
Cross-Layer Pacing for Predictably Low Latency
Andreas Schmidt∗, Stefan Reif†, Pablo Gil Pereira∗, Timo Hönig†,

Thorsten Herfet∗ Wolfgang Schröder-Preikschat†
∗Saarland Informatics Campus {andreas.schmidt,gilpereira,herfet}@cs.uni-saarland.de

†Friedrich-Alexander University Erlangen-Nürnberg {reif,thoenig,wosch}@cs.fau.de

Abstract—Low-latency networking has become a major re-
search domain as to the increasing demand for wireless ap-
plications. A predictably low age of information is key to such
applications (i.e., augmented reality, smart factories, and edge
computing infrastructures) as they need to operate on the latest
data. Despite variable channel properties (i.e., non-deterministic
interferences) it must be ensured that especially end-to-end
communication operates with lowest latency that is possible.

To enable low-latency networking we propose X-PACE, a
cross-layer pacing scheme. X-PACE provides low-latency com-
munication under consideration of dynamics from the network
protocol layers up to the application level. Bottleneck detection
and mitigation techniques of X-PACE provide predictability and
improve the end-to-end communication latency. Our evaluation
demonstrates that X-PACE reduces the end-to-end tail latency by
up to 54 % and narrows the latency range by up to 91 %.

Index Terms—cross-layer optimization, low-latency network-
ing, pacing, transport protocols

I. INTRODUCTION

The ever increasing demand for mobile and wireless devices
is triggered by a variety of novel application scenarios that
accompany our everyday life. Fields of application such as
augmented reality, virtual reality, and the construction of smart
factories adapt wireless technologies that build upon cyber-
physical systems and edge computing infrastructures [1]. At
this, wireless network infrastructures are challenged to provide
the necessary quality criteria, for example, reliable commu-
nication links in general and low-latency communication in
particular. The latter is of special importance, as a low age
of information is necessary for applications to operate on
the latest data. The need for information freshness leads to
the motivation of our work: applications need reliable low-
latency communication systems that operate on channels that
have unknown properties and that may change over time.
Furthermore, such communication systems must be aware that
mobile and wireless devices are resource-constrained in terms
of processing capabilities and energy supply.

To achieve reliable low-latency communication over dy-
namic channels, we propose X-PACE, a cross-layer pacing
scheme that spans from the lowest network protocol layers
up to the application. It detects bottleneck components and
defuses their impact on the end-to-end communication latency.
This bottleneck can be in the network, but it can also be within
a processing node due to limited computation capabilities or
energy constraints. The benefits of X-PACE are the following:

The work is supported by the German Research Foundation (DFG) within
SPP 1914 under grants HE 2584/4-1 and SCHR 603/15-1.

0 50 100 150 200 250
Rounds

102

103

E2
E 

De
liv

er
y 

Ti
m

e 
[m

s]

Theoretical Minimum
TCP
TCP-U
PRRT

Fig. 1: X-PACE (in PRRT) significantly reduces the end-
to-end latency at the application level compared to default
TCP (TCP-U) and fine-tuned low-latency TCP

First, queueing delay is near zero when all processing steps are
synchronized to the bottleneck rate. In consequence, units of
work are not stalled in buffers. Second, it supports preparation
tasks (e.g. memory preallocation) to aggressively minimize
processing latencies. Third, fewer resources are required when
the system adapts to the optimal processing speed. Knowing
the rate at which the transport stack processes and transmits
data allows the operating system and the physical computation
platform to reduce clock-cycles (e.g. no polling) and to utilize
low-power performance and sleep states of processors more
efficiently. The consequence is a reduction in energy demand,
which prolongs the lifetime of battery-driven devices.

The contributions of this paper are the design and imple-
mentation of X-PACE. We demonstrate significant improve-
ments in communication latencies and predictability, compared
to the state of the art: in our empirical evaluation, X-PACE
operates close to the network limit, and decreases the 99th
percentile of the end-to-end latency at application level by
25 % (c.f. Fig. 1, 36.43 ms vs. 48.49 ms). We also present
scenarios (cf. Sec. V-B2) in which even higher reductions of
up to 54 % are achieved.

