unfair unlocking mode
unlock_iterations uint delay for unfair-unlock
Table 1: Overview of the Earl configuration parameters.

do not affect other domains.The separation into different earldoms
enables the representation of specific application requirements in
their lock configurations.This enables distinct criticality levels, for
example, for system-level background daemons without real-time
requirements.

Inspired by the promising results of the “MutexEE” concept of
Falsafi et al. [12] for Intel server architectures, we bring their ap-
proach to the domain of embedded systems. We integrate Earl
into nptl, the libpthreads implementation within glibc, and ex-
tend the existing mutex implementation in a similar fashion to the
MutexEE approach. Table 1 summarizes the configuration options
provided by Earl. All type ranges listed for the different param-
eters refer to the atomic versions of these types defined by the
C11 standard. Most importantly, we introduce an unfair unlocking
mode and an adaptive locking mode.

First, the unlock_unfair parameter enables an unfair mode. In
this mode, the unlocking thread spins for a configurable amount of
time right after marking a mutex as free, allowing another thread
to immediately reclaim the lock, before issuing a system call to
wake up sleeping threads. As the expectation is that another thread
instantaneously claims the mutex, the costly wake-up system call
can be omitted. According to [12], this strategy improves the en-
ergy efficiency. In Earl, the duration of the delay is configured via
the unlock_iterations parameter.

Second, the retry_max parameter allows threads to repeatedly
try to acquire a mutex in user-space, before issuing a system call
for sleeping. If critical sections are short, this strategy avoids costly
system calls for both sleeping and waking up, and mutex owner-
ship can be transferred much faster.

Third, the retry_adaptive parameter enforces the adaptive2
mode already present in nptl. In the adaptive mode, the number
of retries is continuously adjusted using heuristics, within the limit
provided by the retry_max parameter. In contrast, if adaptive is set
to false, the heuristics are disabled, and the number of retry op-
erations is set to the value of the retry_max parameter (where the
value zero is equivalent to the default glibc behavior). Contrary to
the glibc implementation, enabling and disabling of the adaptive
mode and modifying the retry limit are possible at run-time.

We decided to only adjust internal locking parameters, in con-
trast to exchanging locking algorithms, to ensure that all variants
are compatible.The reason is that, if the algorithm changes, a large
number of intermediate states can co-exist, which makes it diffi-
cult for the Earl-tool to guarantee the absence of invalid states.
As an example, the glibc mutex implementation has a dedicated

2mutex initialized with PTHREAD_MUTEX_ADAPTIVE_NP
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Figure 2: Average power demand of spinning instructions

state representing amutex that is taken but certainly nowaiters ex-
ist, to safely avoid wake-up system calls under some specific con-
ditions. However, the unfair mode does not work with this opti-
mization because it breaks internal assumptions. This implies that
state transitions of the unlock_unfair parameter have the poten-
tial of lost-wakeup situations. We solved this issue by enforcing a
wake-up system call in the next call to pthread_mutex_unlock()
whenever unlock_unfair changes.

Our current implementation of Earl operates under the assump-
tion that applications share locks only between threads of equal
priority. Otherwise, a priority inversion scenario [22] could arise,
where a higher priority thread is forced to wait for the release of a
lock by a lower priority thread. Common techniques dealing with
priority inversion are, however, orthogonal to the lock-behavior
modifications of Earl. In particular, additional spinning of the
higher priority thread in said priority inversion scenario could po-
tentially even aggravate the problem. Only allowing the sharing of
locks between threads of equal priority bypasses these difficulties
and obviates the need to take thread priorities into account during
lock acquisition. Extending Earl to beneficially interoperate with
priority-inversion mechanisms is considered future work.

4 TRADE-OFFS
When a lock is taken, threads can generally either use system calls
for sleeping, or spin in user-space. While the former comes with
the overhead of system calls, which has costs in terms of latency
and energy; the latter tends to be inefficient because it cannot uti-
lize sleep states. This means that, typically, a combination of both
is optimal. For long waiting times, sleeping is more efficient due
to low-power sleep states, but for short waiting times, polling is
more efficient since it avoids the system-call overhead.

Since such trade-offs have no trivial solution, we motivate de-
sign decisions and trade-offs in Earl using measurements. The
measurement setup is described in Section 5.1.

4.1 Spinning Method
To minimize the power demand during waiting times, we compare
multiple spinning methods.The goal is to spend time but minimize
the power demand. For this, we measure the average power de-
mand of a micro-benchmark that spins in a tight loop. The spin-
ning methods we compare are a nop instruction, memory barriers
(dsb, isb, dmb), no instruction at all (empty), and the getuid sys-
tem call. The results, summarized in Figure 2, show that the dsb
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memory barrier minimizes the power demand. We, therefore, use
this instruction in Earl when spinning.

4.2 User-Space Lock Acquisition Retries
To measure the influence of Earl parameters, we develop micro-
benchmarks where we can precisely control the degree of con-
tention.Thesemicro-benchmarks alternatingly execute critical and
non-critical sections of parameterizable length. Configurationswith
shorter non-critical sections thereby lead to higher lock contention.
By comparing executions with different parameter sets, we are
thus able to examine the impact of Earl on applications featuring
different degrees of contention.

We vary the retry_adaptive and retry_max parameters of
Earl, fixing unlock_unfair to false.We evaluate the throughput-
per-power (TPP) metric, which calculates a trade-off between per-
formance and power demand. In themicro-benchmark, the through-
put is the number of successful lock acquisitions per second, the
TPP thus the number of lock acquisitions per joule. Figure 4 visu-
alizes the results. In particular, the optimal number of user-space
lock acquisition retries strongly depends on the degree of contention.
Thereby, the adaptive configuration which uses heuristics to esti-
mate the optimum number of retries performs slightly worse than
the non-adaptive configuration. This might be an artifact of the
micro-benchmark where the length of critical sections is fixed. It is
nevertheless possible that in real-world applications with varying
critical section lengths the adaptive lock version performs better.

