Honey, | Shrunk the ELFs: Lightweight Binary Tailoring
of Shared Libraries

ANDREAS ZIEGLER, JULIAN GEUS, BERNHARD HEINLOTH, and TIMO HONIG,
Friedrich-Alexander-Universitit Erlangen-Nirnberg (FAU), Germany
DANIEL LOHMANN, Leibniz Universitit Hannover, Germany

In the embedded domain, industrial sectors (i.e., automotive industry, avionics) are undergoing radical
changes. They broadly adopt commodity hardware and move away from special-purpose control units. Dur-
ing this transition, heterogeneous software components are consolidated to run on commodity operating
systems.

To efficiently consolidate such components, a modular encapsulation of common functionality into
reusable binary files (i.e., shared libraries) is essential. However, shared libraries are often unnecessarily large
as they entail a lot of generic functionality that is not required in a narrowly defined scenario. As the source
code of proprietary components is often unavailable and the industry is heading towards binary-only distri-
bution, we propose an approach towards lightweight binary tailoring.

As demonstrated in the evaluation, lightweight binary tailoring effectively reduces the amount of code in
all shared libraries on a Linux-based system by 63 percent and shrinks their files by 17 percent. The reduction
in size is beneficial to cut down costs (e.g., lower storage and memory footprint) and eases code analyses that
are necessary for code audits.

CCS Concepts: « Computer systems organization — Embedded software; « Software and its engi-
neering — Software libraries and repositories; Software maintenance tools;

Additional Key Words and Phrases: Shared libraries, binary tailoring, Linux

ACM Reference format:

Andreas Ziegler, Julian Geus, Bernhard Heinloth, Timo Honig, and Daniel Lohmann. 2019. Honey, I Shrunk
the ELFs: Lightweight Binary Tailoring of Shared Libraries. ACM Trans. Embed. Comput. Syst. 18, 5s, Article
102 (October 2019), 23 pages.

https://doi.org/10.1145/3358222

1 INTRODUCTION

Technological advances drive radical changes in the embedded domain. Many sectors of industry
such as the automotive industry and avionics are broadly adopting inexpensive commodity hard-
ware [29]. Thus, special-purpose hardware components are phased out [5] in favor of commodity

This article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on
Embedded Software (EMSOFT) 2019.

Authors’ addresses: A. Ziegler, J. Geus, B. Heinloth, and T. Honig, Friedrich-Alexander-Universitat Erlangen-Nurnberg
(FAU), Martensstr. 1, Erlangen, 91058, Germany; emails: {ziegler, geus, heinloth, thoenig}@cs.fau.de; D. Lohmann, Leibniz
Universitat Hannover, Appelstr. 4, Hannover, 30167, Germany; email: lohmann@sra.uni-hannover.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2019/10-ART102 $15.00

https://doi.org/10.1145/3358222

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



https://doi.org/10.1145/3358222
mailto:permissions@acm.org
https://doi.org/10.1145/3358222

102:2 A. Ziegler et al.

hardware which runs traditional operating systems (e.g., Linux). The switchover is further accel-
erated by the urge to continuously reduce costs [33] as such embedded systems are delivered in
large numbers—every penny counts!

During this transition, heterogeneous software components are being consolidated to run on
Linux. In order to efficiently use available system resources (i.e., memory and storage), such
components must be modularized [1, 17] and reused [18]. These design considerations become
even more crucial in the ongoing transition of moving data processing from individual electronic
control units to centralized domain controllers [31] and the adaptation of large standard software
stacks for image processing or network communication to embedded architectures.

A key aspect is the modular encapsulation of common functionality into
reusable binary files (i.e., shared libraries). The use of shared libraries eases
the combination of standardized software components as the implemen-
tation of functional features is shared among different applications. Thus,

0x16488

H—_D]I]__n'ﬂ | ———

n =D
|

== , =

shared libraries reduce resource demand, simplify maintenance (i.e., distri-
bution of security fixes), and hence, cut down costs. However, shared li-
braries are unnecessarily large as they entail a lot of generic functionality
that often is not required. Instead, narrowly defined usage scenarios (i.e., dis- 0 o, m
tinct use cases) only partially utilize provided functions of the libraries. As 0 ]

an example, Figure 1 shows a heatmap of utilized functions in a C standard
library (i.e., MUsL) by a server program (i.e., vSFTPD). For the largest part, the

library’s code is unused (shown as white area in Figure 1) and could therefore e 'St "DED

[

be removed to reduce both the library’s memory and storage footprint. The '_:I?—E—,Eﬁ%
latter is partlc.ularly important fo? safety-critical embedded sy.stems wh1§h %‘:ﬁ%m g
depend on reliable flash storage (i.e., SLC flash memory) that is only avail- oo o
able in small sizes. Reducing the size of shared libraries has a number of T,
benefits: reduced storage sizes lead to a smaller footprint of the libraries in

Executions

the system memory and can enable faster loading times.

Previous research [19, 25, 28, 36] has tackled the challenge of tailoring
shared libraries in various different ways. However, all these techniques
must recompile libraries and thus require the libraries’ source codes to be

[ ] unused
[J1-10
[] <100

available. This is an impediment, as source code of proprietary, third-party ] <1000
components is often unavailable. B < 10000

To cut down the size of shared libraries provided as binary-only files, max 7068
we propose lightweight binary tailoring. Our toolchain customizes shared  Fig. 1. Use of musL

libc [16] functions
by vsFTpD [15].

libraries to narrowly defined use cases and operates in a two-staged process
that combines static and dynamic code analyses. In a nutshell, our approach
works as follows: initially, we analyze the dependencies between executa-
bles and shared libraries in a deployed target system. Lightweight binary tailoring detects required
and unused functions in all system libraries by combining static analysis and dynamic tracing ca-
pabilities to capture all required functions for the specific use case. Next up, we use the results of
the dependency analysis to eliminate all unused functions from the shared libraries by overwriting
them with invalid instructions, removing their definitions from the interface and compacting the
remaining functions in the binary file. Overall, this leads to an average deletion of 63 percent of
functions across all libraries in a system, resulting in a 17 percent reduction of required storage
space without requiring access to the source code of the underlying executables or libraries.
With the work presented in this paper, we make the following three contributions. First, we
present the concept of lightweight binary tailoring as a generic approach towards the efficient
size reduction of binary files without requiring access to the source code. Second, we discuss the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:3

design and implementation of our concept using the example of shared libraries in the Executable
and Linking Format (ELF). Third, we evaluate our implementation with a Linux operating system,
demonstrate its effectivity in three real world scenarios, and compare the achieved size reduction
of our approach and its load-time impact with results of a state-of-the-art binary debloating
method [36]. We further share insights as part of our evaluation, and we will publish our tools as
open-source software to encourage scientific reproducibility of our results.

The paper is structured as follows: Section 2 presents background information, in particular on
the ELF binary format. We present the design and implementation of lightweight binary tailoring
in Section 3 and evaluate our implementation in Section 4. In Section 5, we discuss key points of
our approach. Related work is presented in Section 6, and Section 7 concludes the paper.

2 BACKGROUND

This chapter provides the necessary background information to comprehend the concept of light-
weight binary tailoring which we discuss in-depth in Chapter 3. The presented approach handles
binary files and thus is independent of the source code. In this section, we provide necessary back-
ground on the Executable and Linking Format (ELF) on which our toolchain operates.

The Executable and Linking Format (ELF) is the standard format for the representation of binary
code in many UNIX-like operating systems such as Linux or FreeBSD. Besides code and data,
ELF files contain various platform-independent headers which represent an abstracted view of
the contents of the file and allow further processing such as linking a set of object files into an
executable or mapping an executable file into memory and starting it.

Figure 2 shows an overview of the elements and the layout of an ELF file as it appears in the file
on disk as well as its representation in virtual memory.

An integral part of an ELF file is the symbol table. This table contains location and size informa-
tion for all functions and data objects in the file as well as yet unresolved references to external
symbols which are located in another object file of the same project or an external shared library.

Executable files in the ELF format can generally be divided into two classes: statically and dy-
namically linked binaries.

A statically linked binary is a stand-alone executable which must not contain any unresolved
references to external symbols—hence, all required code and data objects need to be present in the
ELF file itself. To achieve this, the build process of the executable involves linking the preliminary
object file with statically built versions of all external libraries. The linker will resolve all undefined
references and copy the required code and data objects into the final output.

