
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

R

T
A

S

*

Artifact *
 A

E
C

Proving Real-Time Capability of Generic Operating
Systems by System-Aware Timing Analysis

Simon Schuster, Peter Wägemann, Peter Ulbrich, Wolfgang Schröder-Preikschat
Department of Computer Science, Distributed Systems and Operating Systems

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Abstract—The static timing analysis of universal real-time
operating systems (RTOS) with generically implemented services
requires application and system-context–specific knowledge (e.g.,
number of currently active tasks) to bound overheads. However,
due to the missing notion of OS semantics, contemporary timing
analysis tools are unable to exploit such information, resulting
in failing or overly pessimistic analysis. To tackle this issue, we
present our System-wide WCET Analyses framework (SWAN).
SWAN’s heart is PLATINA, a parametric source-level annotation
language that facilitates the expression and propagation of
context information from the application over the OS down to
the machine-code level. Through the expression of semantic inter-
dependencies in a unified and reusable way, analysis pessimism
is significantly reduced, as we demonstrate by case studies on
FreeRTOS, Linux, and a real-world flight-control system.

Just as important as our system-aware timing analysis is the
tool support for its practical usability. Therefore, we augmented
SWAN by a powerful interactive visualization and annotation
environment. This enables developers to quickly identify context-
dependent spots that require annotation and thus to cope with
large implementations associated with universal RTOSs. Even-
tually, SWAN allows determining if a generically implemented
system is real-time capable and thus timeliness is guaranteed.

I. INTRODUCTION

The worst-case response time (WCRT) is a vital temporal
property of tasks with hard deadlines. Its evaluation demands
a sound worst-case execution time (WCET) analysis of all
implementation artifacts. Accordingly, static timing analysis
of real-time applications is a well-established field with com-
mercially available tools [1] that yield precise bounds on
the WCET in practice. They, nonetheless, rely on a mostly
static program structure, which is inherent to safety-critical
applications, to accurately infer data and control flows, for
instance to bound loops and resolve function pointers.

However, tasks are typically executed in a broader system’s
context using a real-time operating system (RTOS). Conse-
quently, the RTOS implementation has to be subject to the
same temporal analysis. The overhead induced by the RTOS
is commonly treated as constant and pessimistically added in a
deferred analysis step to each task’s WCRT [2], [3]. The reason
is that system calls and preemptive scheduling intermit with
data and control flows and thus necessitate a dedicated analysis
of kernel paths. The use of such a compositional approach
is consequently only feasible when given a static setting,
which means that operating-system (OS) implementations are
tailored to a specific set of statically decidable application

This paper has passed an Artifact Evaluation process.

parameters. A good example of this is the well-tried concept
of tailored library OSs, such as OSEK-OS variants [4].

A relatively new development in safety-critical real-time
systems is the employment of dynamic runtime environments,
such as Real-Time Linux [5], [6], which corresponds more to
a general-purpose OS and promotes code reuse by generically
implemented algorithms and interfaces. A reliable indicator
of this development is the future Adaptive AUTOSAR stan-
dard [7], which addresses the increasing complexity of driver-
assistance and autopilot functions in vehicles. Such RTOSs
feature a dynamic system-call layer, runtime reconfigurability,
and facilities that are designed to serve numerous application
scenarios. This versatility requires dynamic data structures
and execution paths that cause the loss of a tailored and
static OS implementation as well as the decoupling of control
flows within the application and the OS kernel. This, in turn,
implies a likewise decoupled examination, which burdens OS
overheads even more with inevitable overestimations that rise
tremendously with system complexity, jeopardizing static tim-
ing and schedulability analyses of such dynamic systems [8].

The critical challenge to obtain more realistic bounds is in
the contextual and system-wide knowledge, which, however,
is generally inaccessible to binary-level analysis. Instead, we
opt for a tailorable WCET analysis that incorporates high-
level knowledge and proves real-time capabilities specifically
in a given system context without losing the implementa-
tion’s generic nature. Moreover, conventional iterative analysis
(i.e., compilation, analysis, flow-fact annotation) quickly loses
feasibility with increasing system complexity and is thus
unable to handle the multitude of possible system settings.
Consequently, the analysis process should scale with both
application and OS kernel sizes and support the developer in
verifying new and changing system settings.

In this paper, we present SWAN, a system-aware WCET
analysis approach specifically designed to address said chal-
lenges in the verification of real-time capabilities of dynamic
RTOSs. Its key idea is to integrate whole-system knowledge
and system-dependent flow facts from different levels of
the system in a generic and traceable way. Thereby, high-
level semantics and flow facts previously inaccessible to a
decoupled analysis become available and can be leveraged
to link operating–system-level control flows and application
states again. Combined with a compiler-optimization–aware
timing analysis, SWAN can ultimately do both: prove real-
time capabilities in a given setting and eliminate overly
pessimistic constant bounds on RTOS overheads. Beyond that,

Appears in: Proceedings of the 25th Real-Time and Embedded Technology and Applications Symposium (RTAS ’19)
Montreal, Canada, 16–18 April 2019

SWAN’s parametric analysis approach facilitates an interactive
annotation and analysis process that supports developers in
identifying and straightening out paths that are unanalyzable or
unbounded. At the same time, our infrastructure significantly
reduces the round-trip costs of iterative system analysis and
thus fosters the overall scalability of proving timeliness.

In summary, this paper makes the following contributions:
(1) It introduces our approach to system-aware WCET analysis
of generic RTOSs and provides details on SWAN’s core con-
cepts, the notion of context-sensitive system facts, and its an-
notation language PLATINA. (2) It gives insights into the open-
source prototype and its optimization-aware compiler- and
timing-analysis framework. (3) It presents SWAN’s interactive
analysis and annotation infrastructure, which we designed to
tackle large code-bases of dynamically-implemented real-time
systems. (4) It evaluates the approach on two generic RTOSs
and the case-study of a real-world flight-control system.

II. PROBLEM STATEMENT

We now detail two core challenges of proving real-time
capabilities of generic RTOSs: (A) How to introduce system-
awareness into control-flow analysis of a generic implemen-
tation and (B) how to cope with system size and complexity.
Finally, we provide details on our system model.

A. Challenge #1: System-Aware Control-Flow Constraints
OS overheads and task response times heavily depend on

the execution context. In Figure 1, for example, when highest-
priority Task 1 issues ResumeTask(), the costly reschedule()

operation is conditionally omitted as Task 1 continues exe-
cution. However, relying on universal, system-agnostic flow
facts, WCET analysis of this operating-system call is forced
to make overestimations and pessimistically include the ex-
pensive reschedule operation in any case. This simple example
could be addressed by extending the analysis to the application
code, assuming that the current and next priority can be
inferred as constant values. However, such call-context–aware
approaches quickly fail for complex context information and
scheduling semantics. In Figure 2, Task 1 now suspends
itself by SuspendTask(), whereby rescheduling is inevitable.
In this case, the overhead depends on the number of priority
queues to be probed and thus the highest priority level that is
guaranteed to contain a runnable task. Such relationships are
up to the system context and are regularly not representable by
traditional (e.g., binary-level) annotations and flow facts. We
see significant potential in the analysis of said system-state–
sensitive control flows by incorporating semantical knowledge
about the execution environment.

Analyses already exist that exploit scheduling semantics to
identify infeasible paths [9], [10]. However, these high-level
system analyses entail excessive interdependencies between
applications and kernel and thus require global control flows to
determine constraints. While these approaches work for static,
tailored OS implementations, they fail for generic RTOSs as
necessary global information is inaccessible to the analysis.

The resulting challenge is, therefore, to provide a unified
and reusable way of formulating, passing, and evaluating

system-state information between the high-level system and
low-level timing analysis.

Our Approach: Our two basic concepts to improve timing
analysis of real-time systems using a generic operating system
kernel are (1) gathering information about the system’s be-
havior (i.e., interaction with the operating system, scheduling
semantic) and (2) propagating this knowledge across all layers
of the toolchain in order to make use of it in the final WCRT
estimation. For the former, we introduce the notion of system
facts to expose information on the system state and context.
Such facts may range from simple global configuration pa-
rameters over application- and kernel-specific context to high-
level system semantics, for example, acquired by our whole-
system analysis [9] for fixed-priority preemptive scheduling.
We address the latter by PLATINA, an expressive annotation
language that allows us to formulate universal constraints at
the source-code level that are context-sensitively instantiated
by system facts. We use an optimization-aware compiler and
timing-analysis infrastructure to thereof infer tighter yet sound
bounds for generically implemented systems.

