Appears in:

IEEE Embedded Systems Letters, Volume: 11, Issue: 2, 2019

Combining Automated Measurement-Based Cost
Modeling with Static Worst-Case Execution-Time
and Energy-Consumption Analyses

Volkmar Sieh, Robert Burlacu!, Timo Honig, Heiko Janker, Phillip Raffeck,
Peter Wigemann, and Wolfgang Schroder-Preikschat

Department of Computer Science, Distributed Systems and Operating Systems
!Department of Mathematics, Economics - Discrete Optimization - Mathematics

Friedrich-Alexander University Erlangen-Niirnberg (FAU)

Abstract—Predicting the temporal behavior of embedded real-
time systems is a crucial but challenging task, as it is with
the energetic behavior of energy-constrained systems, such as
IoT devices. To carry out static analyses in order to determine
the worst-case execution time (WCET) or the worst-case energy
consumption (WCEC) of tasks, cost models are inevitable. How-
ever, these models are rarely available on a fine-grained level for
commercial-off-the-shelf hardware platforms.

In this paper, we present NEO, an end-to-end toolchain that
automatically generates cost models, which are then integrated
into an existing static-analysis tool. NEO exploits automatically
generated benchmark programs, which are measured on the
target platform and investigated in a virtual machine. Based
on the gathered data, we formulate mathematical optimization
problems that eventually yield both worst-case execution-time
and energy-consumption cost models. In our evaluations with
an embedded hardware platform (e.g., ARM Cortex-M0+), we
show that the open-source toolchain is able to precisely bound
programs’ resources while achieving acceptable accuracy.

Index Terms—execution-time modeling, energy-consumption
modeling, worst-case execution time (WCET), worst-case energy
consumption (WCEC), static analysis

I. INTRODUCTION

Time and energy are first-class resources in today’s embed-
ded computing systems. On the one hand, embedded real-time
systems must meet deadlines and thereby guarantee timeliness.
On the other hand, modern embedded systems, especially in
the Internet of Things, also have energy-resource constraints
that have to be fulfilled to guarantee minimum uptimes of
battery-operated systems. To accurately account for these
resource constraints at design time of the systems, detailed
knowledge on the runtime behavior, respectively the energetic
behavior, of the system’s software is crucial. Commonly,
system designers carry out extensive measurements to consider
resource constraints at design time. However, this approach
has the two major drawbacks of being labor-intensive and not
being able to guarantee safe upper bounds on the resource
consumption of time or energy. To solve these problems, static
code-analysis techniques were created that yield safe upper
bounds for both the worst-case execution time (WCET) [1]
and the worst-case energy consumption (WCEC) [2].

The basic working principle of these static-code analyses is
subdivided into two phases: The hardware-independent path
analysis of the program determines possible execution paths
and, for example, yields upper bounds of loops in the control
flow. By considering all possible execution paths, this phase
enables solutions that capture all inputs. To then determine an
actual WCET or WCEC bound for an arbitrary program with
the help of results from the path-analysis phase, the second
analysis phase requires a cost model of the target system’s
temporal or energetic behavior. However, the availability of
these models, required for static code analysis, is a major
problem: They are rarely documented for commercial off-the-
shelf platforms and even if documentation is provided, its
trustworthiness can be doubted [3], [4], leading to unsound
results. To fill this information gap, previous approaches
determined these models by using source-code benchmarks
or hand-written assembly sequences [5], [6] being time-
consuming and labor-intensive work.

To solve this problem, we present NEO, a toolchain for cost-
model determination that relies on automatically generated
benchmark programs. Each generated benchmark is executed
once on the specific target platform while the execution
time and the energy consumption are being measured. Subse-
quently, each benchmark is simulated inside a virtual machine
to determine the number of occurrences of each executed
machine-code instruction. From the data that is gathered in the
measurement and the simulation phases, we formulate mathe-
matical optimization problems, whose solutions determine the
instruction-level hardware-cost model for the target machine.
Finally, we integrate these models into an existing static worst-
case analysis tool [7] to enable predictions for the WCET and
the WCEC for arbitrary programs, which need to be safely
run on the target hardware platform.