II. BACKGROUND AND RELATED WORK

X-PACE aims at improving the end-to-end (E2E) latency at
the application level which is defined as:

DE2E = Dprop +Dtrans +Dproc +Dqueue (1)

This paper considers the propagation delay (Dprop) as a
small static figure, which is common in networked cyber-
physical systems. Edge computing [1] and similar approaches
to reduce Dprop are complementary to our solution. The
processing delay (Dproc) is caused by the operating system
and application code, which can be reduced, for instance,
by kernel bypassing [2]. The transmission delay (Dtrans) is
determined by a static payload size (for our use-case) and a
varying data rate.



S1

B1,2

S2

B2,3

S3

1 2 3 4

1 2 3 3,4 4

1 2 3 4

1 2 3 4

1 2 3 4

D1

D2

D3

D4

(a) Unpaced

S1

B1,2

S2

B2,3

S3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

D1

D2

D3

D4

(b) Paced

Fig. 2: Pacing keeps the bottleneck throughput, but avoids
excessive buffering latencies (marked as red striped) and
increased E2E latencies (marked as blue hatched)

The major interest of this paper is in the queueing de-
lay (Dqueue), which is also the most harmful for low-latency
applications. This delay quantifies the time spent by packets
in queues along the path between application processes, which
can be in-network queues, but also within system software and
hardware, where increasing complexity causes an increase in
layers with (often unmanaged) buffers [3]. Empirical evalua-
tions show that “bufferbloat” can easily cause a round-trip time
of a residential internet access to increase from 10 ms to 1 s or
more. This is due to queues being large in order to compensate
for bursty work loads. The root cause of bufferbloat is that
applications are not aware of buffer sizes and the throughput
provided by the different steps of the processing chain. The
former requires coordinated management strategies (e.g. active
queue management), the latter requires pacing.

Pacing has been intensively studied by the networking
community with respect to TCP ([4], [5], [6]) and aims to
evenly spread the transmission of a set of packets across the
entire round trip time. Fig. 2 shows the processing of four work
units through steps S1 to S3, where step S2 is the bottleneck.
Without pacing (cf. Fig. 2a), queues form at the bottleneck
while the throughput stays the same. In contrast, pacing the
first step to the pace of the bottleneck helps to keep the buffer
empty (cf. Fig. 2b). By considering the bottleneck, both step
S1 and S3 can slow down, to save resources.

III. CROSS-LAYER PACING

Our proposed approach towards cross-layer pacing (X-
PACE) exploits the TCP pacing idea and applies it to all system
layers (i.e., network stack, operating system, and applications).

A. Pacing

Pacing is essential for networked systems to achieve pre-
dictably low latency by not filling buffers excessively [3]
and avoiding harmful load spikes caused by operating system
tasks [7]. In the following, we consider a pace (P, [P ] =
second) as the time required to apply a certain step to a
certain unit of data, e.g. encoding time per packet. A system
is a processing and communication chain with n steps and
associated paces P (i) (i ∈ [0 : n− 1]). The pace size behaves
similar to energy demand, i.e. lower is better (fast pace = low
value, slow paces = high value). A system implements pacing

if it ensures that each step is executed at a pace that considers
the bottleneck pace P (btl) in the overall chain of processing
steps. A system is paced if each step needs less (or equal)
time to process a unit of work than a previous step.

B. Measuring and Communicating Paces
For synchronizing the paces across the different layers,

the paces of all layers must be measured precisely. X-PACE
measures the paces at run-time so that the executing platform
is considered as well as disturbances caused by changes in
system load or cross-traffic. As paces of each step differ
by nature, e.g. system noise and fluctuations of network
performance, portions of the pace caused by waiting for a
pre- or succeeding step must be treated separately and filtered
appropriately. Thereby, we calculate an effective pace (delay
caused by the actions of the processing step itself – subtracting
waiting times) and a total pace (the delay between two
invocations of the processing step). Without this compensation,
the system would not converge to a stable pace.