B. Challenge #2: System Size & Complexity
For the WCET analysis of a small microkernel with limited

complexity of around 8700 lines of C code, the authors of [2]
reported substantial effort, especially, to correlate program
points in the binary’s control-flow graph with the operating
system’s source code. Considering the huge code base of
generically implemented operating systems, we found the
correlation complexity and thus the number of necessary
annotations to grow dramatically. Moreover, annotating code
on assembly level, in comparison to source-code–level annota-
tions, is known to be more error-prone, rendering this approach
inapplicable to our problem domain.

Finally, we identified another fundamental issue that only
came to light when working with larger code bases: the round-
trip time for analysis, annotation, and (re)compilation. For
Real-Time Linux, for example, this can take up to several
hours (cf. Section VI-D). Consequently, in such cases the
common stepwise annotation approach of existing WCET
analysis techniques [11] is infeasible.

Our Approach: By using the compiler-aware code corre-
lation of PLATINA annotations, system facts, and flow facts
from source- to assembly-code level based on sound relation
graphs [12] in our code-optimizing infrastructure, we enable
both the correlation and visualization of control flows and the
resulting integer linear program (ILP) formulation.

Thus, the developer can quickly identify issues, insert anno-
tations, and then judge the impact of these changes. To cope
with larger code bases, we developed an interactive analysis
mode, which enables annotation in an iterative workflow with-
out the need for time-consuming recompilation and reanalysis.
We argue that with SWAN, we reduce the necessary effort for
WCET analysis of large systems to a minimum.

III. SYSTEM MODEL AND BACKGROUND

Precise knowledge about a system’s execution flow and
semantics is essential when analyzing universal operating

...

�
system-aware

WCET analysis

ü

NUM_TASKS - 1NEXT_PRIO>CUR_PRIO

PLATINA:

parametric

annotations

NUM_TASKS:21CUR_PRIO:42NEXT_PRIO:23

NUM_TASKS:21CUR_PRIO:42NEXT_PRIO:23

systemfacts

s1

s3

s2

s4 s5

; r5 = next->prio
; r6 = cur->prio
cmp r5, r6
blhi reschedule
; ...

void ResumeTask(struct tcb* next) {
//...
if (next->prio > cur->prio) {

#pragma platina guard "NEXT_PRIO > CUR_PRIO"
reschedule(); // expensive

} /* ... */
}

...

reschedule:

Task 1
Prio: 42

Task X
Prio: 23

OS

ResumeTask(TaskX) TerminateTask(Task1)

Figure 1. SWAN’s information propagation: semantic context information is gathered from a semantic model (e.g. the process priorities and the associated
scheduling semantics). Parametric annotations use these parametric information (i.e., system facts) to express the semantics of system-context-sensitive execution
flow at the source-code level (e.g. by conditionally masking the path using a guard annotation). After lowering to the assembly-code level in a sound way (i.e.,
sematic-preserving and optimization-aware), the static WCET analysis leverages the specific system facts to exclude infeasible execution flows.

systems. RTOS standards typically provide a well-defined
interface for system calls, scheduling semantic (e.g., fixed-
priority), and resource handling (e.g., priority ceiling) [13].

A. System Model

Our system-aware WCET analysis of universal OSs de-
mands the following fundamental properties: SWAN operates
on the control-flow level and aims to reduce the RTOS-
related pessimism in WCRT analysis. Regarding the system’s
structure, we assume an RTOS with fixed-priority scheduling
semantics and an application setting that allows for a con-
stant task set (i.e., the number of system objects is fixed)
running on a single-core processor. Usually, timing analy-
sis is split into the two steps of high-level (i.e., hardware-
independent) program-flow analysis and low-level (i.e., target-
aware) machine-code analysis. Our technique integrates into
the first step of flow analysis and is thus agnostic to par-
ticular hardware properties. Yet, to void the influence of
these hardware-dependent overestimations and obtain a pris-
tine evaluation of our technique, we chose a simple processor
model (see Section VI), which is commonly used when
benchmarking flow analyses [14].

Although the paper’s focus is on improving the aspect of
path analysis in real-time systems executing on a generic
operating system, we can seamlessly use existing hardware-
analysis techniques [15]. Although SWAN is primarily de-
signed for path analysis, its analysis results can also help
to reduce the pessimism in hardware analysis through the
system-aware knowledge of code paths: For example, the
analysis pessimism of OS-induced delays, such as cache-
related preemption delays (CRPD) [16], can be reduced, since

scheduling knowledge excluding specific system paths (e.g.,
in a priority-ceiling protocol) is now available to the WCET
analysis. We discuss this aspect of future work in Section VII.

B. Background on Whole-System Analysis

The definedness of RTOS standards enables automatic de-
termination of system execution flows and leads to high-level
system analyses within recent years [10], [17]. For SWAN,
we build upon previous work [9] on whole-system analysis
of static operating-system implementations that we extended
to dynamic settings. In the following, we briefly introduce
the basic concepts of said previous work on the analysis of
system-wide control flows as well as the construction of an
operating-system state-transition graph (STG) [17] and detail
their application in the given context.

Figure 2 illustrates the inference of abstract system states.
Its first step is to derive an implementation-agnostic repre-
sentation of the interaction between tasks and the operating
system and to determine regions in which the system state is
invariable. We, therefore, employ the concept of atomic basic
blocks (ABB) [18], which is a control-flow superstructure
that subsumes one or more basic blocks and conceptually
spans between state-changing system calls. This construction
implies that an ABB executes atomically from a scheduling
perspective. At this point, the resulting ABB graph captures a
static view on the application structure.

To also incorporate the scheduling semantics and system
behavior, we thereof infer the operating-system state-transition
graph. It explicitly enumerates (a) all possible (abstract) sys-
tem states and (b) all transitions between them. The system
states include information like the list of runnable tasks,

System	State	A₃
System	State	A₂

System	State	B₁
running: {OS}

ready: {T₂ , T₃ , T₄}

System	State	A₁
running: { T₁ }

ABB₁

A::SUCC_SET = {OS} B::SUCC_SET = {T2, T3}

ABB₂
System	State	B₂
running: { OS }

ready: {T₂ , T₃ , T₅}

ABB₂

System	State	B₃
running: { OS }

ready: {T₂ , T₃ , T₆}

ABB₂

a

g

b

Sy
st

em
-F

ac
ts

 L
ay

er
void SuspendTask() {
 // ..
 (i = MAX_PRIO; i > 0, i--) {for
 #pragma platina lbound “MAX_PRIO-max(SUCC_SET)“
 probe(queue[i]);
 } /* ... */
}

A
nnotation Layer

State	Transition	Graph

W
C

ET
A

nalysis
Layer

4	×	f 	≥	fHEAD LOOPfHEAD

fLOOP

Figure 2. Multistage process of system-fact interference: (1) Static analysis partitions the system into atomic basic blocks (ABBs). In this example, Task 1
calls SuspendTask(), resulting in ABB1 (app. code) and ABB2 (syscall code). (2) A state-transition graph is derived that captures all possible system states
and transitions between ABBs. (3) System facts are generated from the graph to make its semantic knowledge accessible. For example, a must analysis reveals
the set of obligatory successors (SUCC_SET). This information is leveraged in the PLATINA lbound annotation and lowered to flow facts of the WCET analysis.

acquired resources, and the currently running control flow.
The transitions express all possible execution paths through
the system, including task switches. For the running example
in Figure 2, the call of TaskSuspend() will cause the control-
flow to switch from Task 1 (ABB1) to the kernel (ABB2). From
the state enumeration, we further know that there are three
potential transitions (i.e., α,β, γ) and system states (i.e., B1-3)
for the execution of ABB2. This system-wide state enumera-
tion conceptually combines thread-local abstract interpretation
with scheduling semantics. In our previous work [9], we
used this knowledge to generate tailored and thus entirely
static system-call implementations for each transition that we
then inlined in the application code for optimal analyzability.
However, the genericness of universal RTOSs impedes this
approach altogether. Instead, with SWAN we leverage our
system awareness to tailor the analysis.

IV. THE SWAN APPROACH

In this section, we detail our SWAN [19] approach on the
WCET analysis of universal real-time operating systems. We
therefore first provide details on our notion of system facts,
how to determine these facts, and how to soundly propagate
them through the analysis layers down to the machine-code
level. Finally, we outline how to identify annotation points for
system facts by our novel interactive annotation scheme.

A. The Notion of System Facts

Following the aforementioned limitations, we introduce the
notion of system facts. They differ from flow facts in that they
do not associate with a dedicated instruction per se, but rather
apply to particular sections of the execution. System facts
expose information on the system context, which is the sum of
all active application states and the operating-system’s state,
and represent a generalized form of our previous work [9]
on the abstract modeling and extrapolation of system-wide
control-flows and states. In accordance with the assumed
system model (cf. Section III-A) our current incarnation of
system facts captures, but is not limited to, the semantics of
fixed-priority scheduling along with the overall configuration
of the system. In the following section, we describe how to
determine these system facts.