This paper presents the NEO approach [8] and discusses
visions how NEO can be applied to further platforms. In
Section III, the NEO’s core concept is outlined, which is
evaluated in Section IV. The subsequent Section V contains
our visions how to extend the NEO approach in the future,
Section II reviews related work, and Section VI concludes.

Proga.c
[Progzc
Progl.c

Benchmarks

IC-TPI=T
IC-EPI=E
Systems of
Equations

==

Time/Energy
Model

Fig. 1: NEO uses CSMITH to automatically generate benchmarks. The programs are executed on the target platform while time
and energy are measured by the MEASUREALOT tool. The binaries are simulated on the virtual machine FAUMACHINE to
determine the executed instructions. These counters and the measurements are used to formulate optimization problems, whose
solutions determine the time & energy models, which are used in the analyzer PLATIN to determine WCET & WCET bounds.

II. RELATED WORK

Previous research [5], [6], [9] that focuses on the creation
of cost models (i.e., time and energy models) rely on hand-
crafted benchmark suites or micro-benchmarks. In contrast,
NEO does not depend on knowledge about such benchmarks
and instead exploits generated benchmarks to automatically
create time and energy cost models. Pioneering work by Tiwari
et al. [5], for example, present an approach to extract an
instruction-level power model for a RISC processor which re-
quires manual measurements. Lee et al. [6] derive instruction-
level power models with a regression analysis. The work,
however, is limited to arithmetic operations on data. Pallister
at al. [9] study the impact of instruction operand values on
the energy demand. The authors use hand-crafted data to
evaluate the energy demand of integer-based algorithms. On
the contrary, NEO is not restricted to arithmetic operations,
since the characterization of time and energy demand for
branch instructions is inherently determined by the automated
approach to benchmark generation. The automatic creation of
benchmarks further releases the strict dependency on hand-
crafted benchmarks as the programs, which are analyzed to
construct the respective cost models. Sieh et al. [8] discuss
further research related to NEO.

III. THE NEO TOOLCHAIN

In this section, we first outline the theoretical, optimization-
based approach (see Section III-A) and we subsequently
present the practical implementation of the NEO toolchain (see
Section III-B), which is summarized in Figure 1.

A. Optimization-Based Approach

For each kind of instruction ¢ of a given instruction set
I a value T'PI; (time per instruction 7) must be measured
giving the time the instruction needs for execution. Benchmark
B’s execution time Tz predictions are obtained by counting
the instructions ICp; to be executed and multiplying these
numbers by the 7'PI model.

Ses ICp - TPI; = Ty

The core problem when determining hardware-cost models
is that most machine-code instructions can have varying execu-
tion times and energy consumptions. For example, conditional
branches take more CPU cycles, depending on if the branch
is taken during runtime. Also, the caching behavior leads to
varying execution times, when load instructions cause cache
penalties. Consequently, each instruction ¢ has a minimum
(T'Pl,in,;) and a maximum (TPl ;) resource consump-
tion, where the latter is used as models for our static worst-
case analysis. Using different benchmark programs B we get
an equation system of the form:

> icr ICB TPl in s < Tp
Zie[ICB,i TPImaz,i > TB

For energy consumption, we formulate the same system of
equations with E PI instead of TPI and E'p on the equations’
right sides, denoting the benchmarks’ energy consumption.

NEO’s core principle is to consider numerous benchmarks
and thus equations. With this huge data pool, which is stored
in matrices, we formulate mathematical optimization problems
that eventually determine 1'Pl,,q; ; and E P, ;, describing
the worst-case resource-consumption models of the target plat-
form. These equation systems can be solved for T'P1I,,,4, ; and
EPIq.,: very fast using the Simplex Algorithm [10]. In our
previous work [8], we describe how we use modified versions
of the least squares and least-sum-of-errors approaches to
compensate for measurement uncertainties and minimize er-
rors in the cost models. NEO relies on automatically generated
benchmarks to obtain such a data pool, which avoids using
manually written benchmarks and thus time-consuming work.
In the following, we describe how NEO determines instruction
counts ICp ;, execution times T'g, and energy consumptions
Ep to determine T'PI and EPI in our practical realization.

B. Practical Realization of the NEO Toolchain

In the current implementation of NEO, we use the following
chain of tools, which is shown in the overview in Figure 1. In
the first step, the CSMITH [11] tool is used to automatically
generate a huge number of different C benchmark programs.