Dynamically linked binaries, on the other hand, may still contain unresolved symbols in their
symbol table. In addition, the ELF file headers comprise a list of names of shared libraries which
provide the actual implementations of the unresolved symbols and are thus required to run the
executable. When the binary is loaded for execution, a dynamic linker/loader will recursively look
up any undefined symbols as needed, load the required libraries from the file system and resolve
the symbol references to their implementations. Note that an ELF file might contain two symbol
tables: the mandatory dynamic symbol table used by the dynamic loader, and the optional complete
symbol table, containing information useful for debugging, which can be stripped from the file as
it is never loaded into virtual memory.

While statically linked binaries have the advantage of not requiring any dependencies and pro-
gram logic for symbol resolution at load time, they generally have a bigger memory footprint than
their dynamic counterparts: every executable contains independent copies of the referenced func-
tions from all (transitively) required libraries. As a consequence, an upgrade (e.g., a security fix) for
any library in the dependency tree will involve a re-linking step for all affected application binaries
in the system—this requires the original object files that comprise the application. In contrast, if

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



102:4 A. Ziegler et al.

ELF file — virtual memory
OXO *.hash ................... OXO
Symbol Table .dynsym
dynamic (for linking) .dynstr
.rela.dyn
readable
Code .text executable
Data .rodata
0x6a000 =;,'data """""""""" 0x6a000
strippable |
e .debugf
0x30€000
Symbol Table .symtab
: .da‘ta 0x269000
complete (for debugging) hea xoe0os rea_dable
.xstrtab writeable
0x32£000

Fig. 2. Structure of an ELF binary and its representation in virtual memory. The platform-independent head-
ers are located at the beginning of the file. They are followed by blocks of code and data, which are typically
mapped into two distinct areas in virtual memory. Optional structures with debugging information can be
placed at the end of the file but will not be loaded into virtual memory.

a new version of a shared library is available, one only needs to replace the corresponding file on
the file system, and all future executions of application binaries depending on this library will use
the updated version.

The structure of dynamically linked executables reduces the total space required for the binary
files, as heavily-used libraries (such as the C standard library) only need to be present on the file
system once and are used by the executable files on demand. Additionally, the operating system
does not need to load multiple copies of the code into physical memory but can instead choose to
load the library once and map this single physical copy into all address spaces of processes which
require the corresponding library. These considerations have made dynamic linking the method of
choice for all major Linux distributions for a long time and make it preferable for the application
in embedded systems architectures with consolidated and modularized software stacks [31].

However, as the dynamic loader only looks at the symbol table to find specific functions from
a shared library and does not have any information about dependencies between functions inside
the library itself, using just a single function from a shared library entails loading its entire contents
into virtual memory. Furthermore, as shared libraries are built as highly generic modules to support
as many different use cases as possible, many functions might actually be unused in a specific
deployment scenario and are unnecessarily taking up space on the file system as well.

3 DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of our toolchain which finds unused
functions in the binaries on the target system, removes these functions, and shrinks the size of the
files on disk as well as in working memory.

By statically analyzing the binary application and its required shared libraries, we extract
dependencies between all ELF files and their functions. Additionally, we use dynamic tracing

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:5

(1) TBATY [TibC
Host System O+ o
(target independent) : o %o
: TibBT\ -
THAD £ © [An [c (4]
- =N
AN N 02 N I:A. I:C.
- - °
TibB T\ - libB libB
- - ® 0 [ X J
( N ] (X ]
Unused function
O Required function identified by static dependency analysis

® Required function identified during dynamic tracing

Fig. 3. Overview of our toolchain. Through @ static dependency analysis, we gain insight into the con-
nections between the binary and functions in shared libraries. In order to refine the results for statically
undetectable calls, we employ @ dynamic tracing on the target system. As static and dynamic analysis are
independent, they can be conducted in parallel. After combining the data from static and dynamic anal-
ysis, we can @ remove unused functions from the library interface and finally @ shrink the ELF file by
rearranging the code on the file system.

capabilities on the target system to augment the results of static analysis with use-case specific
execution profiles. With the combined results, our tools remove functions from the interface of
the shared libraries and compact the code layout in the ELF file. An overview of our approach is
shown in Figure 3. We further present a technical discussion of our static and dynamic analysis in
Section 3.1 and Section 3.2, respectively, and the subsequent tailoring of the binaries in Section 3.3
and Section 3.4.

3.1 Static Dependency Analysis

As a first step, we need to identify the relationships and dependencies between executables and
libraries of the target scenario. Therefore, our analysis starts with one or more binary executable
files, scans the list of required library names, and locates their corresponding file in the file sys-
tem. Once all required library files are found, this process is repeated recursively for all library
files as they might have further dependencies on additional (“lower-level”) libraries themselves,
constructing a library dependency tree for the individual binaries. During the descent, we process
the symbol tables of every shared library and save information about all symbols which are pro-
vided the individual libraries (i.e., their interface) as well as all unresolved symbols (i.e., functions
which are required from another library in the dependency tree).

When all executables and their required libraries have been processed, the symbol resolution pro-
cess starts: for every unresolved symbol in an executable or shared library we check the interfaces
of all libraries in the corresponding dependency tree for a matching definition of the symbol in
breadth-first order. Once the first occurrence of a symbol is identified, we mark the connection be-
tween the referencing binary (where the symbol previously was unresolved) and the implementing
library (step @ in Figure 3). This step closely resembles the operation of the linking loader when
a dynamically linked binary is loaded and prepared for execution.

The marked connections give a first overview of the functionality that a given binary requires
from its libraries. However, this information alone is not sufficient to infer that all unmarked in-
terface functions can be removed. While the library functions represent the interface used by the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



102:6 A. Ziegler et al.

caller, they often depend on other functionality in the same library, which itself could be imple-
mented in an exported function or a local (static) function.

In order to identify these functions as well, the code inside the library must be analyzed to re-
cover the call graph. To this end, we use the CAPsTONE disassembler [30]. CAPSTONE disassembles
all functions and recovers any control flow transfers to other functions within the same library.
Additionally, we identify calls to functions that are imported from other shared libraries. This in-
formation enables dependency tracking between the libraries in a fine-grained manner: in addition
to determining which binary uses which functions from a shared library, we also precisely map
out the dependencies between functions across library boundaries.

At this point, our toolchain has revealed the dependency tree between executables and libraries,
the connections between unresolved symbols and their respective implementations in other shared
libraries as gathered by the symbol resolution step, and the connections between all functions inside
each library from the disassembly step.

Next, we propagate the information about the users of interface functions along the edges of the
call graph inside the library as well as along the edges to transitively imported functions to incor-
porate all static knowledge about connections between functions in and across the libraries. With
this step, we not only mark functions as required that are directly referenced from an importing bi-
nary or library, but we also factor in all further internal dependencies of those exported functions.

While propagating usage data along the static call graph greatly improves the coverage of re-
quired functions in the shared libraries, there are still cases for which the static analysis can be
insufficient: functions are not only called directly (i.e., by using their address in a call or jmp
instruction) but also through indirect access (i.e., by calculating an address during runtime), for
example, if an address of a function is passed as a callback (e.g., registering a signal handler through
signal or the comparison function for sorting using gsort). Indirect calls are also frequently ob-
served in code which is compiled from C++, as calls to virtual methods in an inheritance hierarchy
are resolved through the vtable, which provides a table of function pointers to implementations of
methods depending on the instance of the object.

3.2 Dynamic Refinement

In addition to static analysis (cf. Section 3.1), we refine our results with dynamic analysis
techniques. Missing calls to functions which can not be resolved statically hinders our ability to
construct an accurate call graph, and in turn, would lead to erroneous removal of functions even
though they are in fact required.

To conquer these situations, we additionally employ dynamic tracing in the target system, which
allows the inspection of which functions are called across all shared libraries of the system. As the
tracing mechanism hooks every known function (regardless where it is called from), we gather
significantly more insight into what code is executed, and thus necessary for the system (i.e.,
must not be removed). To capture an accurate representation of the target use case, the observed
behavior during dynamic analysis must cover all functionality required in the final system. This
can be accomplished by following strictly defined procedures for interaction with the system and
running extensive test suites which are already required for certification purposes, for example, in
the automotive industry.