B. Determining System Facts

We infer system facts through a multistage process: Step
one and two are the ABB-graph generation and the state-
transition–graph analysis described in Section III-B. The for-
mer’s OS-specific frontend is already capable of determining
the most basic form of system facts, which are constant
configuration parameters. For example, the number of priority
levels (MAX_PRIO) or tasks (NUM_TASKS). To further obtain
information on the runtime system states, we leverage the
latter: The STG implicitly holds all relevant information that
is required to provide guarantees or invariants for specific sites
of system calls. Yet, this semantical knowledge is inaccessible
to the WCET analysis. Depending on the initial system state
of a given call site (ABB), a system call may lead to a
number of different transitions and subsequent system states.
For example, in Figure 2 the SuspendTask call in Task 1
generated transitions α, β, and γ that lead to the system states
B1, B2, and B3 respectively.

To solve this ambiguity, we, therefore, generate flow-
specific system facts from the STG in the third and final step.
These represent a sound aggregation of said possible system
states, which can then be used in PLATINA annotations. For
our problem domain of fixed-priority scheduling, we found a
set representation of state variables such as obligatory and
potential predecessors, successors, and occupied resources
as purposeful. In Figure 2, the relevant obligatory set of
successors for Task 1 is captured by the system fact SUCC_SET,
which is calculated as the intersection of the ready queues
of all system states (i.e., B1-3) that are valid for ABB2. This
can be effectively seen as a must-analysis. In this case, the
set is nonempty and we can guarantee that at least tasks T2
and T3 will be ready in this execution path. This system
fact can then be used to tailor the loop bound (fLOOP) by
providing a lower bound on the queue index (max(SUCC_SET))
and thus the number of probing steps in SuspendTask().
During WCET analysis, this annotation is then evaluated over
the specific set of system-fact values (e.g., task priorities) and
thus, a concrete flow fact (e.g., loop bound of four) can be
deduced for this specific execution path and call site. Since
the system-facts model can be arbitrarily extended, further

aggregations and derivatives are possible. Examples for this
are the variables NEXT_PRIO and CUR_PRIO in Figure 1, which
are used to exclude the reschedule in ResumeTask() when it is
not necessary. The complete set of system-fact values extracted
from the STG defines the local system context, which is the
system-state information associated with this STG node.

By introducing this system awareness, we can substantially
reduce the analysis pessimism. We further detail the expres-
siveness of our annotation language in Section V-A.

C. Propagating System Facts through SWAN’s Layers

The three layers in Figure 1 illustrate SWAN’s fundamental
layered data flow: at the core (middle) is PLATINA, a para-
metric annotation language for expressing system-awareness
on the source-code level. The annotations tap into a system-
facts layer (top) that holds all system-state–dependent infor-
mation for a specific system. Finally, to achieve a system-
aware WCET analysis (bottom) operating on the machine-code
level, SWAN provides a semantic-preserving transformation
that harnesses the flow information contained in the upper
layers to eventually guide the hardware-dependent timing
analysis operating on assembly level. We provide a conceptual
description of those steps in the following before detailing
their implementation in Section V.

Annotation Layer: With PLATINA, we attack our first
challenge of formulating generic flow constraints by bridging
the immanent semantic gap between application and kernel
analysis by propagating system-state–dependent information
(i.e., system facts) to the low-level WCET analysis in an
automated fashion. Hence, we provide parametric (i.e., system-
aware) annotations to address three challenging symptoms
that so far prevent tighter bounds on generic OS operations:
(1) Annotation of indirect function calls to aid the control-
flow reconstruction. This is a key enabler for the subsequent
propagation of system facts. (2) State-dependent annotation
of branches in conditional executions to eliminate paths that
become infeasible only in certain contexts. (3) System-aware
annotations to bound computations by application and config-
uration knowledge. These building blocks form an expressive
annotation language that allows associating the semantics
of individual system facts with the actual execution flow.
To reflect the complexity of control flows within the OS,
PLATINA’s annotation language allows programmers to com-
bine multiple system facts and even reuse expressions by
defining custom facts or functions. Furthermore, to foster long-
term maintainability of annotations, we integrate them at the
annotated program point within the code (e.g., C++) in a
backward compatible manner.

System-Facts Layer: The system-facts layer parametrizes
PLATINA’s annotations by supplying context-specific values
for referenced system properties. Therefore, this layer provides
and stores static and application-specific configuration knowl-
edge as well as system-state–dependent information, which
we collectively refer to as system facts: the atomic entities on
which the annotation language operates (cf. Section IV-A).
Higher-level analysis approaches to incorporate scheduling

semantics [9], [10] can engage at this level to derive and enrich
the analysis with further system facts. During analysis, for
each calling context of a given kernel operation, this layer is
queried to determine the system-state–specific set of system-
fact values, which are then used to calculate tight bounds.

WCET-Analysis Layer: The actual timing analysis is con-
ducted on the machine-code level. From the high-level
program-flow analysis, we can extract a partial STG [9] that
spans all possible program paths between the relevant set of
starting and terminating ABBs of the operation under analysis.
Furthermore, the high-level analysis provides specific system-
fact values for all individual system states along these execu-
tion paths. By evaluation, these specific system-fact values are
then combined with the annotation expressions and lowered
down to plain flow facts describing the given system state.
Each occurrence of an ABB is thus instantiated within the
analysis and specialized to its specific context [20]. Here,
we rely on optimization-aware compilation using control-
flow relation graphs [12] to transform the individual flow
information from the bitcode level of the annotation language
to the machine-code–level control-flow graph. Consequently,
our lowering preserves annotation semantics, which ultimately
allows us to infer specific facts on the execution flow from the
contexts of system calls. For example, loop bounds that are
specific to the number of runnable tasks or paths that are in-
feasible in the given context, such as excluding reschedule()

in Figure 1. That way, we obtain system-aware and thus more
accurate bounds for OS overheads while proving if the OS is
real-time capable in the given setting.

D. Identifying Annotation Points for System Facts

While we have thereby created a truly system-aware WCET
analysis and therefore successfully solved our first challenge
from Section II-A, which means that the problem of whole-
system analysis of operating systems is resolved on a con-
ceptual level, this solution on its own is hardly practical for
large legacy code bases due to the lengthy, unstructured, and
labor-intensive annotation process involved as outlined in our
second challenge (Section II-B). Consequently, the system
facts and their knowledge need to be linked to the actual RTOS
implementation, since flow-analysis tools are not capable of
determining semantic knowledge based on the implementa-
tion, which is generally an unsolvable problem [21]. Thus,
reconsidering the example in Figure 1, the developer has
to provide the annotation what paths are feasible in which
context and exclude infeasible paths via guard expressions,
leveraging the system facts provided by these high-level flow
analyses. To facilitate and ease this unavoidable process of
manually annotating code and expressing best application-
specific knowledge, we developed an interactive annotation
and visualization environment (see Section IV-D).

Here, the difficulty actually lies within two separate yet
related issues: (1) Navigating the source to effectively place
the annotations and (2) providing faster feedback by cutting
the cycle time between adding a new annotation, compiling
the source code, and actually obtaining a bound or the next

problematic program point that requires the programmers
attention. When performing a WCET analysis at the machine-
code level, problematic program points appear as machine-
code–level basic blocks whose execution frequency cannot
be bounded. Mapping this back to high-level loops, and
thereby effectively decompiling the binary, to find suitable
loop bounds and annotating them, is a very tedious process. To
make matters worse, the unbounded operation and the relevant
annotation point do not necessarily coincide: In the case of
system-aware infeasible paths, the problematic construct and
the optimal annotation spot can easily be separated several
levels deep into the call tree. Furthermore, when not tackling
unbounded but merely unnecessarily pessimistic operations,
there is no guidance at all into what program points would be
beneficial to annotate. We tackle this problem by providing
an interactive visualization of the analysis results that exposes
the calculated execution frequencies and costs of the different
program components in a fashion akin to a global control-
flow graph across function boundaries, and partial mapping of
the machine-code–level program points to source-level based
on the debug information contained. By visually highlighting
problematic program spots, we further guide the programmer
through the complete annotation process in a problem-centric
manner. A more detailed description along with an example
of this visualization is given in Section V-C1. Furthermore,
to make the annotation process even more time-efficient and
interactive, we have eliminated the recompilation step from
the analysis by providing the programmer with the capability
of directly annotating the intermediate representation of the
program without recompilation. When finished, the annota-
tions can be integrated back into the source code in a guided
(i.e., semi-automatic) manner. Additionally, this enables to
interactively provide system facts and inspect the WCET result
without recompilation: the same binary can be evaluated for
arbitrary system facts and in multiple system contexts, which
retains scalability and usability even for large implementations.