The toolchain uses GCC and CLANG to create executables
from these benchmarks for the target hardware. Additionally,
by employing different compiler-optimization levels, we obtain
a higher diversity in the generated machine code in order to
cover a wide range of execution scenarios. In Section V, we
discuss techniques how to further improve the benchmarks’
diversity, which is essential for the reliability of the produced
cost model. The generated benchmarks are executed in the
virtual machine FAUMACHINE [12] to gather the concrete
number of instruction executions /C'g ;. All benchmarks are
concretely executed once on the target platform while the
execution time 7p and energy consumption Ep are being
measured. We utilize the MEASUREALOT device [13] for
both precise time and energy measurements.

Optimization problems are now formulated using the in-
struction counts ICp, the measured execution times T,
and energy consumptions Ep. These formulations focus on
extracting the worst-case scenarios and eventually yield the
instruction-level time and energy model. We use the GUROBI
optimizer [14] to solve these problem formulations.

In the last step of the NEO toolchain, the automatically gen-
erated cost models T'P1,,,. for execution time and EPI,,,.
for energy consumption are integrated into the open-source,
static worst-case analysis tool PLATIN [7]. From now on,
PLATIN can be used to statically determine upper bounds for
both the WCET and WCEC of arbitrary programs running on
the target platform, for which the models were generated.

We point out that the used static worst-case analysis tech-
nique itself is proven to be sound [1]. However, due to the
lack of documentation, our only resort is to rely on hardware
measurements to determine the cost models, and this approach
inherently can never be proven to be sound. Nevertheless, with
our generated models for the ARM Cortex-MO+, we are able
to determine upper bounds for all analyzed programs, as we
demonstrate in the following evaluation section.

IV. EVALUATION

In this section, we summarize several evaluation results of
NEO for the ARM Cortex-MO+ platform. With the limited
complexity (i.e., few pipeline stages, small caches), it is
representative for many embedded platforms. In the following,
we first present evaluation results on static WCET analyses
with the hardware-model determined by NEO. The capabilities
of NEO with regards to creating energy-consumption models,
which are the foundation for static analyses, and a comparison
of NEO’s model with an existing model are presented in [8].

To evaluate the validity of the entire NEO toolchain, we in-
tegrated the generated models into the existing WCET-analysis
tool PLATIN [7]. With this setup, we measured the execution
time of benchmarks from the TACLEBENCH suite [15] on
our target platform and conducted a static WCET analysis
of each benchmark. The results are summarized in Table 2.
Depending on the structure and the complexity, we observed
over-estimations ranging from 23 % (i.e., binarysearch)
up to the pessimistic outliers up to 35,557 % (i.e., £ft). The
geometric mean of the normalized values of over-estimations
is 208 % (i.e., an over-estimation factor of around 3). Consid-
ering the comparably small over-estimations due to the cost

109 H analysis
108 X Dmeasured - M -
107
z 106
510°
#* 10*

100 ML

Fig. 2: The comparison (on logarithmic scale) of static WCET
analysis (left bar) using the generated models with the execu-
tion trace (right bar) demonstrates that PLATIN is able to yield
upper bounds for TACLEBENCH suite.

model [8], the pessimism in the results are due to conservative
assumptions of the control flow within the path analysis,
which can be improved by more advanced path analyses in
the future. However, the main observation in this evaluation
is that the toolchain determines bounds for all benchmarks,
which demonstrates NEO’s practical applicability.

V. DISCUSSION & OUR VISION OF NEO

In this section, we discuss potential improvements within
the toolchain’s components, which we consider as future work.

A. Tailoring the Benchmark-Generation Process towards
Micro-Architectural Awareness

For the NEO approach, it is essential that all CPU in-
structions appear somewhere in the benchmark programs.
Otherwise, it is impossible to identify their impact on the
systems’ worst-case resource consumption. Consequently, we
need benchmarks that, for example, use conditional-branch,
integer-arithmetic, and floating-point instructions. If branch
prediction influences the temporal/energetic behavior, NEO re-
quires benchmarks that show poor branch-prediction scenarios.
Similarly, benchmarks that lead to poor caching behavior are
essential to reveal worst-case scenarios for load instructions.