Dynamic tracing is implemented with uprobes [21] user space probing functionality which is
part of the official Linux kernel. The probing interface allows specifying paths to libraries or ex-
ecutable files and an offset (of a function) that should be tracked. When the corresponding probe
is activated, the operating system kernel installs a breakpoint instruction at the given offset which
will generate an exception once the function in question is called in any process using the target
library. This exception is handled by the kernel, writing a message describing the probe into a

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:7

buffered log file. To keep the overhead of dynamic tracing as low as possible, every probe is in-
structed to disable itself after it has been hit—it is only necessary to register that a probed function
has been called, not how often.

The input data for using uprobes—a list of functions and their offsets in all shared libraries in the
system—is a by-product of the static analysis step described in Section 3.1 during which we already
parse all ELF files and their symbol tables containing the required information. When all uprobes
are installed, we activate them all at once, thereby entering the dynamic analysis phase during
which the target use case is executed. After all functionality has been exercised, the resulting log
file is evaluated to collect all functions which were actually triggered during the execution of the
target use case, and mark them as required (step @ in Figure 3). This is the only part of our toolchain
which has to run on the target system—all other analysis and shrinking steps can be executed on
a separate, potentially more powerful system.

In a final step, we execute another pass of the user propagation through the call graph to fully
integrate the dynamic information, as functions that were only discovered as required by the dy-
namic refinement can have additional static dependencies (i.e., outgoing edges to local or interface
functions in the call graph) themselves.

Note that using uprobes does not impose a limitation on the general approach but rather stems
from the application of our tools to a Linux system: other operating systems provide comparable
functionality (i.e., DTrace [20] which is available for various other UNIX derivates and has recently
also been ported to Windows [39]).

3.3 Function Removal

The first two steps of our approach (cf. Section 3.1 and Section 3.2) generate an overview of the
functions needed from the shared libraries that are deployed in the system. Consequently, all other
functions in the libraries are not required for the given deployment and use case. These functions
can thus be left out without constraining the execution of the analyzed binaries and their required
shared libraries. To remove such unnecessary functions from the libraries, we employ a two-step
method which first makes the functions inaccessible from the outside (step @) and later rewrites
the memory layout of the library file in order to compact the required space on the file system as
well as the amount of memory when the library is loaded (step @ in Figure 3).

First, the list of local and global symbols in the library is processed and checked for functions
that were marked as required by the static and dynamic analysis. If a function was not marked
and can be deleted, all bytes of the implementation are overwritten with an invalid opcode which,
when executed, leads to the termination of the calling process.

Overwriting the implementation alone does not yet make the function inaccessible from the
outside: the linking loader does not consider the implementation when resolving symbols in a li-
brary but rather uses the ELF metadata—more precisely, the dynamic symbol table—to determine
if a symbol is present in the target library or not. As a consequence, we also remove the corre-
sponding entry from the symbol table.

After these steps have been repeated for all functions in the library, any program which was
included in the analysis step and uses the library will still have access to the symbols it requires, but
unnecessary functions cannot be referenced or executed—neither directly nor through dynamic
lookup during runtime.

However, the overwritten functions still take up the original space in the code segment of the
library. To reduce the size of the ELF file on the file system (as well as the memory footprint in
RAM), we need to take a closer look at how the library’s code is loaded when the library is needed
by an application process.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



102:8 A. Ziegler et al.

3.4 ELF File Shrinking

A regular, un-tailored ELF file is typically structured as follows: First, the platform-independent
header data describing the contents of the ELF file are written into the output file. This also entails
the dynamic symbol table and the information about any required libraries. Then, all functions are
written into a contiguous area (the text segment) in the resulting binary file, followed by an area big
enough to fit any data structures referenced in the code (the data segment). The ELF file’s program
header table further contains a description of how the text and data sections should appear in the
virtual address space of the process when the library is loaded.

Following this description, an ELF file is usually mapped into memory in two parts: first, the
platform-independent headers describing the file itself as well as the code (i.e., all functions) and
constant variables are mapped and marked read-only (Listing 1, line 2). Program data (i.e., global
variables) are mapped afterward and marked read-write. All mappings have to obey the alignment
requirements imposed by the memory management system of the operating system, which typi-
cally allocates memory in chunks of 4 KiB, only.

1 Type Offset VirtAddr FileSiz MemSiz Flg Align
2 LOAD 0x00000000 ©0x00000000 ©0x000697b4 0©x000697b4 R E 0x1000
3 LOAD 0xQ0069bc@ 0x00269bcd ©0x000008d4 0x000035c8 RW 0x1000

Listing 1. Typical ELF memory layout: The first LOAD program header (line 2) instructs the loader to map the
text segment (i.e., all functions present in the library) into virtual memory. Line 3 describes the data segment.

For a regular shared library, this structure is perfectly valid as no assumptions are made about
possibly required or unneeded functions. However, in use-case tailored versions of large libraries
with complex functionality—like the C standard library, for example—larger parts of the library
image in memory might consist of invalid opcodes. This fact gives us further headroom for im-
proving the memory footprint of the tailored library.

When overwriting unneeded functions (cf. Section 3.3), we keep track of the location and the
size of every unneeded function. After all unnecessary functions have been replaced, we merge all
collected locations in order to identify regions in the shared library that consist purely of invalid
opcodes. If a region covers at least one full 4 KiB page, this region is obsolete and can be removed
from the file.

However, naively dropping the region and moving all remaining bytes in the ELF file forward
results in a non-functional library. This stems from the fact that the compiler and linker for the
original library take the original layout of the file as granted when resolving accesses to data
members or calls to functions in the code. For example, the x86_64 architecture often uses the
current instruction pointer as a base value and adds an offset to it to calculate a target address.
Moving functions forward in the binary effectively decrements the instruction pointer but does
not change the offset in the calculation—the affected instructions now produce an invalid pointer
and access a wrong memory address. Due to a large number of instructions dealing with such fixed
relative offsets and possible dependencies on values calculated at runtime, fixing all offsets for the
whole library is neither portable nor feasible.

Instead, we leverage the platform-independent structure of the entries in the program header
table: Besides the access rights and file offsets of the regions, every entry also contains the vir-
tual address to which the corresponding file contents should be mapped. In a regular (position-
independent) ELF shared library, the offset and virtual address for the code section are identical,
indicating that the range of bytes described by the entry can be directly mapped from the file into
a corresponding virtual address range.

For the execution of the library, however, the offsets on the file system are not relevant anymore:
after the file is loaded, the CPU only considers how the memory is laid out in virtual memory. This

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:9

1 Type Offset VirtAddr FileSiz MemSiz Flg Align

2 LOAD 0x00000000 0x00000000 0x000170f8 0Ox000170f8 R E 0x1000
3 LOAD 0x0001803e 0x0001a03e 0x00009e98 0x00009e98 R E 0x1000
4 LOAD ©0x00022ac8 0x00025ac8 0x000004ee 0x000004ee R E 0x1000
5 LOAD 0x00023f0e 0x00028f0e 0x000000d4 0x0Q00000d4 R E 0x1000
6 LOAD 0x000244ab 0x000304ab 0x0000dac8 0x0000dac8 R E 0x1000
7 LOAD 0x000327e7 0x000447e7 0x000071a7 0x000071a7 R E 0x1000
8 LOAD ©0x00039c77 ©0x0004cc77 0x0001cb3d 0x0001cb3d R E 0x1000
9 LOAD 0xQ0056bc@d 0x00269bcd 0x000008d4 0x000035c8 RW 0x1000

Listing 2. Description of the memory layout in a tailored and compacted version of the ELF shared library
from Listing 1. The code is now loaded in multiple parts (all statements with flags R E). Note the increasing
difference between the offset into the file on the file system and the virtual address (VirtAddr) where the
corresponding functions are mapped to, compensating for moving code forward in the file while still loading
functions to their original place in virtual memory. Line 9 describes the shifted data segment.

also implies that the structure of the ELF file on the file system can be changed freely as long as
the loader contains a program header table which correctly maps the rearranged memory ranges
into the virtual address space of the loading process.

Using this knowledge, our approach builds a custom program header table that contains mul-
tiple LOAD statements for the code. More precisely, we generate one LOAD statement for every
contiguous region of code which needs to remain in the binary file. Removable regions are over-
written on disk by moving all following contents of the file forward (effectively overwriting the
unused functions with used ones), and adjusting the Of fset fields for all following LOAD state-
ments while leaving the target virtual address unchanged. With this technique, when the library
is loaded, all required functions and data are mapped back to their original virtual address (and
thus, no references to the code have to be fixed) even though they have moved forward in the file.
Additionally, while dropping regions consisting purely of unused functions from the LOAD state-
ments effectively creates gaps between the remaining areas in virtual memory, these gaps are not
accessible by the program and do not entail any use of physical memory (i.e., RAM). We show an
example of a rewritten program header table in Listing 2.