In summary, SWAN provides sound propagation of high-
level, semantic, system-aware information throughout the com-
pilation and analysis processes down to the level of the
static WCET analysis. The parametric annotation mechanism
allows obtaining tailored, system-aware timing bounds even
for generic OS kernels. Thus, SWAN proves their real-time
capability in a specific context with higher analysis accuracy
and therefore tighter bounds compared to traditional decoupled
WCET analysis. The visualizer and the interactive annotation
environment further optimize the practical aspects of the
annotation process by interactively guiding the programmer
through the analysis in a problem-centric fashion.

V. IMPLEMENTATION & TOOL SUPPORT

We based SWAN on the T-Crest toolchain [22]–[24] and its
WCET analyzer PLATIN, which we extended to implement the
concepts described in the previous section. In the following,
we detail two vital implementation aspects: (A) Cross-layer
integration of our system-aware annotation language PLATINA
and (B) our interactive visualization and analysis environment.

A. PLATINA Annotation Language
We designed PLATINA annotations to enable a universal

formulation of system-aware constraints that can be parameter-
ized by system facts. Therefore, we opted for (1) source-level
annotations that seamlessly blend into common programming
languages and toolchains, (2) a tailored language for the
evaluation of complex system-state–specific expressions, and
(3) a compiler-aware lowering of the resulting facts.

1) Language Integration: To minimize the analysis effort,
we designed PLATINA annotations to interfere with neither
non-real-time parts nor legacy compiler toolchains. Therefore,
we introduced special pragma directives with the #pragma

platina prefix, which are ignored by legacy compilers ac-
cording to specification (e.g., for C99 [25]). Thus, we can
ensure backward compatibility and easy integration with ex-
isting RTOSs and development processes. We identified three
fundamental annotation types that are required to tackle the
challenge of system-aware control-flow constraints:

#pragma platina (callee|guard|lbound) "expression"

First, callee annotations enable control-flow reconstruction
by specifying call targets of indirect function calls. Moreover,
guard annotations allow excluding paths that are irrelevant or
infeasible only in a specific system context. Finally, lbound

annotations facilitate to specify and tighten loop bounds in a
system-state–dependent manner. In all cases, actual values are
obtained by evaluating the expression over the set of system-
fact values that are valid in the given system context, thus
introducing system-awareness into our analysis. The result is
a list of potential call targets (callee), a boolean indicating
feasibility (guard), and the loop bound (lbound), respectively.

The final challenge is the annotation’s placement within
the source code to ensure a correct and traceable mapping to
the annotated construct throughout the subsequent compilation
and analysis steps. For the callee annotation, this is straight-
forward: it is placed at the line preceding the indirect call. In
contrast, for lbound and guard this simple approach (i.e., ahead
of for or while statements) conflicts with unstructured loops
(e.g., by the goto statement) or macros (e.g.,for_each_class).
However, both constructs are extensively used in critical parts
of Linux, for example in the scheduler:
again:

#pragma platina lbound "..." // goto-again loop

for_each_class(class) {
#pragma platina lbound "..." // for_each_class

#pragma platina callee "[pick_next_task_rt,␣...]"
p = class->pick_next_task(rq, prev); // ...

if (p == RETRY_TASK) goto again;
}

To solve these issues, we execute the following labeling
scheme to firmly link PLATINA annotations with the control
flow: an lbound annotation always correlates with the nearest
loop whose flow passes the pragma instruction and specifies its
iteration count. Likewise, a guard annotation marks all control-
flow paths that pass the pragma’s program point. That way,
PLATINA annotations are universally applicable, backward
compatible, and invariant of the syntactic program structure.

2) Expression Language: The key element to link system
facts with a specific system context and to characterize their
relation to the execution semantics is the ability to formulate
and evaluate compound expressions. Therefore, we developed
PEACHES, a tailored programming language that operates
on the specific system-fact values produced by the high-
level analysis, which are represented as global constants, and
allows for complex calculations on those to derive system-
state–specific flow facts for any given system context. These
constant results then serve as inputs to the timing analysis.

As with the annotation types, we gave PEACHES sufficient
expressiveness while keeping our approach simple. In addition
to arithmetic and logical expressions, if-then-else constructs
and built-in set manipulation, the language further enables the
user to define custom helper functions and preaggregations
of commonly used expressions on system facts. Yet, we
tailored the language semantics of these constructs to this
specific problem domain: For instance, we deliberately made
PEACHES lack Turing completeness by limiting the types of
admitted recursion in the annotation expressions. Based on
the concept of total functional programming [26], [27], this
ensures termination of the expression evaluation. Likewise,
calculations with side effects are problematic as they may re-
sult in indeterministic results due to the unspecified evaluation
order of compilation units. Therefore PEACHES’s paradigm is
based on a functional programming language (we borrowed
syntax from Dhall [28], and Haskell [29]), which ensures an
evaluation that is free from side effects and therefore invariant
in evaluation order. Furthermore, our expressions and values
are strongly and statically typed to facilitate type checking and
validation ahead of the analysis. This eliminates the need for
run-time error checking and handling during analysis, which
is an enabler for our interactive analysis in Section V-C.

Notwithstanding said restrictions and simplifications, we
made PEACHES extensible to meet future needs. For example,
we support the definition of custom functions and the reuse of
expressions. Likewise, the type system can be easily extended.

B. Compilation and Analysis Pipeline

Finally, we have to ensure the correct lowering of the
annotations to assembly level irrespective of control-flow
restructuring compiler optimizations. To tackle this issue, we
leveraged LLVM [30] along with the T-Crest toolchain [22]–
[24] to develop a tailored compiler (currently supports ARM
and Patmos) that allows supports this annotation lowering.

Figure 3 illustrates the resulting framework and work-
flow. During the compilation process, PLATINA annotations
are, along with other compilation-specific information, ex-
tracted and expelled into PLATIN’s program meta-info lan-
guage (PML) [23]. The latter serves as an exchange format
between compiler and static analysis. The specific extraction
process depends on the annotation type: lbound and guard

annotations describe system-state–dependent flow informa-
tion (i.e., system-state–dependent loop-bounds and infeasible
paths) at the source-code level. Here, the challenge is in
the ambiguous mapping of control flows on source-code and

BC

MC

-c
la

ng
pa

tm
os

-ll
vm

abstract
syntax tree

llvm-Bitcode

maschine code

System Facts

Peaches
flow facts
bitcode

BC

MC

flow facts
machinecodePML

mutations

machine
code
CFG

IP
E

T

CFRG

W
C

E
T

Platin

ü

ü

Figure 3. Visualisation of the annotation extraction in our compilation
pipeline: Annotation extraction takes place at the bitcode (lbound and guard)
and machinecode (callee) level and are emitted to PML files along with
control-flow graphs and the CFRG, evaluated over the set of system facts and
then integrated into the analysis as regular flow facts and CFG mutations.

binary level. SWAN leverages control-flow–relationship graphs
(CFRGs) [12] to relate flows between high (e.g., llvm-bitcode)
and low-level (e.g., machine code) control-flow graphs and
to safely transform numeric flow facts over compiler opti-
mizations. Consequently, we extract said annotations before
compiler optimizations and perform the actual lowering within
the static analysis. However, the latter requires constant nu-
meric flow facts. Therefore, SWAN derives those flow facts by
evaluating annotation expressions over system facts that apply
to the given system context. For example, the guard-annotation
in Figure 1 will evaluate to false and thus provide a flow
fact that forces the execution frequency of the reschedule()

operation to zero in the final IPET formulation. Likewise, in
Figure 2 the system facts MAX_PRIO and SUCC_SET are evaluated
to specific values for the current system context by calculating
the guaranteed bound on the succeeding task’s priority. The
resulting loop bound of four is then expressed as a numeric
flow fact, lowered utilizing the CFRG and expelled to the
IPET formulation as a binary-level flow constraint. Simply put,
system facts are transformed into common flow facts during
lowering. As expressions are constantly reevaluated against the
current system context in each analysis, the tailoring (e.g., path
elimination for guard annotations) is only performed when
applicable in the given context, which maintains soundness.