These measured paces must now be communicated through-
out the system to allow adaptation. In any system, there exists
at least one bottleneck pace P (btl) so that ∀j ∈ [0 : n − 1] :
P (btl) ≥ P (j), which is associated with the bottleneck step
S(btl). If there are multiple bottlenecks, the last one (the one
with the highest index) is considered in the following. Starting
from the bottleneck, this information must be communicated
in both directions (cf. the concrete implementation in Fig. 3).

First, it must be communicated to S(btl−1) (backward
propagation), stating that data cannot be processed as fast as
it could be provided. For S(btl−1), this means that it must
run at a slower pace and take longer to complete the tasks.
Consequently, S(btl−1) performs at an effective pace P (btl−1),
which must in turn be communicated to S(btl−2).

Second, it may be communicated to S(btl+1) (forward
propagation), stating that data cannot be provided as fast as
it could be processed. For S(btl+1), this means that it can
(a) run at a lower pace and completing tasks may take longer
or (b) decide to keep its pace because finishing “fast” has
benefits (e.g. low resources footprint or minimal E2E delivery
time). For this reason, it holds that P (btl+1) ∈ [0 : P (btl)],
which must be propagated forward, so that other steps could
also decide to take longer. This allows to optimize these
steps with respect to other goals than throughput, e.g. energy
demand.

In order to implement X-PACE, the measured and commu-
nicated paces must be considered to slow down specific steps.
How to achieve this depends on the step itself, with respect to
its ability to change its speed (some steps might always run
as fast as possible) and the potential gains by this change (e.g.
saving energy or buffer space).

IV. IMPLEMENTATION

To demonstrate the effectiveness of our proposed approach
we have implemented X-PACE. The first part of this section
describes the protocol to which we have added cross-layer
pacing and the second part describes the specific adaptations
of the transport protocol for cross-layer pacing in detail.



Sender

Receiver

Application
P (send)

Send
Queue

PRRT
P (transmit)

Network
Rbtl, PLR,Dprop,

Dqueue, Dtrans

Application
P (deliver)

Recv
Queue

PRRT
P (receive)

max(P (deliver), P (receive), P (transmit), P (nw))

P (nw)

P (deliver)
max

(
P (deliver),

P (receive)

)

P (receive)

max

(
P (send),

P (transmit),

P (nw)

)
P (send)implicit

pacing

explicit
backward
pacing

explicit
forward
pacing

Fig. 3: X-PACE in PRRT communicates and adapts to paces across the entire system

A. Transport Protocol Design

The Predictably Reliable Real-time Transport Proto-
col (PRRT) [8] implements partial reliability and in-order
delivery to allow statements about the timing characteristics
of the transport. Thereby, it is able to incorporate application
requirements (e.g. acceptable residual losses, maximum E2E
latency) as well as network characteristics (e.g. loss rate, prop-
agation delay) to parameterize its network functions. These
include error control via hybrid ARQ and congestion control
using a scheme similar to BBR [9]. Thus, it combines partial
reliability with real-time characteristics.

The protocol supports bi-directional communication, but
treats each direction independently. The sending part of a
socket sends data and redundancy packets, while the receiving
part selectively acknowledges these packets with feedback
packets. Every piece of data that is passed to the stack from
the application is tagged with a configurable expiry date, to
state the tolerated latency.

For the purposes of the paper, we run PRRT on top
of UDP in an IP-based environment to make it internet-
deployable [10]. Technically, PRRT can run on any other
lower-layer protocol that provides process multiplexing and
best-effort delivery. The protocol and its implementation are
published under an open source license1.

1) Network Measurement: PRRT aims to be broadly ap-
plicable and not to depend on guarantees of a lower layer,
yet these can improve its performance. Thereto, it measures
the round-trip time (similar to NTP) in cooperation with the
congestion control process described in Sec. IV-A2. Addition-
ally, throughput is measured by a dedicated packet tracking
facility, following a recent IETF draft for delivery rate es-
timation [11]. Finally, the protocol keeps track of incoming
packets and calculates loss statistics on-the-fly (i.e., loss rates
and correlation).