With all steps of our toolchain combined, it is now possible to automatically generate custom-
tailored versions of shared libraries required for the target scenario based on the binary files de-
ployed on the system. In particular, the presented approach does not need to have access to the
original source code in order to remove unused functions and shrink the files—the binary files and
their symbol tables are sufficient.

4 EVALUATION

To demonstrate the effectiveness and usefulness of the presented approach, we evaluate our
toolchain for lightweight binary tailoring in four distinct scenarios: First, we analyze the amount
of unused functions in shared libraries for single applications (cf. Section 4.1). In particular, we cre-
ate custom-tailored libraries for the vsrTpDp FTP server [15]. Second, we show how our approach
shrinks the libraries of a whole system (i.e., applications, libraries, and operating system) in
Section 4.2. The resulting tailored system continues to fulfill its original purpose despite its
drastically reduced size. In this experiment, we use an embedded operating system based on
Linux, OPENWRT [13] in its most recent stable version (18.06.2) for the x86_64 architecture
as our evaluation target. OPENWRT is already optimized for size, for example by using the
lightweight musL C library [16], which makes it a particularly challenging baseline for our binary
tailoring approach. Additionally, in Section 4.3 we demonstrate the applicability of our toolchain

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



102:10 A. Ziegler et al.

to proprietary libraries by tailoring the Intel Math Kernel Library. In Section 4.4, we analyze
the potential impact of our approach on the performance of the tailored code by comparing the
load-time overhead imposed by shrinking the files with the original, unmodified libraries and
with a state-of-the-art binary debloating method [36].

4.1 Tailoring Libraries to a Single Application

We first evaluate our approach by tailoring libraries for a single application. This scenario shows
the maximum possible reduction of functions in shared libraries as only the functionality re-
quired for the specific application needs to remain present. We selected the vsrrpD FTP server
(v3.0.3) [15] which uses a total of four shared libraries, namely the musL C standard library (1ibc),
the runtime library of the GCC C compiler (1ibgcc_s) and the cryptography libraries 1ibcrypto
and libssl.

Parsing the ELF files and running the static dependency analysis (cf. Section 3.1) takes around
20 seconds on a typical workstation, with the major part spent in disassembling libcrypto and
checking the disassembled code for calls or jumps between functions. In total, the analysis identi-
fied 8 042 functions in the executable and libraries which can be used for tracing, and 7 553 calls
and jumps between functions.

In order to trigger different functionality in the VSFTPD executable and thus, in its required
shared libraries, we execute the following steps: after installing uprobes (cf. Section 3.2) for all
functions and starting the FTP server, we connect to it over network and log in using password-
based authentication. Then, we create a new directory on the server and upload a file from the
local machine to it. After disconnecting and logging back in, we delete the previously created file.
Note that our goal is to narrowly define a specific use case for the target binary and shared libraries
that can be executed again after tailoring all involved shared libraries—we explicitly do not aim
for coverage of all possible execution paths through the shared libraries (cf. Section 5).

During our test run, a total of 581 uprobe tracepoints were hit, out of which only 18 tracepoints
(~3 percent) were not detected by static analysis. Shrinking all four shared libraries—overwriting
unused functions, adapting the symbol tables and ELF metadata, and compressing the memory lay-
out on the file system—takes around 3.5 minutes, of which over 90 percent account for libcrypto,
the largest library with over 3 700 exported and over 1 000 local functions.

Tables 1a and 1b show a summary of the results for this test case, comparing the original
libraries—which already have all optional ELF structures stripped—to their use-case tailored coun-
terparts in terms of functions as well as their code and file size, respectively. We see that vSFTPD
only uses between 4 and 36 percent of functions at the interface of the libraries it includes and that
more than two-thirds of the text segment of the respective libraries consist of code unnecessary for
execution. Across all libraries, our toolchain removes 73 percent of the original code by removing
functions from the interface of the libraries and overwriting their implementations, and shrinks
the resulting ELF files by 22 percent.

While the reduction of functions and the corresponding bytes in the text segment are all in the
same range, the reduction of the total file size on disk is lower, amounting to only 18 to 52 percent.
This is explained by two restrictions to our approach: first, we only remove function code from the
shared libraries but not any data these functions might access—from the binary and the symbol
tables alone, getting correct usage data of all data elements is infeasible. This means that a library
containing a lot of data will have smaller gains compared to a library with more or larger functions.
Furthermore, platform-independent ELF metadata needs to remain in the output file. Second, the
shrinking mechanism (cf. Section 3.4) can only drop fully unused 4 KiB pages. Depending on the
initial layout of the shared library, a number of pages must be kept in the file even though only
a few bytes of them are actually occupied by required functions. In Figure 4, we show the usage

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:11

Table 1a. Details for All Libraries Used by vsFTPD, Showing the Number of Exported (Interface)
Functions and Local Functions for the Original and Tailored Versions

Shared library Baseline Tailored
Exported functions Local functions | Exported functions Local functions
libc 1 848 246 663 (-64%) 112 (-54%)
liberypto 3729 1070 869 (-77%) 162 (-85%)
libgcc_s 154 42 6 (-96%) 3 (-93%)
libssl 574 99 72 (-87%) 19 (-81%)
Total 6 305 1457 1610 (-74%) 296 (-80%)
Table 1b. Details for All Libraries Used by vsFTpD, Showing the Code Size and File Size
for the Original and Tailored Versions. The code size metric is calculated as the
number of bytes occupied by known functions, quantifying how much
code needs to remain in the libraries.
Baseline Tailored
Shared library | Code Size File size Code Size File size
libc 279 884 B 436 616 B | 91191 B (-67%) 330 120 B (-24%)
libcrypto 921596 B 1876 632B | 282009 B (-69%) 1544 856 B (-18%)
libgecc_s 46 585 B 71312 B 565 B (-99%) 34 448 B (-52%)
libssl 183 882 B 340 440 B 19 514 B (-89%) 221656 B (-35%)
Total 1431947B  2725000B | 393279B (-73%) 2131080 B (-22%)

heat map for the original 1ibc library employed while running vsrTpD, and the resulting shrunk
version where gaps in the binary file have been filled by moving the code forward on disk and
rewriting the program header table to recreate the same virtual memory layout as the original
library, with the exception of leaving inaccessible gaps for regions consisting only of unused code.

We reran the unmodified vsSFTPD executable with the use-case tailored libraries installed and
verified that all functionality exercised during our test run still worked without limitation.

In addition, we measured the resident set size for the 1ibc library—that is, the amount of physical
system memory occupied by the library’s code and data—while running and using vsrTpD. For the
original, unmodified 1libc library, a total of 368 KiB are allocated in system memory, while our
tailored version only requires 268 KiB—this reduction of 25 percent directly reflects the observed
difference in file size for the tailored library compared to its original version. This result indicates
that the unused areas of code which are not mapped into virtual memory due to our rewritten
program header table do indeed not occupy any physical memory anymore.

Lastly, we compared the results of our tailored set of libraries with a statically built executable of
vsrTPD while instructing the compiler to optimize the resulting code for size (i.e., compiling with
-0s). As described in Section 2, linking a static executable involves copying all referenced functions
from all shared libraries into the final binary file. The static VSFTPD executable has a total file size
of 2 645 KiB, while our tailored libraries and the dynamically linked executable require a total of
2 244 XiB on disk, which constitutes an advantage of our method of over 15 percent.

4.2 Whole-System Analysis and Tailoring

While analyzing a single application (cf. Section 4.1) gives detailed insight on the requirements
of a particular binary and provides an upper bound for how much code can be removed from
the libraries it uses, the custom-tailored shared libraries can only be used in combination with

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



102:12 A. Ziegler et al.

Baseline Tailored
OXO ........................ OXO
Header Header
Relocation Relocation

0x18000
0x1a000

0x24000

0x30000
0x32000

—{ 0x39000

0x44000 '
0x4c000 ﬁ—ﬂm-umi Read-only

i Data

o ——— 0x57000
m]
Read-only . Required Block
Data [ Static Dependency Analysis
a0 RO B Dynamic Tracing

0x6a000

Fig. 4. Comparison of the file contents of the original 1ibc and the tailored version for running the vsrtpD
FTP server. Shaded areas indicate required file contents. Code detected as reachable by our static depen-
dency analysis is bordered in blue, while red ranges indicate functions logged by dynamic tracing during the
execution of our test scenario. Through our modified program header table, the virtual memory layout (i.e.,
offsets between required functions) for the tailored library is identical to the original library after loading.

the analyzed application. This effectively eliminates the advantage of dynamic linking, as every
application would now have to ship their own “shared” library.