In contrast, callee annotations, which specify the set of
targets of an unresolved call, do not end in a numeric
flow fact and thus cannot be related as such by CFRGs.
Instead, callee annotations are conveyed as an intrinsic call
preceding the actual call instruction, which is translated into a
pseudo instruction in the backend. As both instructions declare
unmodeled side effects and effectively constitute reordering
barriers, they pass further compilation steps untouched and
adjacent to each other. In the final assembly, we discard this
pseudo instruction, preserve its position, and later update the
machine-code–level control-flow graph in the analysis: Based
on the state-specific symbol list obtained from the annotation
expression, the original call site now includes the relevant set

³
Ë

Compilation
A

nalysis

A
n

n
o

ta
ti

o
n

(function)test.c:2

test.c:3/0
entry

test.c:16

(error_handling)test.c:3

test.c:2/0
entry
test.c:7

test.c:2/1
if.then
test.c:8

1 × 10

test.c:2/2
if.end
test.c:9

10

1 × 2

test.c:2/1/0

test.c:2/3
while.cond

test.c:9
loopheader

1 × 1

test.c:2/4
while.body

test.c:10

∞ × 7

test.c:2/5
while.end
test.c:12

1 × 7∞ × 4

exit

1 × 3

3

test.c:3
error_handling 0

test.c:3/1
for.cond
test.c:16

loopheader

∞ × 1

&

Visualisation

Annotation

platin
interact

WCET

Figure 4. Interactive annotation cycle: After the initial compilation, annota-
tions are inserted at the intermediate program representation displayed by the
visualizer and later integrated back into the source code.

of successors. We then use this patched CFG as a basis for
the final IPET construction.

Overall, using these two techniques, we can ensure a sound
lowering of annotation expressions and system facts down to
the assembly level, ready for the final WCET analysis.

C. Interactive Analysis Environment

Our second core contribution is SWAN’s visualization and
interactive annotation environment. It ultimately enables the
developer to quickly identify system-dependent spots that re-
quire annotation and thus to cope with large implementations.

1) Visualization: SWAN’s visualization transforms the pro-
gram from the assembly-level analysis problem to a graph
level that is more accessible. Therefore, we operate on the
intermediate representation of the implicit path-enumeration
technique (IPET) [31], [32] that is used internally by PLATIN.
Thereof, SWAN generates a web-based interface to visualize
the control-flow graph and enrich it with further information
such as estimated WCETs and source-code locations. An ex-
ample of the resulting view is shown in Figure 5. Technically,
the visualizer intercepts both the transition costs that PLATIN
determines for the individual transitions as well the execution
frequencies obtained from the ILP. Blocks in the graph are
labeled by their internal name (e.g., test.c:2/0) to facilitate
a simple mapping of nodes in the control-flow graph and the
source code. We further refine the graph by grouping blocks
by their respective function and enriching them by semantic
information and dedicated marking nodes (e.g., loopheader).
The visualization grants further facilities, such as hovering
blocks that reveal the corresponding code snippet based on
the debug information, which supersedes switching between
source locations and analyzer. Indeed, the usability of our
visualization for source-level annotations heavily depends on
the accuracy of the debug information and the accessibility
of the overall graph structure. Fortunately, we can harness our
optimization-aware compilation at this point: by initially com-
piling and visualizing the IPET-graph without optimizations
(i.e., O0), we can obtain very accurate hints and good graph
structure. As the optimization-aware compilation maintains
soundness of the annotation, the code can be recompiled with
the optimization to obtain timing information in the end.

2) Interactive Annotation: Finally, we developed an inter-
active variant of SWAN and the tool platin interact that
allow for the shortcut shown in Figure 4. In this interactive
mode, SWAN operates directly on the intermediate represen-
tation and allows for on the fly annotation, which eliminates
the costly recompilation and reparsing steps. A read-evaluate-
print-loop (REPL) command-line tool aids the developer in
the annotation process and provides commands to add new
annotations, modify existing annotations, change the currently
assumed values for system facts, perform WCET analysis, and
finally visualize the changes as part of the interactive session.
For the two problematic spots presented in Figure 5, the
annotation could, for instance, be performed with the following
commands (assuming a suitable system fact or expression J):

annotate function/while.cond lbound "J"
annotate function/if.then guard "J␣<␣0"

In this example, the advantages of graph-like representations
over mere source locations of analysis errors become apparent:
It is ineffective to directly annotate the unbounded loop within
the error_handling routine. Instead, we must exclude the en-
tire path from invoking the error handling, iff we can prove that
the error cannot occur given the current set of system facts. In
the visualization, suitable annotation spots are easy to find by
following the graph upwards and inspecting the relevant code
snippets by hovering the mouse in the web-based interface.
After annotation, the function can immediately be reanalyzed,
updating the execution frequencies and thus providing direct
visual feedback on the effects. On successful completion of

(function)test.c:2

test.c:3/0
entry

test.c:16

(error_handling)test.c:3

test.c:2/0
entry
test.c:7

test.c:2/1
if.then
test.c:8

1 × 10

test.c:2/2
if.end
test.c:9

10

1 × 2

test.c:2/1/0

test.c:2/3
while.cond

test.c:9
loopheader

1 × 1

test.c:2/4
while.body

test.c:10

∞ × 7

test.c:2/5
while.end
test.c:12

1 × 7∞ × 4

exit

1 × 3

3

test.c:3
error_handling 0

test.c:3/1
for.cond
test.c:16

loopheader

∞ × 1

Figure 5. Example of the interactive annotation viewer (magnification of the
visualization step shown in Figure 4)

the session, the tool finally assists the developer in integrating
the changes into the code base in a semi-automatic fashion.
Therefore, SWAN exercises all relevant source locations, which
are obtained from debug information, and offers to insert and
potentially adjust the individual annotations. Currently, this
process is implemented for the VIM editor.

VI. EVALUATION

In this section, we present the experimental evaluation of
SWAN. After detailing our setup, we demonstrate the effec-
tiveness of our system-aware annotations by a case study on
OS operations from FreeRTOS. Subsequently, we showcase
the reduction in analysis pessimism on the example of a
UAV flight-control system. Finally, we evaluate the overall
performance and scalability of SWAN’s infrastructure by the
example of the Linux kernel.

A. Experimental Setup

As we intended SWAN to prove real-time capabilities of
operating systems on a case-by-case basis, we are faced
with the problem that quantitative experiments are inherently
application-specific: crafting benchmarks with expensive paths
that are, however, infeasible in a particular system context
would allow for arbitrarily high figures for our solution.
Instead, we based our reasoning on various qualitative ex-
periments, which we adapted from established open source
projects, benchmarks, and real-world systems. These experi-
ments answer the following four fundamental questions: (1)
Is our system-aware annotation approach capable of concisely
expressing system-dependence in execution times by analyzing
an example from the FreeRTOS [33] operating system? (2)
Whether this dependence is commonly found in systems by
examining benchmark programs from the publicly available
TACLeBench suite [34]? (3) How our system-awareness quan-
tifies for end-to-end response times in real-world applications
with and without application code using a UAV flight-control
system [9], [35]? (4) Is SWAN’s interactive analysis, caching
layer, and compilation toolchain effective even for large,
complex code bases such as the Linux kernel and does it scale?

As discussed in Section III-A, our technique integrates
into PLATIN’s program-flow analysis and thus is decoupled
from hardware analysis. Still, complex hardware features may
induce additional overestimations in the final result. Therefore,
we opted for a simple processor model to obtain an unbiased
analysis of our technique, as it is common when benchmarking
flow analyses [14]. We assume a simple single-core proces-
sor model (ARM Cortex-M4) without inter-instruction effects
beyond pipelining and without caches.

B. Case Study: OS Operations

The following experiments evaluate our assumption that
kernel operations can be annotated and analyzed with SWAN
in a system-aware manner and that our approach reduces
pessimism. We start with the scheduler as it is not only a
core component of an RTOS but also a prime example of an
application-defined, system-state–dependent operation that is

0 10 20 30 40

Queues to probe

3000

4000

5000

6000

W
C

E
T

[c
yc

le
s]

static upper bound

SWAN’s
context-sensitive bound

Figure 6. Constant vs. parametric annotations: WCET estimates for the
vTaskSuspend system call in relation to the maximum number of task queues
to be probed in a specific system context.

used frequently by all tasks. The scheduler uses several data
structures for bookkeeping and storing runtime information,
for example, which tasks are runnable or blocked on what
resource. These data structures lead to a strong interdepen-
dency between the application context and the WCET of
scheduling operations. Figure 6 compares the static and the
system-aware upper bound for the vTaskSuspend system call
of FreeRTOS. This function suspends the current task and
selects the next runnable task upon reschedule. It uses one
queue per priority level and probes those in decreasing order
to pick the highest-priority (runnable) task. In the following
experiment, we configured FreeRTOS for a total of 42 priority
levels, which translates to a static upper bound of 6498 cycles
for the worst case, which assumes no runnable task in any
of the queues and therefore requires 42 probing steps. With
PLATINA’s parametric annotations and by using system facts,
we can accurately express this state dependency by combining
the number of priority levels and the priority of the next task
into a complex lbound-annotation (MAX_PRIO - NEXT_PRIO).
With this system knowledge, the system call’s WCET correctly
reflects the system-state–dependent number of probing cycles,
with a potential reduction in analysis pessimism between the
best system-aware and the static bound of more than 178%.
We discuss the acquisition of system-state–dependent values
by whole-system analysis in Section VI-C.