4.3 Unfair Unlock
We use the same micro-benchmarks as in Section 4.2 to evaluate
the influence of unfair unlocking. We fix the retry_max parameter
to 800 and retry_adaptive to false. The results, summarized in
Figure 5, show that in most scenarios, the unlock-unfair strategy
is more power-efficient than the default variant.

For applications with (soft) real-time constraints, unfairness is
generally problematic because it can imply severe synchronization
delays which harm response times. For applications without real-
time constraints, in contrast, the unfair variant can improve energy
efficiency. This power efficiency increase strengthens our motiva-
tions for earldoms, since they allow for a co-existence of both fair
and unfair configurations.

5 EMPIRICAL EVALUATION
5.1 Measurement Setup
An overview of the measurement setup is outlined in Figure 3. The
device under test (DUT) is a Raspberry Pi 4 Model B [15] with 4GB
RAM running the Yocto Linux Reference Distribution (Poky) [7].
TheDUTwasmodified by lifting the inductance in the core voltage
rail and inserting a shunt resistor. The resulting voltage drop over
the shunt is measured by an LTC2991 [9] monitoring IC featuring
an 14-Bit ADC. The energy usage is calculated and forwarded to
the controlling Linux PC via an AVR microcontroller. To ensure re-
peatable results without interference from thermal throttling, the
operating frequency of the DUT was limited to 600 MHz.

Controller

µ-controller

Shunt & ADC

DUT

SoC

SSH

Serial

I2C
Power

Power

Signal

Figure 3: Overview of the measurement setup

5.2 Measurement Results
We use the “MUTEX” benchmarks of the synchrobench [18] suite
in the C/C++ version to evaluate the power efficiency of Earl. In
particular, these benchmarks are implementations of data struc-
tures of different complexity (hashtable, hoh-list, lazy-list, RCU-
tree, and skiplist) that use pthread mutexes for synchronization.
These generic data structure benchmarks are representative exam-
ples of real-world workloads in embedded multi-core systems. We
measure the power and throughput of these benchmarks with dif-
ferent parameter sets. We use the benchmark-supplied through-
put metric (i.e., number of transactions per second) and measure
power demand. All benchmarks execute with standard (i.e., fair) or
unfair unlocking with 6 iterations before the wake-up call is per-
formed. We also evaluate both adaptive and non-adaptive locking
with retry_max ranging from 0 to 1000 retries.

Figure 6 summarizes the results of these measurements start-
ing each benchmark with four threads (i.e., one thread per core),
depicting the performance achieved at a specific power consump-
tion using different retry_max values with and without adaption
heuristics. Experiments with different numbers of threads yielded
comparable results, whichwe do not discuss here for space reasons.
In general, we see different patterns for each benchmark, under-
lining the dependency of the achieved results on the contention
behavior of the specific applications. Overall, the unfair unlock-
ing protocol decreases the throughput significantly, but it also im-
proves the power demand, for three of the five benchmarks.The re-
sults mean that the unfair_unlock parameter enables transitions
between low-power and high-performance operating modes.

Both the adaptive and non-adaptive approach show similar re-
sults with no indication of one approach being absolutely better.
This matches the behavior of the micro-benchmark results pre-
sented in Section 4. For most benchmarks, the retry_max parame-
ter has only a minor influence on the benchmark performance, but
it often can improve the power demand.

In contrast to the results obtained by Falsafi et al. [12], our ex-
periments show no clear indication for a universally better ap-
proach. In particular, we were not able to confirm their conjec-
ture that both throughput and energy efficiency can be simulta-
neously improved, in the domain of embedded systems. Since no
parameter set is the universally best configuration, the generation
of application-specific profiles that predict the power and perfor-
mance characteristics could be helpful in embedded systems.
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6 CONCLUSION
In this paper, we have presented Earl, an approach for dynami-
cally reconfigurable and energy-aware locks.We have demonstrated
that, for locking, no configuration is the universally best. In partic-
ular, we were not able to reproduce the results presented by Falsafi
et al. for server platforms [12] in the domain of embedded systems.
Instead, Earl provides a run-time system that allows the recon-
figuration of locking parameters at system level without restart-
ing processes or adapting applications. The evaluation shows that,
by using the Earl parameters, applications can switch seamlessly
between high-performance and low-power modes. While the re-
sults yield no universally beneficial approach, Earl facilitates such
mode-configuration switches for different application classes.

Future work will extend Earl in various ways. First, an inte-
gration into battery or temperature monitoring frameworks can
reconfigure the system dynamically depending on the amount of
available energy or temperature headroom. Second, Earl can in-
teract with application profiles that model the power and perfor-
mance characteristics of specific applications. Our evaluation has
shown that applications react differently to configuration changes.
Since Earl allows for dynamic reconfiguration, such profiles can
be generated on-the-fly while the application is running. Third, fu-
ture versions of Earl can support the dynamic replacement of
the underlying locking algorithm. Additionally, investigating in-
kernel throughput optimizations, as opposed to the glibc-based
approach of Earl, can reveal potential synergies. Lastly, Earl can
be extended to achieve the aforementioned interoperation with
priority-inversion avoidance techniques, for example, by using the
Earl extensions only if the locking threads priority allows it and
falling back to the default glibc mechanisms otherwise.
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