As we still want to make use of a single instance of every shared library for all applications,
we also evaluate our approach by running it on a full default installation of the embedded Linux
distribution OPENWRT. Instead of starting the static dependency analysis at a single application
binary, we traverse the library dependency tree from all binaries in the system and combine their
requirements across all libraries. In order to capture as much functionality used during the startup
of the system as possible through dynamic tracing, we create a custom start script that installs the
uprobe tracepoints for all binaries and is executed before any other start job. This allows us to
capture dynamic events from all other start jobs which might only be run once during the boot
phase of the system.

In total, the OPENWRT image contains 39 binary executables and 29 shared libraries. In total,
the shared libraries require approximately 4 MiB of space on the file system. Running the static de-
pendency analysis takes around 25 seconds, identifying 15 599 calls and jumps between functions,
and a total of 16 916 tracepoints for the dynamic uprobe tracing.

To mimic a typical interaction with an embedded system, we power on the system and wait
until all preconfigured start jobs have finished. Then, we connect to the machine via the secure
shell (SSH) protocol, list the files on the file system, and change a setting in the system firewall. As
the vsrTPD FTP server is part of the installed system, we additionally follow the steps as described

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:13

Table 2a. Details for the Libraries on the OPENWRT System. We show the number of exported
(interface) functions and the number of local functions for both the original and the
tailored variants of the most and least shrinkable libraries, as well as summarized
values for all 29 libraries deployed on the target system.

Shared library Baseline Tailored
Exported functions Local functions | Exported functions Local functions

libgcc_s 154 42 7 (-95%) 3 (-93%)
libssl 574 99 72 (-87%) 19 (-81%)
libsmartcols 147 355 69 (-53%) 45 (-87%)
libblkid 106 598 60 (-43%) 83 (-86%)
libcrypto 3729 1070 869 (-77%) 162 (-85%)
libc 1848 246 987 (-47%) 173 (-30%)
libsetlbf 2 4 2 (-0%) 4 (-0%)
Total (n = 29) 7927 3429 2982 (-62%) 1026 (-70%)

in Section 4.1 to transfer files to the system. During the startup phase and the execution of our
test scenario, a total of 3 188 dynamic tracepoints were triggered. Out of those, 149 functions
(~5 percent) in the shared libraries were not detected by the static dependency analysis. Shrinking
all 29 shared libraries takes approximately 4 minutes, with most time spent on libcrypto, taking
roughly 3.5 minutes to complete all steps necessary.

The results of tailoring all libraries in the system are summarized in Table 2a in terms of func-
tions and in Table 2b with respect to code and file size. Overall, our toolchain removes 62 percent of
all exported and 70 percent of all local functions, and reduces the combined file size of all shared
libraries in the system by 17 percent down to 3.2 MiB, while the number of bytes occupied by
functions in the libraries decreases by nearly 63 percent. The system with all tailored libraries
installed passed all previously executed test cases, while the amount of mapped memory for the
whole system decreased by 4 percent.

Figure 5 shows the usage heat map for the musL C standard library, indicating how often cer-
tain functions have been executed from any program in the whole system during boot and the
execution of our test scenarios. Through manual inspection, we found that the placement of the
functions inside the shared library corresponds to groups of higher-level features which the li-
brary provides, such as string processing or network communication. This grouping resembles
the structure of the source code: typically, a developer will put related functionality in either the
same file or in a directory with other files, which will be compiled into individual “feature-specific”
object files before bundling them together in the final shared library image. For our approach, this
is very beneficial: if the target program(s) do not require certain features, contiguous areas of the
library will be unused and can be overwritten.

4.3 Tailoring the Intel Math Kernel Library

While our approach does not involve the source code of the respective executables and libraries
in any way, all of the files analyzed in Sections 4.1 and 4.2 are distributed as open-source software
and could be individually compiled while building the OPENWRT image.

To further underline the technical independence of our tools from the source code, we obtained
the proprietary Math Kernel Library (MKL) [10]. This set of shared libraries is developed by Intel

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



102:14

A. Ziegler et al.

Table 2b. Details for the Libraries on the OPENWRT System, Showing the Code Size (the Number
of Bytes Occupied by Known Functions) and the File Size for both the Original and the
Tailored Variants of the Most and Least Shrinkable Libraries, as well as Summarized Values
for all 29 Libraries Deployed on the Target System

Shared library Baseline Tailored
Code Size File size Code Size File size
libgce_s 46 585 B 71312 B 811 B (-98%) 38 544 B (-46%)
libssl 183 882 B 340 440 B 19 514 B (-89%) 221 656 B (-35%)
libsmartcols 94 357 B 169 728 B 22 699 B (-76%) 116 480 B (-31%)
libblkid 157 450 B 277 120 B 30 437 B (-81%) 195 200 B (-30%)
libcrypto 921596 B 1876 632 B 282 009 B (-69%) 1544 856 B (-18%)
libc 279 884 B 436 616 B 158 840 B (-43%) 383 368 B (-12%)
libsetlbf 222 B 5672 B 222 B (-0%) 5672 B (-0%)
Total (n = 29) 2 065 438 B 4086024 B 773 330 B (-63%) 3410 184 B (-17%)
k0 libc.so
Header
Relocation

Common Mathematical Functions

Complex Number Arithmetic

Localization

Socket Communication

Regular Expressions

File Operations
String Functions

Thread Control
Time Functions

sttt 2, T
e
|

0x62000 e

Read-only

Data

B
\ — Executions
{%ﬂ:ﬂfﬁ [ ] unused
e i M L l1-10
{ o iy D S 100
I < 1000
-tk B < 10000
=S B < 100000
Eﬂ_%;-@gfu . M > 100000

max 1749344

Fig. 5. Heatmap of used functions in the text segment of the musL C library [16] while executing the whole-
system analysis. Functions not executed (and thus, not needed in the deployed system) are left white. Darker
colors indicate more executions. Additionally, we annotate ranges of the code section with their correspond-

ing higher-level feature.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:15

Table 3a. Results for Tailoring All Libraries Used by the Intel Math Kernel Library
mkl-lab-solution Example Application, Measuring the Number of Exported
and Local Functions in the Original and Tailored Versions

Shared library Baseline Tailored
Exported functions  Local functions | Exported functions  Local functions

libmk1_avx2.so 10 128 5386 27 (-100%) 24 (-100%)
libmkl_intel_lp64.so 17 940 60 59 (-100%) 13 (-78%)
libmk1_vml_avx2.so 2012 1358 7 (-100%) 0 (-100%)
libmkl_rt.so 26 692 10 51 (-100%) 7 (-30%)
libiomp5.so 1143 1822 78 (-93%) 654 (-64%)
libtbbmalloc.so.?2 31 321 7 (-77%) 150 (-53%)
libmkl_intel_thread.so 6709 1632 4614 (-31%) 1470 (-10%)
libmk1_core.so 18 670 977 16 763 (-10%) 616 (-37%)
Total 83 325 11 566 21 606 (-74%) 2934 (-75%)

Table 3b. Results for Tailoring All Libraries Used by the Intel Math Kernel Library mkl1-lab-solution
Example Application, Showing the Code Size and File Size for the Original and the Tailored Versions

Shared library Baseline Tailored
Code Size File size Code Size File size

1ibmk1_avx2.so 50 333KiB 54 202 KiB 328 KiB (-99%) 4 674 KiB (-91%)
libmkl_intel_lp64.so 6 125 KiB 9 675 KiB 34 KiB (-99%) 3 655 KiB (-62%)
libmk1l_vml_avx2.so 6 582 KiB 11 906 KiB 1 KiB (-100%) 5 342 KiB (-55%)
libmkl_rt.so 2233KiB 4940 KiB 21 KiB (-99%) 2932 KiB (-41%)
libiomp5.so 1207 KiB 1 842 KiB 469 KiB (-61%) 1 258 KiB (-32%)
libtbbmalloc.so.2 118 KiB 208 KiB 57 KiB (-52%) 180 KiB (-13%)
libmkl_intel_thread.so 28 340 KiB 35661 KiB | 23 143 KiB (-18%) 31 069 KiB (-13%)
libmkl_core.so 54793 KiB 66 234 KiB | 51 160 KiB (-7%) 62 998 KiB (-5%)
Total 149 732 KiB 184 667 KiB | 75 212 KiB (-50%) 112 107 KiB (-39%)

and shipped only as binaries. It offers a broad range of mathematical functions which are optimized
to increase performance when running on Intel processors.