A further OS-related issue arises from the loss of anal-
ysis context (e.g., system-call parameters) by crossing the
application-kernel boundary, which induces unnecessary pes-
simism to the system call’s analysis. A typical pattern among
kernel operation is the processing of memory objects of
unknown sizes, such as copying data from user to kernel space
or inter-process communication, which can benefit from our
parametric annotations. Again, the potential improvements are
application-specific, and, to the best of our knowledge, there
are no generally available system-call–centric benchmarks for
timing analysis that we could directly use to research the
effects and set our approach into a known context. Instead, we
surveyed TACLeBench [34], an application benchmark suite
commonly used by the community and examined functions
that correspond to said variable size idiom and thus can act as
a realistic substitute. We found them all to process their work-

Benchmark Function Loop Iterations Improvement
Min Max

ammunition
memset 0 4 100%
memmove 2 4 50%
memcpy 2 6 67%

md5
memset 128 208 38%
memset_x 16 64 75%
memcpy 0 55 100%

pm memcpy 44 256 83%

Table I
Potential for parametric analysis in TACLeBench for the fun(*a, *b,

length) idiom determined by loop iteration ranges

load iteratively, with the size parameter corresponding to the
loop bound of the processing part. Consequently, we used the
known costs of the latter to derive well-founded expectation
values on the potential improvements that are achievable with
SWAN. For a set of representative TACLeBench benchmarks,
Table I gives the minimum and the maximum number of
processing iterations (for all valid inputs) as well as the
resulting improvement in analysis precision. The latter ranges
from 38% to 100% (i.e., an overestimation of factor two).

In summary, our quantitative figures qualitatively substanti-
ate that our approach to system-aware analysis is feasible and
able to deliver significantly tighter bounds.

C. Case Study: Flight-Control System
To this point, we focused on SWAN’s fundamentals and the

two lower layers of Figure 1, respectively. To obtain a better
notion of SWAN’s applicability on real-world scenarios and to
showcase the impact of high-level systems facts, we further
conducted a case study on a flight-control system [35] to
explore the potential of system-aware analysis. The benchmark
includes signal processing, steering, and flight control and
analyzes the temporal properties of a task group consisting
of five tasks and an interrupt handler. Putting this setup into
relation with other real-world real-time benchmarks, such as
DEBIE [36], our used benchmark has a similar complexity
and also consists of many system calls. Beyond its practi-
cal relevance, this benchmark is especially suitable for our
evaluation, as it is already available [9] for an OSEK-based
system, including an STG for fixed-priority scheduling. We
ported the benchmark to FreeRTOS v10.0.1, which required
only minor changes, generated the necessary system facts from
the STG and pinned them the right spots in the kernel control
flows using annotations. Thereof, we conducted comparative
experiments: (1) constant annotations that always assume the
worst system state, and (2) system-aware annotations that
leverage system facts. For both settings, we evaluated two
variants: OS overheads (a) without the application code in iso-
lation and (b) with the application code, which we generated
from the application’s Simulink model. For the evaluated task-
chain, the benchmark performs 14 system calls (in as many
aggregated system contexts), which dispatch to six different
scheduling-related system calls. Their implementation consists
of 18 unique functions and 1041 assembly instructions across
192 basic blocks. The application introduces 18 additional
functions containing 1875 assembly instructions.

Table II summarizes the results by the estimated individual
WCETs and the overall WCRT. For the sake of simplic-
ity, we derived the latter by pessimistic aggregation. The
reduction in pessimism ranged between 0% up to 60% in
our experiments. This variation stems from the types and
usage patterns of system calls within the individual tasks.
For example, the SignalGatherFinishedTask resumes both
SignalProcessing tasks. Therefore, a static analysis must
assume two reschedule operations accompanied by the probing
of all priority-levels in the respective queues, which is the
static baseline. In practice, however, just like in our running
example from Figure 1, FreeRTOS compares the current tasks
priority of 25 with the ones of the resumed tasks (22 & 21)
and thus skips rescheduling altogether. By adding system-
aware guard annotations and leveraging the respective system
facts, SWAN’s analysis is aware of this semantics and can
identify the control-flow paths to be infeasible in this system
context, which reduces pessimism by over 60%. On the other
hand, the lowest priority SignalProcessingAttitudeTask only
processes the input and suspends itself. As it is always the
last to run in the processing chain, there is no other runnable
task in the queue. Consequently, no system fact could be
exploited, which is why the improvement is zero. In total, we
integrated five system-aware annotations into the scheduler,
while the application required eleven constant, traditional
flow facts as well as one application-specific system-aware
annotation. Notably, the system-aware WCRT is lower than
the sum of the task’s WCETs. The reason for this is that
SignalGatherTimeoutTask represents an optional member of
the task group, which is only conditionally resumed. However,
the respective path does not constitute the task’s overall worst-
case path. Again, using our system-aware analysis approach,
we were able to analyze both settings and therefore obtain an
even tighter yet still sound WCRT. Overall, we observed a
substantial improvement of 40.7% on OS-overhead estimates.
Including the application WCETs, this translates to a reduction
of 25.5% on the overall WCRT. Furthermore, our experiments
demonstrate that our concept of system facts is generalizable to
incorporate semantic knowledge, for example from application
models or OS–state-analysis approaches [9].

D. Development Support and Scalability Issues

Our final evaluation is devoted to our tooling infrastructure
and the question of whether we can, with a focus on the
interactive analysis, cope with larger code bases. Therefore,
we based this set of experiments on the Linux kernel, version
4.1.39 using the llvm-linux patchset [37], and measured the
processing times for the steps required for timing analysis of
system calls: (1) Compilation of the kernel with our tailored
patmos-clang compiler, which extracts the system-aware an-
notation information and builds the CFRGs. (2) Parsing of
these outputs by PLATIN and constructing the analysis’s in-
termediate representation. (3) Obtaining the symbol addresses
by correlation with the actual binary. (4) Transformation and
lowering of both system and static flow facts to the assembly
level and finally (5) performing the actual WCET analysis of

Operating System Only Including Application Code
Task WCET (cycles) Improvement WCET (cycles) Improvement

Static System-Aware Static System-Aware

SignalGatherInitiateTask 20 342 13 214 35.041% 29 336 22 208 24.298%
SignalGatherTimeoutTask 20 220 13 092 35.252% 24 717 17 589 28.838%
SignalGatherFinishedTask 18 892 7545 60.062% 30 464 19 117 37.247%
SignalProcessingActuateTask 6694 4615 31.058% 15 665 13 586 13.272%
SignalProcessingAttitudeTask 6694 6694 0.000% 15 665 15 665 0.000%

WCRT 72 842 43 199 40.695% 115 847 86 204 25.588%

Table II
Static and system-aware WCET analysis results for the individual tasks of the copter benchmark, with and without the simulink generated application code

the getcpu system call. Table III gives the execution times
for these steps based on a multi-socket 40-core Intel® Xeon®
E5-4640 with 128 GB RAM.

In total, the benchmark consists of 19 773 functions, out of
which we exemplary analyzed Sys_getcpu. The entire kernel
totals 2 712 998 instructions, with the control-flow-relation
graph mapping 227 920 bitcode-level basic blocks to 226 761
on the machine-code level. The kernel compilation takes up
most of the time if not parallelized or stripped-down to an in-
cremental rebuild. However, even then, the complete annotate-
compile–analyze cycle takes over 16min, which jeopardizes
any iterative development process. The remaining overhead
can be attributed to PML parsing and symbol correlation,
which has to be repeated for every contextual change (i.e.,
individual system call). With our infrastructure and platin

interact we were able to eliminate both steps. By smart
caching and reuse of analysis artifacts, we can bypass recurrent
compilation, parsing and symbol correlation, cutting turnover
time by up to 99% to fractions of a second in our experiments
and the exemplary system. The only steps that have to be
re-executed are the flow-facts transformation and the actual
WCET analysis (highlighted in Table III), both of which di-
rectly evaluate new or changed annotations. These substantial
improvements with SWAN enable convenient annotation and
analysis even for large code bases, such as the Linux kernel.

VII. DISCUSSION & FUTURE WORK

In the following section, we first discuss alternative ap-
proaches and future work in both phases of WCET analysis,
that is path analysis (see Section VII-A) and hardware analy-
sis (see Section VII-B).