2) Congestion Control: Our implementation of congestion
control follows the IETF draft on BBR [12], the related Linux
kernel source code [13], and the recent Google presentations
at IETF [14]. The algorithm builds a model of the current

1http://prrt.larn.systems

bandwidth-delay product (BDP) by measuring the bottleneck
data rate as well as the round-trip propagation delay and
controlling the congestion window and the pacing rate. Ideally,
the window is the BDP and the rate is the bottleneck rate [15].
As networks change, flows compete and measurements are
imprecise, BBR uses a control loop that modulates the pacing
rate by cycling through different gain values, in order to
measure the current values and adjust the sending rate (e.g. to
drain queues or to probe for data rate). Several adaptions of
BBR were required to account for the conceptual differences
between PRRT and TCP (e.g. datagram-oriented service).

B. Measuring Paces in PRRT

During operation, PRRT keeps track of paces at different
layers (cf. Fig. 3), which is the basis for X-PACE. In the
following, we assume that the packet size L is fixed, while the
pace in which a step is executed P is variable. The motivation
are e.g. video streaming or sensor applications where a lower
frame size or sampling rate are preferred over significantly
larger end-to-end delays caused by queuing.

1) Pace Filter: For keeping track of a pace, a windowed
maximum filter is maintained. The motivation behind this
design is that the window size can be configured to be as long
as the pace is expected to stay the same. A maximum filter
design is used so that the worst case paces are considered.

2) Sender & Receiver Application Pace: An application
sends or receives messages with an average size of L, [L] =
Byte and a frequency of f, [f ] = Hz (i.e., a pace of P = 1/f ).
In principle, paces P (send) and P (deliver) can be retrieved
by tracking calls to send()/recv() on the PRRT socket,
an approach similar to [16]. With each call, the current
time is stored to compute the frequency at which messages
are to be sent / received. Hence, the application data rate is
R = L · f, [R] = bps. For the receiver pace, we compensate
for waiting times incurred by the preceding step.

3) Transport Protocol Paces: Both sides of the stack spend
time processing data before it is available to the next step.
At the sender, this is the time between accepting a packet
from the application and sending it to the network. At the
receiver, this is the time between receiving a packet from the
network and storing it for delivery to the application. In both



cases, the code to execute all the encoding, error correction and
additional functions happens in a sequential manner, which
allows to track the time these functions take to be executed
on the current system (yielding P (transmit) and P (receive)).

4) Network Pace: The pace at which a network can transmit
packets depends on the bottleneck data rate Rbtl, [Rbtl] = bps
of a network path and the size of the transmitted packets L.
The packet size is known from the application pace measure-
ments, and the bottleneck data rate is measured by PRRT as
described in Sec. IV-A2. Consequently, the network pace is
P (nw) = L

Rbtl
, which is also the transmission delay per packet.

C. Controlling Paces in PRRT

With pace samples for all layers, the system synchronizes
to the slowest pace. Thereto, each step takes part in both the
forward- and backward-propagation of paces, by computing
the maximum of its own pace and the pace it received from
its following step to backward-propagate this information. The
same is done for the reverse direction to forward-propagate the
paces. The pace is controlled at two locations: The transmitting
step of the protocol, with automatic pacing, as well as the
sending application, using a cross-layer interface.

1) Automatic Pacing: Within the protocol itself, there
is (currently) a single location where the pace is enforced. The
PRRT socket can pace packets, by inserting additional delay
between send()s if the receiver or network is the bottleneck.

2) Cross-Layer Interface: The application can leverage the
X-PACE using three different approaches. First, our system
provides an interface for the application to query the current
bottleneck data rate. Using this information, a pacing-aware
application can fine-tune its parameters (e.g. sampling rate,
sensor resolution) to adjust to the bottleneck. Second, our sys-
tem detects when an application is too fast and reacts by delay-
ing the execution of these calls, to enforce the correct timing of
send and receive operations. This approach is transparent to the
application in functional terms—existing legacy (i.e., pacing-
unaware) applications need no modifications. Third, the net-
work stack monitors the application behavior and predicts
the next send or receive operation. The operating system
utilizes this estimation to schedule application processes at
the right moment in time. This approach is semi-transparent
to the application—it makes specific assumptions, in particular
periodic behavior. Such an application behavior is generally
detectable by monitoring the timing of function calls [16].
Hence, the next send and receive calls will be issued exactly
when the next package can be processed.