Additionally, Intel provides several example applications demonstrating how to employ the
MKL for different purposes. For our evaluation, we used Intel’s mk1-1ab-solution [9] application,
which multiplies double-precision matrices with a processor-optimized implementation.

In total, the example application uses eight shared libraries from the MKL, taking up 180 MiB on
the file system. The static analysis step for the application and shared libraries takes 65 minutes,
and recognizes 71 636 calls and jumps between functions, as well as 56 961 function entry points
for the dynamic analysis step.

After installing all tracepoints, the application is run multiple times with varying input matrix
sizes, representing our target use case. During the execution, a total of 547 tracepoints were hit, out
of which 287 (~52 percent) were not detected statically. The function removal and file shrinking
steps take around 151 minutes. Note that our prototype is not yet optimized for performance, and
we are convinced that we can still significantly speed up this process. We show the results for
tailoring all libraries in terms of functions in Table 3a and in terms of code and file size in Table 3b.

Overall, we could reduce the amount of code in the required shared libraries by 50 percent, and
shrink the file size of all libraries to around 110 MiB, a reduction of 39 percent, while still fulfilling

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



102:16 A. Ziegler et al.

Table 4. Average Load Time Overhead for Running echo
with Different Versions of the musL C Library

Version of the musLC library | Load Time Overhead
Original 239 ps = 4 ps
Shrunk (our method) 240 us + 3 ps
Piece-Wise Compiled [36] 43 174 ps + 180 us

the original use case (i.e., running the example application for different matrix sizes). These results
are in consistency with the reduction rates measured in Sections 4.1 and 4.2, underlining that our
approach is fully applicable to any shared library regardless of access to the source code.

4.4 Comparison of Performance Impact

Besides saving space on the file system and removing unnecessary code from the shared libraries,
we also evaluate our approach with respect to the overhead it imposes on the resulting shared
libraries and compare it to a state-of-the-art compiler- and loader-based debloating method.

As described in Section 3.4, our approach changes the placement of code inside the binary files
and generates new, and possibly more, LOAD statements describing how the file’s contents should
be mapped into virtual memory. Other than this modified program header, no code is added to the
libraries, and no modification to the loader is necessary. This is another advantage compared to re-
lated work, where either modifications to the loader, an additional runtime system or a hypervisor
are required (e.g., [28, 36, 41]).

Quach et al. [36] developed piece-wise compilation and loading which uses control flow informa-
tion present during the compilation of a shared library and writes function dependency data into
an additional section in the binary file. Using a modified loader, their approach on average makes
79 percent of code unavailable across all tools in the GNU coreutils suite. As the implementation
of Quach et al. [36] is available [37], we used their toolchain to create a debloating-enabled version
of the musL C library and loader, and built the simple echo text display program of the coreutils
suite to use the piece-wise loader. We also ran our approach on the unmodified must C library and
created a shrunk version of the musL 1ibc custom-tailored to echo.

Our approach invalidated 82 percent of code, which matches the reduction rates reported
by Quach et al. [36] and shrank the resulting library by 38 percent to a size of 266 KiB. In con-
trast, the piece-wise dependency information alone takes up more than 4 MiB, and thus, more than
90 percent of the space in the piece-wise compiled library. Additionally, the piece-wise loading
mechanism needs to parse the dependency information while loading the library and change the
contents of mapped memory when a contained function is not used, resulting in significant load-
time overhead.

To measure the overhead imposed by loading the library, we executed the echo program—which
requires no other libraries than the musL C library—in a loop, printing the current loop iteration
to the null device, and measuring the time required for its execution. As echo is a very simple
program, the measured times effectively represent the overhead imposed by loading the program
and the musL C library into memory.

Table 4 shows the times we measured over 1 000 000 iterations of running echo with every vari-
ant of the musL C library. The shrunk library, using 12 program headers, is as fast as its unmodified
counterpart with two program headers (one for code, one for data), taking around 240 microseconds
to load and execute echo. In comparison, the piece-wise compiled version is more than two orders
of magnitude slower, with 43 milliseconds per load and execution.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:17

This result shows the great potential for our approach especially for small systems as the reduc-
tion in terms of executable code is on par with existing compiler-enabled solutions with almost
no measurable overhead in the deployed system while also shrinking the file on the file system
considerably.

5 DISCUSSION

As our approach removes code from shared libraries, we have to ensure that all functions are
retained that are required for the target scenario. In the following, we discuss the key points of
our approach with respect to safety and reliability.

Use-Case Coverage. First of all, it is important to emphasize that our goal is to customize
the shared libraries to a distinct use case. Our definition of the target use case entails a precise
specification of the functionality and behavior that the application or system needs to be able to
fulfill on a concrete hardware platform after applying our toolchain. In this realm, we differentiate
between explicitly referenced functionality, which we obtain by static analysis, starting from the
import table of the binary (cf. Section 3.1), and implicitly referenced functionality, which we obtain
by dynamic tracing only (cf. Section 3.2). For the latter, we assume that the use case is well-defined
and we are able to exercise all required functionality during the dynamic analysis phase. In practice,
this requires full test coverage of the specification in order to trigger the required functionality in
the top-level binary and, hence, all imported functions from the shared libraries.

While this might appear as a strong limitation of our approach, extensive test coverage is com-
mon practice in modern development processes (e.g., test-driven development [2]). It is especially
common for our targeted domains of safety-critical embedded systems, such as automotive or
avionics, where test suites with full coverage of the specified system behavior are mandatory for
certification purposes. In other cases, automatic test-case generation techniques based on sym-
bolic execution [34] could be employed to derive the necessary tests, which, however, is out of
the scope of this paper. Furthermore, our approach could also be used itself to derive the required
functionality iteratively (detailed below).

In consequence, our approach is sound with respect to the test coverage of the specified use case,
but not necessarily complete with respect to covering all potentially reachable functions within the
libraries. We intentionally do not aim for full coverage for implicitly accessible functionality, as
this would foil the goal of use-case specific tailoring: Many library implementations are bloated by
variants for various hardware and system environments and perform means of dynamic dispatch
at run-time to trigger the actual implementation, depending on the detected system environment.
For example, the Intel MKL switches to CPU-specific optimization variants at run-time, while the
C standard library can adapt to single- and multi-threaded environments. With full coverage, all
variants would always be included, even though the concrete hardware and software system will
never trigger them.

Safety and Security. If, nevertheless, a user manages to trigger functionality outside the spec-
ification of the original use case (i.e., by hitting a previously uncovered bug or facing a buffer-
overflow attack that leads to a branch to a removed function), the resulting behavior is not unde-
fined, but always fail-safe as we do not reuse the virtual address space of the removed functions.
Instead, the function in question was either overwritten with an invalid instruction or resides in an
unmapped gap in virtual memory. In both cases, the CPU will trap into the operating system, which
signals the situation as an exception to the process, including the address of the missing function.

During development, this information could also be used by the developer to iteratively improve
the test coverage for her use case. In a safety-critical production system, it would simply trigger
the mandatory exception handling procedure to take appropriate action (e.g., restart the process or

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



102:18 A. Ziegler et al.

reboot the system). We stress that in no case the system fails silently, which would imply a risk of
safety or security breaches by undefined behavior. In a sense, tailoring does even reduce the attack
surface of the resulting system, as “unexpected” library calls (no longer unnoticed) are generally
considered as an indicator for an attack in the security literature [40].

Future Work. Currently, our static analysis (cf. Section 3.1) only uses the information from the
symbol tables as well as from the disassembled code to gather insights into connections between
functions in the shared libraries. While this information can always be extracted from any shared
library, we expect that the static detection of dependencies can be improved further by imple-
menting additional extraction passes which specifically search for compiler- or language-specific
patterns in the ELF files.

In addition, our approach only removes code from the shared libraries but leaves all data un-
touched. With more extensive analysis steps or support from the binary generation process, we
could also detect which data elements become unused when removing code, and improve the
shrinking results even further.

6 RELATED WORK

Compared to the state of the art, our method to create custom-tailored libraries for individual use
cases stands out particularly for two reasons. First, our approach works on binary files alone (i.e.,
without requiring access to the source code). Second, our method does not require any additional
runtime code during execution, which could lead to increased overhead. These two features make
our approach especially beneficial for the application to embedded systems. However, customizing
software to fit a particular use case is an active field of research. In this section, we discuss related
work and compare our approach with the current state of the art.