A. Path Analysis

As the case study based on a UAV in Section VI-C shows,
SWAN significantly reduces pessimism by exploiting system

Step Runtime (hh:mm:ss.ms)

Max ∅ Min

Compiling, sequential 2:41:40. 2:40:39. 2:40:26.
Compiling, parallel 4:23. 4:17. 4:09.
Compiling, incremental 56. 55. 55.
Parsing PML Files 11:57.444 11:00.374 10:04.970
Read Symbol addresses 06:04.118 05:41.617 05:16.037
Flow Facts Transformation 0.154 0.127 0.104
Static WCET analysis 0.004 0.003 0.003

Table III
Timings of the steps in the annotation cycle, averaged over ten executions

knowledge. For now, during the benchmark’s analysis, most
of the used system facts relate to the applications task set,
its respective priorities and their interplay with the fixed-
priority scheduling employed by the underlying OS. In the
study, we obtained these system facts from a given STG
of the real-time system. To obtain this representation, the
SysWCET tool [9] implements a simulator of OSEK’s fixed-
priority scheduling strategy and a stack-based priority ceiling
protocol [38] and beginning from the application’s initial
state, explores all reachable system states via explicit path
enumeration. For example, with this approach, we can create
the STG comprising around 40 000 system states within few
seconds [20]. For comparison, the real-world flight-control
system (see section VI-C) has around 10 000 states. A fur-
ther factor of analysis time is ILP-solving time. Here the
instantiation of ABBs for the different contexts introduces
additional variables. To mitigate the problem of long analysis
times, several heuristics and configuration options for solvers
exist [9], [20], [39]. In this context of integrating system-wide
semantics, the aspect of combining local and global data-flow
analysis will become more relevant. Thread-local data-flow
analyses are a well-explored topic in WCET analyses [40]. The
knowledge on system-wide program flows now enables global
control-flow graphs where combinations of global (e.g., value
constraints of a global variable holding the task’s priority) and
local data-flow analyses are possible, which will enable future
refinements of analysis pessimism.

B. Hardware Analysis

Although SWAN’s primary focus is on path analysis with
the PLATINA annotation language and the interactive mode
to enable analysis of large code bases, the identified path-
analysis results are vice versa utilizable to reduce pessimism in
the hardware analysis: A challenging aspect of hardware-cost
analysis is precisely accounting for delays due to reloading
cache blocks after a preemption’s code evicted blocks, which
is known as cache-related preemption delays (CRPD) [16],
[41]. Here, SWAN’s path analysis and knowledge on paths are
helpful, for example, in a fixed-priority real-time system using
a stack-based priority-ceiling protocol [42]. With this resource
protocol, tasks can have a higher (dynamic) priority during the
path of holding a resource. Consequently, for the CRPD analy-
sis, several preempting paths are not possible. SWAN is capable
of expressing such system knowledge on potential preemptions
and by limiting the number of possible preemptions and thus

helps to reduce the hardware-analysis pessimism, which is a
promising aspect of future work. Generally, the exclusion of
path interferences with application-specific knowledge is also
helpful in research on multicore WCET analysis, which goes
beyond our current system model of single-core processors.
Nonetheless, SWAN is already applicable in scenarios where
both the scheduling and the hardware resources are partitioned
and a single-core equivalence is guaranteed [43].

VIII. RELATED WORK

To the best of our knowledge, SWAN is the first approach
to tackle the problem of proving the real-time capability of a
generic OS through a system- and compiler-aware approach
paired with the possibility of interactive WCET analyses.

Past attempts on static WCET analysis of operating systems
share a large number of observations with our initial problem
assessment: Colin and Puaut [44] were the first to pinpoint
fundamental problems of OS WCET analysis, such as mean-
ingful construction of global control-flow graphs over kernel
boundaries. They identified indirect function calls, immanent
in the syscall interface, as well as dependencies between
application properties and kernel loops as crucial issues. Their
approach was to modify the source code, restoring a statically
analyzable implementation. Despite these tedious and non-
generalizable measures, significant overestimation (avg. 86 %)
remained. Later Sandell et al. [45] reported a large number
of “uninteresting” kernel paths (e.g., error handling) in their
analysis. Furthermore, they observed a mediocre performance
of automatic data-flow analysis within the OS, which empha-
sizes the need for manual annotation. They used an annotation
language with constant expressions at the assembly level
to address the problems, which, however, involved a high
degree of recurring effort with still unsatisfactory reduction
of pessimism. In contrast to their approach, SWAN allows
stating source-code annotations, which are propagated through
an optimization-aware compiler infrastructure.

Among others, Schneider [8], [46] determined the dynamic
reconfigurability and system-call interface, the tracing of call
graphs, as well as the internal feedback between the RTOSs
and the applications as further challenges towards realistic
WCET estimations. He proposed an integrated WCET and
scheduling analysis as a potential solution. In 2009, Lv et
al. compiled a survey [3] on RTOS-analysis attempts, from
which they derived a set of challenges. Like Schneider, they
question the usefulness of single, global WCET estimates for
individual operations but instead suggest a parametric analysis
that captures specific WCETs for each invocation.

Since then, research focused on circumventing the problem
by tailoring the OS to be static and more deterministic
again. Undecidable artifacts are eliminated by application-
specific source-code modifications: For example, in the seL4
kernel [2], preemption points in loops are added to limit the
length of consecutive kernel execution. With SWAN, we chose
the approach to avoid tailoring the OS, but provide support
to state system-aware and OS-tailored annotations, which are
propagated through the WCET-aware compilation framework.

Regarding annotations, there is a large body of related ap-
proaches, both on annotation languages [47]–[51] and tooling,
that support these (context-sensitive) annotations [1], [11],
[15], [22], [23], [52]. However, these approaches differ from
SWAN in principle: SWAN focuses on integrating system facts,
which are extracted from high-level analyses, into the timing
analysis using parametric annotations, while those approaches
deliver traditional (call-)context–sensitive annotations. A fur-
ther major difference is the interactive annotation mode that
also enables sound correlation between source and machine
code. We identified when working with Real-Time Linux
that large round-trip times of iterative analysis, annotation,
and compilation require an effective tooling infrastructure to
enable WCET analysis for increasingly complex systems.

Parametric WCET analysis itself (i.e., the extraction of
formulas from existing source code) is also a well-explored
research topic [53]–[56]. However, these approaches fail when
analyzing entire systems with parametric inter-procedural and
inter-thread dependencies. Building on this idea of parametric
analyses, SWAN leverages this concept to enable expressing
parametric and system-aware system facts across all layers in
the real-time system (i.e., application, syscall interface, OS).

The necessity to include the OS semantic in static code
analyzers has been gaining relevance in recent years. An
indicator for this trend is the integration of OS interfaces into
the commercial analyzer Astrée in order to prove the absence
of runtime errors in concurrent, safety-critical software [10].
With SWAN, we provide a framework to prove the capability
of a whole real-time system for its timeliness.

IX. CONCLUSION

In this paper, we presented SWAN, our approach to system-
aware WCET analysis of RTOSs. The core concept is the idea
of transporting system facts, that is, additional knowledge on
the system configuration and system state available from the
calling context, into the analysis of the OS. This information is
used to eliminate unnecessary analysis pessimism, and thereby
delivering tight and tailored bounds for specific operations. Its
key element is PLATINA, a parametric annotation language
to express dependencies between a system’s control-flow and
application states generically. Combined with system facts and
an optimization-aware compiler and timing analysis, we can
both prove real-time capabilities in a given setting and elimi-
nate overly pessimistic constant bounds on RTOS overheads.
In our case study using SWAN on a flight-control system, we
were thus able to reduce analysis pessimism by 40 %.

Source code of SWAN: gitlab.cs.fau.de/SWAN/

ACKNOWLEDGMENT

We want to thank our anonymous shepherd for the work and
helpful suggestions. This work is supported by the German
Research Foundation (DFG) under grants no. SCHR 603/14-2,
SCHR 603/13-1, SCHR 603/9-2, the CRC/TRR 89 Project C1,
and the Bavarian Ministry of State for Economics under grant
no. 0704/883 25.

gitlab.cs.fau.de/SWAN/

REFERENCES

[1] AbsInt., “aiT worst-case execution time analyzers,” absint.com/ait.
[2] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and

G. Heiser, “Timing analysis of a protected operating system kernel,”
in Proc. of RTSS ’11, 2011, pp. 339–348.

[3] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang, “A survey
of WCET analysis of real-time operating systems,” in Proc. of ICESS
’09, 2009, pp. 65–72.

[4] OSEK/VDX Group, “Operating system specification 2.2.3,” OSEK/VDX
Group, Tech. Rep., 2005.

[5] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT: A testbed for empirically comparing real-time
multiprocessor schedulers,” in Proc. of RTSS ’06, 2006, pp. 111–126.

[6] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, The University of North Carolina
at Chapel Hill, 2011.