V. EVALUATION

We compare the implementation of X-PACE in PRRT with
state-of-the-art protocols to empirically demonstrate that X-
PACE detects and adapts to bottlenecks at any layer.

A. Methodology

The evaluation compares PRRT and TCP, as to evaluate
different bottleneck locations in a system of two communicat-
ing hosts. The figures show time series of measured latencies

and give cumulative density functions (CDFs) to present their
distribution. We present 99th percentiles to show that X-
PACE can reduce tail latencies and give inter-percentile ranges
between 1st and 99th percentile to show that we also improve
the latency predictability by reducing the variation or jitter.

1) Testbed Setup: The evaluation setup comprises two
physical hosts running OpenvSwitch and execute the test
application as a Docker container. The hosts are connected via
a direct 1 Gbps Ethernet link, but most experiments employ
netem traffic shapers to make the link the bottleneck or
control its delay characteristic. PTPv2 is used to synchronize
system clocks to get reliable time samples. This synchro-
nization happens out-of-band to avoid interferences caused by
queues formed during the evaluations. The same control path
is also used to trigger the evaluations using SSH. The hosts run
Ubuntu 16.04 and Linux kernel 4.15, incorporating a recent
version of the BBR congestion control algorithm for TCP.

2) Measurement Application: The evaluations use a min-
imalistic application capturing the E2E delivery time (DT)
a packet takes from the sender to the receiver application
and the inter-packet time (IPT) in the sender application. The
application layer protocol is identical for all transport layer
implementations and sends fixed size messages, which are
common for a control application in cyber-physical systems,
containing the timestamp and the round number. The client
captures the current time, composes a message and calls
send(). This call can block for both TCP and PRRT, imple-
menting the cross-layer interface mentioned in Sec. IV-C2. The
receiver takes the packet out of the socket and uses the current
time to get the DT. On the sender side, the time differences
between calls to send() yield the IPT.

3) Parameter & Protocol Tuning: TCP sockets and several
kernel options are tuned, to allow a fair comparison of
TCP and PRRT. The sending queue size of PRRT is one
packet, while the TCP socket option SO_SNDBUF2 is set
to scenario-dependent values. The receive buffer in PRRT
is not size-limited, but packets that are not delivered to
the application in time (100 ms for all scenarios) expire.
SO_RCVBUF is tuned, so that flow-control can be used
to cause pacing through backpressure in some scenarios.
TCP_NODELAY and TCP_QUICKACK are set on the sender
to avoid aggregation-induced latencies. TCP timestamps and
SACK are disabled, while the low_latency option is en-
abled. Finally, write() to TCP socket is used to set the PSH
flag, telling the end-host to deliver it immediately.

The PRRT pace filter window (cf. Sec. IV-B1) is set to 2 s in
our evaluations, as observed system and network dynamics in
our testbed were relatively stable during periods of this length.

Fig. 4a shows how the options and buffer-limits impact the
ability of TCP to pace packets. The sending and receiving
application run as fast as possible, and the network is the
bottleneck. The ideal IPT is 5 ms, which is also the network
pace in this scenario, with 1000 B packets sent over a 1.6 Mbps

2SNDBUF in TCP limits the amount of unacked data in-flight. The queue in
PRRT is only to decouple application send() and link layer transmit().