Thus, we have to use a huge variety of benchmarks. The cur-
rently employed benchmark generator CSMITH creates many
programs, but as it is targeted on finding bugs in compilers, it
does not cover all scenarios presented above. NEO can, there-
fore, benefit from configurable benchmark generators, such
as GENE [4], which can be extended to generate binaries that
exhibit a high diversity in the processor’s worst-case behavior.
Since the tool works on a very low abstraction level (i.e., close
to machine code), it offers the possibility to also generate
memory-access sequences (i.e., code, data) that potentially
trigger worst-case pipelining behavior. Additionally, tools exist
to automatically determine the processor’s cache-replacement
policy [16], [17]. Their principle is also to generate tailored
benchmarks and measure them subsequently on the target
hardware platform while observing the temporal behavior.
NEO can benefit from these approaches to gain awareness of
micro-architectural effects, such as pipelining and caching.

B. Micro-Architecture Modeling by Machine Learning

The usage of machine-learning algorithms has been ex-
plored for the path-analysis problem of WCET analysis (i.e.,
finding loop bounds) [18]. With the increasing performance
of machine-learning approaches, an interesting direction of
cost modeling is the usage of neural networks to automatically
learn feasible micro-architectural behavior (e.g., of the proces-
sor’s pipeline). Our idea is feeding tailored benchmarks (i.e.,
different accesses to program and data memory from variable
addresses), as described above, as input to the neural network
where potential pipeline states are encoded as input for neu-
rons. After training, the network then reveals feasible pipeline-
state sequences being eventually useful for cost modeling.

C. Enhanced Measurement Support

We intend to enlarge the scope of NEO towards more-
complex hardware architectures (e.g., x86). To accomplish that
goal, different energy-measurement methods are required. As a
generic measurement approach, we are working on employing
current clamps together with the open-source oscilloscope!.

Furthermore, many modern processors also offer integrated
energy measurement facilities, such as Intel’s Running Av-
erage Power Limit (RAPL) [19], where consumed energy is
read via registers over a fixed duration. This approach relies
on cost models integrated into the processor. Although this
feature lacks a high temporal resolution, it significantly eases
the setup of a benchmarking system. The NEO toolchain can
be extended to make use of any of these measurement methods
to address a broad range of hardware platforms.

D. Exploitation of Performance Counters

Together with the aforementioned energy-accounting reg-
isters, modern x86 processors also offer fine-grained per-
formance counters [19]. These can be utilized to determine
the number of cache misses/hits. Knowing these numbers
improves the estimation of our cost models.

Regarding energy, we can split the energy needed by any
load instruction into two parts. The first part modeling the
energy consumption while fetching/decoding the instruction
and accessing the first-level cache, which has to be considered
in any case, and additionally, a second part modeling the
energy needed to read from the second-level cache, which
causes additional cost only in case of a first-level cache miss.
Consequently, IC4- EPI,4 is replaced by IC4- EPI; 4+ MC-
EPMC'. The number of cache misses (M) is obtained from
the respective performance counter. EPMC represents the
amount of extra energy needed in case of a cache miss. This
technique can be analogously applied to store instructions
and can also be extended for more cache levels.

Furthermore, this approach can be used for branch in-
structions. Here, energy consumption is split into modeling
branches with correct branch prediction and a penalty in case
branch prediction fails. The number of mispredictions can be
determined by reading performance counters. Taking branch
prediction and caches into account will improve the generated
energy and timing models on more-complex machines.

'Open-source oscilloscope RedPitaya: redpitaya.com

E. Robust Mathematical Optimizations

Measuring the amount of energy Ep needed while execut-
ing the benchmark with our MEASUREALOT device is prone
to measuring uncertainties. We can handle this by adding a
certain amount of energy to Ep for any benchmark program,
which is typically too conservative. Instead, we pursue the I'-
robustness approach [20] from the field of robust optimization,
where only a certain amount of benchmark problems are
treated as uncertain, e.g., prone to measuring inexactness.

VI. CONCLUSION

NEO? automatically builds time and energy models for em-
bedded systems without a priori knowledge, effectively analy-
ses generated benchmarks, combines measurement-based time
and energy analyses with existing WCET and WCEC tooling
infrastructure, and uses mathematical optimization techniques.
Future work will improve awareness of the micro-architectural
behavior which enables handling of more complex platforms.