[7] AUTOSAR, “Explanation of adaptive platform design,” pp. 1–51, 2017.
[8] J. Schneider, “Why you can’t analyze RTOSs without considering

applications and vice versa,” in Proc. of WCET ’02, 2002, pp. 79–84.
[9] C. Dietrich, P. Wägemann, P. Ulbrich, and D. Lohmann, “SysWCET:

Whole-system response-time analysis for fixed-priority real-time sys-
tems,” in Proc. of RTAS ’17, 2017, pp. 37–48.

[10] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner,
S. Wilhelm, and C. Ferdinand, “Taking static analysis to the next level:
Proving the absence of run-time errors and data races with Astrée,” in
Proc. of ERTS ’16, 2016, pp. 570–579.

[11] B. Schommer, C. Cullmann, G. Gebhard, X. Leroy, M. Schmidt, and
S. Wegener, “Embedded program annotations for WCET analysis,” in
Proc. of WCET ’18, 2018.

[12] B. Huber, D. Prokesch, and P. Puschner, “Combined WCET analysis of
bitcode and machine code using control-flow relation graphs,” in Proc.
of LCTES ’13, 2013, pp. 163–172.

[13] T. Klaus, F. Franzmann, T. Engelhard, F. Scheler, and W. Schröder-
Preikschat, “Usable RTOS-APIs?” in Proc. of OSPERT ’14, 2014.

[14] C. Rochange, “WCET tool challenge 2014,” talk held at WCET ’14.
[15] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A timing

analyzer for embedded software,” Science of Computer Programming,
vol. 69, no. 1, pp. 56–67, 2007.

[16] S. Altmeyer, R. I. Davis, and C. Maiza, “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-
emptive systems,” Real-Time Systems, vol. 48, no. 5, pp. 499–526, 2012.

[17] C. Dietrich, M. Hoffmann, and D. Lohmann, “Global optimization of
fixed-priority real-time systems by RTOS-aware control-flow analysis,”
Trans. on Embedded Computing Systems, vol. 16, pp. 35:1–35:25, 2017.

[18] F. Scheler and W. Schröder-Preikschat, “The real-time systems compiler:
Migrating event-triggered systems to time-triggered systems,” Software:
Practice and Experience, vol. 41, no. 12, pp. 1491–1515, 2011.

[19] S. Schuster, P. Wägemann, P. Ulbrich, and W. Schröder-Preikschat,
“Towards system-wide timing analysis of real-time–capable operating
systems,” in Proc. of ECRTS ’18 WiP, 2018.

[20] P. Wägemann, C. Dietrich, T. Distler, P. Ulbrich, and W. Schröder-
Preikschat, “Whole-system worst-case energy-consumption analysis for
energy-constrained real-time systems,” in Proc. of ECRTS ’18, 2018, pp.
24:1–24:25.

[21] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Trans. of the AMS, pp. 358–366, 1953.

[22] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard,
“The T-CREST approach of compiler and WCET-analysis integration,”
in Proc. of SEUS ’13, 2013, pp. 33–40.

[23] S. Hepp, B. Huber, D. Prokesch, and P. Puschner, “The platin tool kit –
the T-CREST approach for compiler and WCET integration,” in Proc.
of KPS ’15, 2015, pp. 277–292.

[24] M. Schoeberl et al., “T-CREST: Time-predictable multi-core architecture
for embedded systems,” Journal of Systems Architecture, vol. 61, pp.
449–471, 2015.

[25] ISO, ISO/IEC 9899:2011 Information Technology — Programming
Languages — C. Int’l Organization for Standardization, 2011.

[26] D. Turner, “Total Functional Programming.” Journal of Universal Com-
puter Science, vol. 10, no. 7, pp. 751–768, 2004.

[27] A. Telford and D. Turner, “Ensuring Termination in ESFP,” JUCS -
Journal of Universal Computer Science, no. 4, 2000.

[28] G. Gonzalez, “dhall: A configuration language guaranteed to terminate,”
http://hackage.haskell.org/package/dhall-1.14.0, 2018.

[29] S. e. Marlow et al., “Haskell 2010 language report,” Tech. Rep., 2010,
https://www.haskell.org/onlinereport/haskell2010/.

[30] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. of CGO ’04, 2004, pp.
75–86.

[31] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” in ACM SIGPLAN Notices, vol. 30,
1995, pp. 88–98.

[32] P. Puschner and A. Schedl, “Computing maximum task execution times:
A graph-based approach,” Real-Time Systems, vol. 13, pp. 67–91, 1997.

[33] Real Time Engineers Ltd., The FreeRTOS Reference Manual: API
Functions and Configuration Options v9.0.0, 2016.

[34] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in Proc. of WCET ’16, 2016, pp. 2:1–2:10.

[35] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and W. Schröder-
Preikschat, “I4Copter: An adaptable and modular quadrotor platform,”
in Proc. of SAC ’11, 2011, pp. 380–396.

[36] N. Holsti, T. Langbacka, and S. Saarinen, “Using a worst-case execution
time tool for real-time verification of the DEBIE software,” in Proc. of
DASIA ’00, 2000.

[37] Linux Foundation, “LLVMLinux kernel,” http://git.linuxfoundation.org/
llvmlinux/kernel.git/, 2015.

[38] T. P. Baker, “Stack-based scheduling of realtime processes,” Real-Time
Systems, vol. 3, no. 1, pp. 67–99, 1991.

[39] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,” www.
gurobi.com/documentation/8.1/refman.pdf, 2018.

[40] J. Blieberger, “Data-flow frameworks for worst-case execution time
analysis,” Real-Time Systems, vol. 22, no. 3, pp. 183–227, 2002.

[41] C.-G. Lee, J. Hahn, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and
C. S. Kim, “Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling,” in Proc. of RTSS ’96, 1996, pp. 264–274.

[42] T. P. Baker, “A stack-based resource allocation policy for realtime
processes,” in Proc. of RTSS ’90, 1990, pp. 191–200.

[43] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun,
“WCET(m) estimation in multi-core systems using single core equiv-
alence,” in Proc. of ECRTS ’15, 2015, pp. 174–183.

[44] A. Colin and I. Puaut, “Worst-case execution time analysis of the
RTEMS real-time operating system,” in Proc. of ECRTS ’01, 2001, pp.
191–198.

[45] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper, “Static timing
analysis of real-time operating system code,” in Leveraging Applications
of Formal Methods, 2004, pp. 146–160.

[46] J. Schneider, Combined schedulability and WCET analysis for real-time
operating systems. Shaker, 2003.

[47] R. Kirner, A. Kadlec, P. Puschner, A. Prantl, M. Schordan, and J. Knoop,
“Towards a common WCET annotation languge: Essential ingredients,”
in Proc. of WCET ’08, 2008, pp. 53–65.

[48] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and I. Wenzel, “WCET
analysis: The annotation language challenge,” in Proc. of WCET ’07,
2007.

[49] J. Knoop, A. Kadlec, R. Kirner, A. Prantl, M. Schordan, and I. Wenzel,
“WCET annotation languages reconsidered: The annotation language
challenge,” in Proc. of the 25. Work. der GI-Fachgruppe Programmier-
sprachen und Rechenkonzepte, 2008, pp. 93–103.

[50] N. Holsti et al., “WCET Tool Challenge 2008: Report,” in Proc. of
WCET ’08, 2008, pp. 149–171.

[51] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and A. Kadlec, “Beyond
loop bounds: comparing annotation languages for worst-case execution
time analysis,” Software & Systems Modeling, vol. 10, no. 3, pp. 411–
437, 2011.

[52] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: an open
toolbox for adaptive WCET analysis,” in Proc. of IFIP ’10, 2010, pp.
35–46.

[53] S. Altmeyer, C. Hümbert, B. Lisper, and R. Wilhelm, “Parametric timing
analysis for complex architectures,” in Proc. of RTCSA ’08, 2008, pp.
367–376.

[54] E. Vivancos, C. Healy, F. Mueller, and D. Whalley, “Parametric Timing
Analysis,” in Proc. of LCTES ’01, 2001, pp. 88–93.

[55] B. Lisper, “Fully automatic, parametric worst-case execution time anal-
ysis,” in Proc. of WCET ’03, 2003, pp. 99–102.

[56] B. Huber, D. Prokesch, and P. Puschner, “A formal framework for precise
parametric wcet formulas,” in Proc. of WCET ’12, 2012, pp. 91–102.

https://www.absint.com/ait/index.htm
http://hackage.haskell.org/package/dhall-1.14.0
https://www.haskell.org/onlinereport/haskell2010/
http://git.linuxfoundation.org/llvmlinux/kernel.git/
http://git.linuxfoundation.org/llvmlinux/kernel.git/
www.gurobi.com/documentation/8.1/refman.pdf
www.gurobi.com/documentation/8.1/refman.pdf