10 1 100 101

Inter Packet Time [ms]

0.0

0.5

1.0
CD

F

TCP-CUBIC
TCP-CUBIC-U
TCP-BBR
TCP-BBR-U
PRRT
IPTopt

(a) Inter-Packet Times

102 103

E2E Delivery Time [ms]

0.0

0.5

1.0

CD
F

TCP-CUBIC
TCP-CUBIC-U
TCP-BBR
TCP-BBR-U
PRRT
DTopt

(b) E2E Delivery Times

Fig. 4: Measurements for PRRT, as well as optimized and
unoptimized (-U) variants of TCP

0 5000 10000 15000 20000
Send Time [ms]

10 1

100

101

In
te

r P
ac

ke
t T

im
e 

[m
s]

IPTopt

EXPopt

TCP-CUBIC
TCP-BBR
PRRT

(a) Receiver

2000 4000 6000 8000 10000 12000 14000
Send Time [ms]

10 1

100

101

102
In

te
r P

ac
ke

t T
im

e 
[m

s]

(b) Network

Fig. 5: Inter-packet times for different bottlenecks

link. With a one-way propagation delay of 15 ms, this relates
to a BDP of 6000 B. In the optimized scenario the SNDBUF
and RCVBUF both are set to 3×BDP to allow for congestion
control to work, but also put a limit on the amount of data
in the TCP queues. The optimizations lead to nearly bimodal
distributions for all TCP variants, with CUBIC [17] and BBR
performing only slightly different. In comparison with TCP,
PRRT narrows the distribution significantly with 4.40 ms and
12.79 ms as 1st and 99th percentiles. The distribution for
PRRT is skewed towards slow paces, caused by our conserva-
tive approach to avoid filled buffers as much as possible.

Fig. 4b shows the E2E delivery times with the ideal line
at 20 ms (15 ms one-trip propagation delay and 5 ms network
pace / transmission delay). PRRT can approach this bound,
but periodically deviates from it (cf. Fig. 1). This is caused
by the probes for a higher share of the data rate by increasing
the pacing rate, hence filling buffers. With a static link and
no contention, one could get rid of this oscillation, but if
congestion control should be part of the protocol this cannot be
circumvented. The TCP series also show different traits of the
congestion control algorithms, depending on their parameters.
The unoptimized variants fill the buffers to a significant level,
causing seconds instead of milliseconds of E2E delay, whereas
the optimized versions perform constantly at around 45 ms.

0 200 400
Rounds

101

102

E2
E 

De
liv

er
y 

Ti
m

e 
[m

s]

DTopt

TCP-CUBIC
TCP-BBR
PRRT

(a) Receiver

0 200 400
Rounds

102

2 × 101

3 × 101
4 × 101

6 × 101

(b) Network

0 200 400
Rounds

2 × 101

3 × 101

4 × 101

(c) Internet

Fig. 6: E2E Delivery Times [ms] for different bottlenecks

TABLE I: Bottleneck scenario parameters

Scenario Receiver Network Sender Internet
Rnw 16 Mbps 1.6 Mbps 16 Mbps 10 Mbps
Pnw 0.5 ms 5 ms 0.5 ms 0.8 ms
Dnw 15 ms 15 ms 15 ms 15 ms
BDP 60 kB 6 kB 60 kB 37.5 kB
SNDBUF 1× BDP 3× BDP 1× BDP 3× BDP
RCV BUF 6 kB 3× BDP 1× BDP 3× BDP

B. Scenarios

To validate X-PACE, inter-packet time (IPT ) and the E2E
application layer delivery time (DT ) are compared for dif-
ferent bottleneck locations in the system. Theoretical optimal
values are based on the network parameters, for DT , IPT
and experiment duration (EXP ), respectively.

DTopt = Dprop + P (nw) (2)

IPTopt = max{P (send), P (nw), P (deliver)} (3)
EXPopt = IPTopt · rounds (4)

The following diagrams include these values (as dashed black
lines) and give a baseline to compare PRRT as well as different
TCP variants against it.

1) Local Testbed: For all bottleneck scenarios, the config-
uration is so that the bottleneck pace is 5 ms, packet payloads
are 1000 B and other parameters are as in Tab. I.