Code Size Reduction. Quach et al. [35] present a study measuring the amount of unnecessary
code in the operating system, binary applications and Python programs, finding that on average
only 31 percent of functions in shared libraries are imported, and only 12 percent of functions are
actually executed in a typical use case. In their follow-up work [36], they developed the piece-wise
compilation and loading method, a compiler- and loader-assisted mechanism to reduce the amount
of executable code loaded by a process. Across the coreutils suite, they report an average reduc-
tion of the mapped code by 86 percent. However, their approach requires access to the source code,
employment of their compiler plugin and loader, and incurs high load time overhead compared to
an unmodified or binary-tailored shared library (cf. Section 4.4).

Mururu et al. [28] propose Blanklt, a framework to reduce the number of dynamic functions
linked to the application by only loading functions deemed required for a given call into a li-
brary based on a decision-tree based prediction mechanism. Their approach reduces the exposed
code surface by over 97 percent but adds an average runtime overhead of 18 percent. Again, their
method requires recompilation of all targeted libraries with their compiler plugin and adds addi-
tional runtime code to the application.

CHISEL by Heo et al. [19] is a system using reinforcement learning against a specification script
which executes test cases covering desired functionality in the target application, and uses delta
debugging to remove parts of the original source code. Their tool removes 89 percent of statements
while still covering the functionality exercised by the specification script, but runs for up to 12
hours on a set of GNU utilities (tar, grep, bzip).

Malecha et al. [25] provide OCCAM, a tool allowing the specialization of applications to their de-
ployment context. Using partial evaluation, their approach optimizes the code by propagating con-
stant values of function parameters into the functions, allowing for removal of unreachable code
across the main application and libraries during compilation. The specialization process slightly

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:19

improves the performance and manages to shrink the module size of the C standard library by
78 percent for a basic web server.

Similarly, Sharif et al. [38] present TRIMMER, a specialization tool which uses user-provided
configuration data to automatically trim unnecessary code from an application. They use input
specialization for command-line arguments, a custom loop unrolling method and interprocedural
constant propagation in the LLVM compiler to achieve mean binary size reduction of 21 percent,
and a maximum reduction of 75 percent.

Davidsson et al. [11] propose a method to create application-specific software stacks by using
a compiler plugin which analyses the control flow inside shared libraries and eliminates func-
tions that are not reachable from the targeted application. Creating custom-tailored versions of
the must C library for different web server applications and language interpreters, their approach
can remove 70 percent of functions and 71 percent of code on average.

All previously mentioned approaches require to recompile the applications and shared libraries
using a custom compiler or a compiler plugin, and often incur non-negligible overhead during
runtime (cf. Section 4.4). Our approach, on the other hand, can be used even when source code is
unavailable and achieves similar code reduction rates with no runtime overhead.

Mulliner and Neugschwandtner [27] are using a combination of static analysis, abstract inter-
pretation, and runtime-based whitelisting to make code unavailable in Windows DLLs (dynamic
link libraries). To enforce the removal of unused code, they need to inject their own monitoring
library when the target application starts. Using their tool, they removed 28 percent of code from
the proprietary ADOBE READER application.

Kroes et al. [22] are taking another route to specializing applications: their BinRec framework
recovers the control flow graph by lifting the target binary into compiler intermediate language,
rewriting the code based on dynamic analysis and symbolic execution and recompiling the
customized application back to binary code. Their approach induces a runtime overhead of
39-44 percent on already optimized binaries while reducing the number of instructions by
72 percent compared to the original program.

Chen et al. [8] describe TOSS, an automated customization approach for server applications by
running the target program in a whole-system emulator and using execution traces, taint analysis
and symbolic execution to identify code paths depending on values of certain fields inside network
messages. Based on the observed behavior, they rewrite the binary on basic block granularity,
reducing the number of instructions by 60 percent.

Another work aimed at reducing the code available during runtime is presented by Mishra and
Polychronakis [26] in their tool SHREDDER. By using backward data analysis from “critical” API
functions, they derive legitimate parameter values for those functions and enforce this fixed set of
values via API call interception. This method breaks 90-100 percent of exploit payloads and could
be used in addition to our approach to further harden the shrunk libraries on the target system.

Customizing a system for a use case does not only concern the user space applications but ideally
takes the operating system into account as well. As an example, Kurmus et al. [23] present an
automated approach to tailor the Linux kernel by mapping traced functions back to configuration
options and recompiling the kernel with this customized configuration file. They report that over
80 percent of kernel code can be removed for a given use case. However, their approach relies on
the presence of a central configuration system and recompilation of the source code to work.

KASR by Zhang et al. [41], on the other hand, is a system which achieves reduction of executable
code agnostic of the operating system by acting as a hypervisor for running the target environment
in a virtual machine, and selectively activating required code based on an offline training phase.
They achieve a reduction of active code pages by 64 percent, with minimal run time overhead.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



102:20 A. Ziegler et al.

Dynamic Tracing. As our approach uses dynamic tracing to refine the results of static analysis,
we need accurate insight into the execution of application and library code on the target system.

Bernat and Miller [3] present an anywhere, any-time binary instrumentation framework which
can instrument binaries based on a reconstruction of the control flow graph and inserting code
snippets into the target. Their method would mandate inserting additional code into every tar-
geted shared library which we deem undesirable for the application of our approach in embedded
systems.

Pin by Luk et al. [24] adds instrumentation to executables while they are running by injecting
a small virtual machine and just-in-time compiler into the target process which can trace single
instructions as they are translated. However, using Pin would also require us to attach their frame-
work to every process in the system, leading to significant runtime overhead and increased storage
and memory consumption.

With their work on Rapid-Toggling Probes [6] and Instruction Punning [7], Chamith et al.
present lightweight instrumentation frameworks for the x86_64 architecture. These frameworks
again require to inject an additional shared library into every runnning process to handle the
probes.

All of the works noted above target dynamic instrumentation of single applications, and require
to introduce additional shared libraries or even whole virtual machine frameworks into the tar-
geted processes to allow tracing at arbitrary points. For our scenario, however, we only need data
about the execution of known functions in shared libraries, regardless of the process they are
loaded into.

An analysis framework for collecting such information is shown by Dovgalyuk et al. [14]. They
propose a non-intrusive introspection framework for Linux-based embedded systems which allows
monitoring of system calls into the operating system as well as calls into shared libraries. Unfor-
tunately, their framework is built into an emulator and cannot be used on bare-metal hardware.

On various operating systems like the different BSD variants and macOS, the DTrace [4, 20]
tracing framework allows simultaneous inspection of events in applications and the operating
system using a common scripting language. While support was recently ported to the Windows
operating system as well [39], the upstream Linux kernel does not implement DTrace capabilities
due to licensing issues.

As we demonstrated our work on Linux, we are using the dynamic uprobes [21] tracing in-
frastructure, which also powers frameworks like SystemTap [32] and the perf tools [12]. This
allows us to leverage operating system support to reliably capture the execution of functions in
any shared library in the system.

7 CONCLUSION

The ongoing shift from special-purpose hardware components to architectures with centralized
data processing units in the embedded domain is accompanied by the consolidation of software
components on those systems. In particular, the reuse of standard software components in the
form of shared libraries eases the development and maintenance of integrated software stacks.
However, due to their generic nature, these libraries often entail more functionality than required
for a distinct use case. In this paper, we present a lightweight method for tailoring shared libraries
to a given use case without requiring access to the source code. With our approach, we reduce
the amount of available code in all libraries in a full Linux-based system by 63 percent and shrink
the corresponding files by 17 percent. Furthermore, we compare our method to a state-of-the-art
binary debloating method and report a comparable reduction of available code while incurring no
overhead during load or runtime.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:21

SOURCE CODE AND EVALUATION DATA

The source code of our tools for static and dynamic analysis (cf. Sections 3.1 and 3.2), function
removal (cf. Section 3.3), and shrinking the ELF files (cf. Section 3.4), and raw data for all evaluation
scenarios presented in Section 4 are available at https://gitlab.cs.fau.de/i4/pub/elftailor.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their detailed and helpful feedback. This work was
partially supported by the German Research Foundation (DFG) under grant no. LO 1719/3-1
(“CADOS”) and project no. 146371743 (TRR 89 “Invasive Computing”).