Acknowledgment. This work is supported by the German Research Founda-
tion (DFG), in part by Research Grant no. SCHR 603/9-2, no. SCHR 603/13-1,
the CRC/TRR 89 (Project C1), the CRC/TRR 154 (Project BO7), and the
Bavarian Ministry of State for Economics under grant no. 0704/883 25.

REFERENCES

[1] P. Puschner and A. Schedl, “Computing maximum task execution times:
A graph-based approach,” Real-Time Systems, vol. 13, pp. 67-91, 1997.

[2] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the worst-case energy
consumption of embedded software,” in Proc. of RTAS '06, 2006.

[3] J. Abella et al., “WCET analysis methods: Pitfalls and challenges on
their trustworthiness,” in Proc. of SIES 15, 2015, pp. 1-10.

[4] P. Wégemann, T. Distler, C. Eichler, and W. Schroder-Preikschat,
“Benchmark generation for timing analysis,” in Proc. of RTAS ’17,2017.

[5] V. Tiwari and M. T.-C. Lee, “Power analysis of a 32-bit embedded
microcontroller,” VLSI Design, vol. 7, no. 3, 1998.

[6] S.Lee, A. Ermedahl, S. L. Min, and N. Chang, “An accurate instruction-
level energy consumption model for embedded RISC processors,” SIG-
PLAN Notices, vol. 36, no. 8, pp. 1-10, Aug. 2001.

[7]1 P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard,
“The T-CREST approach of compiler and WCET-analysis integration,”
in Proc. of SEUS ’13, 2013, pp. 33-40.

[8] V. Sieh, R. Burlacu, T. Honig, H. Janker, P. Raffeck, P. Wagemann, and
'W. Schroder-Preikschat, “An end-to-end toolchain: From automated cost
modeling to static WCET and WCEC analysis,” in Proc. of ISORC 17,
2017, pp. 1-10.

[9] J. Pallister, S. Kerrison, J. Morse, and K. Eder, “Data dependent energy

modelling: A worst case perspective,” CoRR, arXiv, 2015.

A. Schrijver, Theory of linear and integer programming.

& Sons, 1998.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding

bugs in C compilers,” in Proc. of PLDI ’11, 2011, pp. 283-294.

M. Sand, S. Potyra, and V. Sieh, “Deterministic high-speed simulation of

complex systems including fault-injection,” in Proc. of DSN ’09, 2009.

T. Honig, H. Janker, C. Eibel, O. Mihelic, R. Kapitza, and W. Schroder-

Preikschat, “Proactive energy-aware programming with PEEK,” in Proc.

of TRIOS 14, 2014, pp. 1-14.

Gurobi Optimization Inc., “Gurobi optimizer reference manual,” 2016.

H. Falk et al., “TACLeBench: A benchmark collection to support worst-

case execution time research,” in Proc. of WCET ’16, 2016, pp. 1-10.

T. John and R. Baumgartl, “Exact cache characterization by experimental

parameter extraction,” in Proc. of RTNS ’07, 2007, pp. 65-74.

A. Abel and J. Reineke, “Measurement-based modeling of the cache

replacement policy,” in Proc. of RTAS ’13, 2013, pp. 65-74.

M. Bartlett, I. Bate, and D. Kazakov, “Guaranteed loop bound identi-

fication from program traces for WCET,” in Proc. of RTAS '09, 2009,

pp- 287-294.

Intel Corporation. (2013, June) Intel 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Vol. 3B: System Programming Guide, Part 2.

D. Bertsimas and M. Sim, “The price of robustness,” Operations

Research, vol. 52, no. 1, 2004.

[10] John Wiley
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

2NEO is open source and available online: gitlab.cs.fau.de/neo

redpitaya.com
https://gitlab.cs.fau.de/neo

	Introduction
	Related Work
	The Neo Toolchain
	Optimization-Based Approach
	Practical Realization of the Neo Toolchain

	Evaluation
	Discussion & Our Vision of Neo
	Tailoring the Benchmark-Generation Process towards Micro-Architectural Awareness
	Micro-Architecture Modeling by Machine Learning
	Enhanced Measurement Support
	Exploitation of Performance Counters
	Robust Mathematical Optimizations

	Conclusion
	References