For the first scenario, we add a delay of 5 ms± 20%
between recv() calls so that the receiving application is the
bottleneck. RCVBUF is set to the 6 kB “BDP ” of the receiving
application, based on the channel RTT and the receiving appli-
cations rate. Thereby, flow control in TCP causes backpressure
on the sender, implementing naive pacing. The pace of the
sending application is only bounded by the processing speed,
but is throttled down by X-PACE. Fig. 5a shows the IPTs of
the different protocols during the evaluation, PRRT meets the
optimal pace of 5 ms after a short startup of about 200 ms. The
overall time until experiment completion for PRRT (11.85 s)
is close to optimum (EXPopt = 10.0 s), but far away for
TCP CUBIC (22.61 s) and TCP BBR (22.53 s). The reason is
that both TCP variants have IPTs that are either significantly
higher (30 ms) or lower (0.1 ms) than the optimum of 5 ms.
The DTs are shown in Fig. 6a, where PRRT needs a startup
phase until the optimal DT of 15 ms is met for the rest of the
experiment. Hence, PRRT avoids queues as much as possible,
in contrast to TCP, which builds queues that lead to a constant
delay of around 60 ms (cf. CDF in Fig. 7a).

The second scenario has a bottleneck at the network
level (e.g. due to varying link characteristics) that must be
communicated to the sender. Buffers are chosen so that con-
gestion control works and potentially causes filling buffers if
more than one BDP is in-flight. Fig. 5b shows that PRRT
performs close to the optimum, while the IPTs oscillate in
contrast to the receiver bottleneck evaluation. This is due to the
BBR part of PRRT probing for a higher data rate using a faster
pace for a short period. Fig. 6b also shows this oscillation, but
with respect to the DTs. The faster pace causes the bottleneck



102
0.0

0.5

1.0
CD

F
TCP-CUBIC
TCP-BBR
PRRT
DTopt

(a) Receiver

102
0.0

0.5

1.0

(b) Network

2 × 101 3 × 101 4 × 101
0.0

0.5

1.0

(c) Sender

2 × 101 3 × 101 4 × 101
0.0

0.5

1.0

(d) Internet

101 102
0.0

0.5

1.0

(e) WLAN

Fig. 7: CDFs for E2E Delivery Times [ms] for different bottlenecks

queue to fill, leading to increased delivery times. Nevertheless,
PRRT achieves significantly lower DTs as queues are caused
only by probing and not during normal operation, as with TCP.
This is also visible in Fig. 7b, where TCP operates between
40 and 50 ms, while PRRT is way closer to the optimum.

The third scenario places the bottleneck in the sender by
adding a delay of 5 ms± 20% between send() calls. Both
protocols behave optimally as the system is inherently paced.
Fig. 7c shows both TCP variants and PRRT are now achieving
near-optimum DTs. This proves that our optimization of TCP
by means of kernel options leads to an “as-fast-as-possible”
forwarding without buffers and increased latencies.

2) Internet as a Network Bottleneck: We also evaluate
PRRT and TCP on an Internet link across a straight-line
distance of 20 km, using a residential access as one side and
our testbed as the other3. The one-way delay is measured
by ping and the sustainable data rate by iperf3. Fig. 6c
and 7d show that TCP BBR achieves lower latencies than
TCP CUBIC, which is also what the BBR authors intended.
Notably, PRRT does not perform as close to the optimum
as in previous experiments. This gap could be due to the
precision of the time-synchronization between the hosts that
both use NTP as a reference. The unavoidable imprecision in
the clock synchronization affects all protocols and might lead
to a constant systematic error on the absolute timescale. Still,
the CDF of PRRT shows that latencies are more predictable
and stable compared to the heavy tailed TCP variants. PRRT
reduces the 99th percentile by up to 54 % (PRRT: 19.61 ms,
TCP-CUBIC: 42.74 ms) as well as the range between the 1st
and 99th percentile by up to 91 % (PRRT: 1.92 ms, TCP-
CUBIC: 22.02 ms). This effect is smaller than in the testbed
evaluations, but shows that PRRT outperforms TCP under
conditions faced on Internet links.

3) WLAN as a Network Bottleneck: Finally, we also evalu-
ate our approach in an 802.11ac wireless LAN, composed of
an access point and two nodes. Fig. 7e shows the results of this
evaluation in terms of E2E delivery times. While the curves are
closer to each other, PRRT using X-PACE is able to achieve
a smaller distribution (range between 1st and 99th percentile
is 10.70 ms for PRRT and 304.54 ms for TCP-BBR).

VI. CONCLUSION

This paper has presented X-PACE, an approach to measure
the current bottleneck pace of a networked system, com-
municate it across layers and between nodes, and enforce

3The traceroute reveals that the actual covered distance is much higher and
includes multiple hops at Internet Exchange Points.

the correct pace everywhere. Our evaluation shows that X-
PACE keeps the communication latency near the network
and system limit (down to 1.24× the theoretical minimum),
and it reduces jitter significantly (up to 11.4×), compared to
TCP. Therefore, we strongly recommend that other transport
protocol implementations consider cross-layer pacing as a
mechanism to achieve predictably low age of information.
Future work will explore the possible energy savings when
computers slow down to adapt to the bottleneck pace, as well
as how the system scales with the number of processing steps.

REFERENCES

[1] W. Shi and S. Dustdar, “The promise of edge computing,” IEEE
Computer, vol. 49, no. 5, pp. 78–81, May 2016.

[2] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” in Proc. of the 11th Symposium on Operating Systems
Design and Implementation (OSDI’14), 2014, pp. 1–16.

[3] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the Internet,”
ACM Queue, vol. 9, no. 11, pp. 40:40–40:54, Nov. 2011.

[4] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics
of a congestion control algorithm: The effects of two-way traffic,” ACM
SIGCOMM Computer Comm. Review, vol. 21, no. 4, pp. 133–147, 1991.

[5] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-
mance of TCP pacing,” in Proc. of the IEEE INFOCOM, vol. 3. IEEE,
2000, pp. 1157–1165.

[6] M. Ghobadi and Y. Ganjali, “TCP pacing in data center networks,” in
Proc. of the 21st Annual Symposium on High-Performance Interconnects
(HOTI’13). IEEE, 2013, pp. 25–32.

[7] S. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. Ousterhout,
“It’s time for low latency,” in Proc. of the 13th Conference on Hot Topics
in Operating Systems (HotOS’11), 2011, pp. 1–5.

[8] M. Gorius, “Adaptive Delay-constrained Internet Media Transport,”
Ph.D. dissertation, Saarland University, 2012.

[9] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” ACM Queue, vol. 14,
no. 5, pp. 50:20–50:53, Dec. 2016.

[10] S. McQuistin, C. Perkins, and M. Fayed, “TCP goes to hollywood,”
in Proc. of the 26th Int. Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV’16). ACM, 2016, p. 5.

[11] Y. Cheng, N. Cardwell, S. H. Yeganeh, and V. Jacobson, “Delivery rate
estimation - IETF DRAFT,” 2017.

[12] N. Cardwell, Y. Cheng, S. H. Yeganeh, and V. Jacobson, “BBR conges-
tion control - IETF DRAFT,” 2017.

[13] “Linux kernel repository: TCP BBR,” https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/log/net/ipv4/tcp bbr.c.

[14] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, I. Swett, J. Iyengar,
V. Vasiliev, P. Jha, Y. Seung, K. Yang, M. Mathis, and V. Jacobson,
“BBR Congestion Control Work at Google IETF 102 Update,” https:
//www.youtube.com/watch?v=LdjavTiMrs0&t=1h10m3s, 2018.

[15] L. Kleinrock, “Internet congestion control using the power metric: Keep
the pipe just full, but no fuller,” Ad Hoc Net., vol. 80, pp. 142–157, 2018.

[16] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli, “Self-tuning sched-
ulers for legacy real-time applications,” in Proc. of the 5th European
Conf. on Computer Systems (EuroSys’10). ACM, 2010, pp. 55–68.

[17] S. Ha, I. Rhee, and L. Xu, “CUBIC : A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 64–74, 2008.