REFERENCES

[1] Carliss Y. Baldwin and Kim B. Clark. 2000. Design Rules: The Power of Modularity. MIT Press.

[2] Kent Beck. 2003. Test-driven Development: By Example. Addison-Wesley Professional.

[3] Andrew R. Bernat and Barton P. Miller. 2011. Anywhere, any-time binary instrumentation. In Proceedings of the 10th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools (PASTE’11). ACM, New York, NY, USA,
9-16. DOI : https://doi.org/10.1145/2024569.2024572

[4] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. 2004. Dynamic instrumentation of production sys-
tems. In Proceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC’04). USENIX Association,
Berkeley, CA, USA, 2-2. http://dl.acm.org/citation.cfm?id=1247415.1247417

[5] Samarjit Chakraborty, Martin Lukasiewycz, Christian Buckl, Suhaib Fahmy, Naehyuck Chang, Sangyoung Park,
Younghyun Kim, Patrick Leteinturier, and Hans Adlkofer. 2012. Embedded systems and software challenges in electric
vehicles. In Proceedings of the 2012 Conference on Design, Automation and Test in Europe (DATE’ 12). 424-429.

[6] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro, and Ryan R. Newton. 2016. Living on the edge: Rapid-
toggling probes with cross-modification on x86. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI'16). ACM, New York, NY, USA, 16-26. DOI : https://doi.org/10.1145/
2908080.2908084

[7] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro, and Ryan R. Newton. 2017. Instruction punning: Lightweight
instrumentation for x86-64. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2017). ACM, New York, NY, USA, 320-332. DOI : https://doi.org/10.1145/3062341.3062344

[8] Yurong Chen, Shaowen Sun, Tian Lan, and Guru Venkataramani. 2018. TOSS: Tailoring online server systems through
binary feature customization. In Proceedings of the 2018 Workshop on Forming an Ecosystem Around Software Trans-
formation (FEAST’18). ACM, New York, NY, USA, 1-7. DOI: https://doi.org/10.1145/3273045.3273048

[9] Intel Corporation. 2011. Simple MKL Matrix Multiply C example. Retrieved July 30, 2019 from http://software.intel.
com/sites/default/files/article/171460/mkl-lab-solution.c

[10] Intel Corporation. 2019. Intel Math Kernel Library (Intel MKL). Retrieved July 30, 2019 from https://software.intel.
com/en-us/mkl

[11] Nicolai Davidsson, Andre Pawlowski, and Thorsten Holz. 2019. Towards automated application-specific software
stacks. arXiv e-prints, Article arXiv:1907.01933 (Jul 2019). https://arxiv.org/abs/1907.01933

[12] Arnaldo Carvalho de Melo. 2009. Performance counters on linux. In Linux Plumbers Conference 2009.

[13] The OpenWRT developers. 2004. OpenWRT, a highly extensible GNU/Linux distribution for embedded devices. Retrieved
July 30, 2019 from https://openwrt.org/.

[14] Pavel Dovgalyuk, Natalia Fursova, Ivan Vasiliev, and Vladimir Makarov. 2018. Introspection of the linux-based embed-
ded firmwares: Work-in-progress. In Proceedings of the International Conference on Embedded Software (EMSOFT’18).
IEEE Press, Piscataway, NJ, USA, Article 3, 2 pages. http://dl.acm.org/citation.cfm?id=3283535.3283538.

[15] Chris Evans. 2000. vsftpd: Very Secure FTP Daemon. Retrieved July 30, 2019 from http://vsftpd.beasts.org.

[16] Rich Felker. 2019. The musl C standard library. Retrieved July 30, 2019 from https://www.musl-libc.org/.

[17] Arie Nicolaas Habermann, Lawrence Flon, and Lee W. Cooprider. 1976. Modularization and hierarchy in a family of
operating systems. Commun. ACM 19, 5 (1976), 266—-272.

[18] Bernd Hardung, Thorsten K6lzow, and Andreas Kriiger. 2004. Reuse of software in distributed embedded automotive
systems. In Proceedings of the 4th ACM Conference on Embedded Software (EMSOFT’04). ACM Press, New York, NY,
USA, 203-210.

[19] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective program debloating via reinforce-
ment learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS’18).
ACM, New York, NY, USA, 380-394. DOI : https://doi.org/10.1145/3243734.3243838

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.


https://gitlab.cs.fau.de/i4/pub/elftailor
https://doi.org/10.1145/2024569.2024572
http://dl.acm.org/citation.cfm?id$=$1247415.1247417
https://doi.org/10.1145/2908080.2908084
https://doi.org/10.1145/2908080.2908084
https://doi.org/10.1145/3062341.3062344
https://doi.org/10.1145/3273045.3273048
http://software.intel.com/sites/default/files/article/171460/mkl-lab-solution.c
http://software.intel.com/sites/default/files/article/171460/mkl-lab-solution.c
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://arxiv.org/abs/1907.01933
https://openwrt.org/
http://dl.acm.org/citation.cfm?id$=$3283535.3283538
http://vsftpd.beasts.org
https://www.musl-libc.org/
https://doi.org/10.1145/3243734.3243838

102:22 A. Ziegler et al.

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]
(32]

[33]

(34]

(35]

(36]

(37]

(38]

(39]

Sun Microsystems Inc. 2008. Dynamic Tracing Guide. Retrieved July 30, 2019 from http://dtrace.org/guide/.

Jim Keniston, Ananth Mavinakayanahalli, Prasanna Panchamukhi, and Vara Prasad. 2007. Ptrace, utrace, uprobes:
Lightweight, dynamic tracing of user apps. In Proceedings of the Linux Symposium 2007. 215-224.

Taddeus Kroes, Anil Altinay, Joseph Nash, Yeoul Na, Stijn Volckaert, Herbert Bos, Michael Franz, and Cristiano
Giuffrida. 2018. BinRec: Attack surface reduction through dynamic binary recovery. In Proceedings of the 2018
Workshop on Forming an Ecosystem Around Software Transformation (FEAST’18). ACM, New York, NY, USA, 8-13.
DOT : https://doi.org/10.1145/3273045.3273050

Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin Rothberg, Andreas Ruprecht,
Wolfgang Schréder-Preikschat, Daniel Lohmann, and Rudiger Kapitza. 2013. Attack surface metrics and auto-
mated compile-time OS kernel tailoring. In Proceedings of the 20th Network and Distributed Systems Security Sym-
posium (NDSS’13). The Internet Society, The Internet Society. https://www.ibr.cs.tu-bs.de/users/kurmus/papers/
kurmus-ndss13.pdf.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. 2005. Pin: Building customized program analysis tools with dynamic instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’05).
ACM, New York, NY, USA, 190-200. DOI : https://doi.org/10.1145/1065010.1065034

Gregory Malecha, Ashish Gehani, and Natarajan Shankar. 2015. Automated software winnowing. In Proceedings of
the 30th Annual ACM Symposium on Applied Computing (SAC’15). ACM, New York, NY, USA, 1504-1511. DOI : https://
doi.org/10.1145/2695664.2695751

Shachee Mishra and Michalis Polychronakis. 2018. Shredder: Breaking exploits through API specialization. In Pro-
ceedings of the 34th Annual Computer Security Applications Conference (ACSAC’18). ACM, New York, NY, USA, 1-16.
DOI:https://doi.org/10.1145/3274694.3274703

Collin Mulliner and Matthias Neugschwandtner. 2015. Breaking Payloads with Runtime Code Stripping and
Image Freezing. (2015). https://www.blackhat.com/docs/us-15/materials/us-15-Mulliner-Breaking-Payloads-With-
Runtime-Code-Stripping- And-Image-Freezing.pdf. Black Hat USA, Las Vegas, NV.

Girish Mururu, Chris Porter, Prithayan Barua, and Santosh Pande. 2019. Binary debloating for security via demand
driven loading. arXiv e-prints, Article arXiv:1902.06570 (Feb 2019). https://arxiv.org/abs/1902.06570

Nicolas Navet, Aurélien Monot, Bernard Bavoux, and Fran¢oise Simonot-Lion. 2010. Multi-source and multicore au-
tomotive ECUs - OS protection mechanisms and scheduling. In Proceedings of the 2010 IEEE International Symposium
on Industrial Electronics (ISIE’10). 3734-3741. https://doi.org/10.1109/ISIE.2010.5637677

Anh Quynh Nguyen. 2019. Capstone: The Ultimate Disassembler. Retrieved July 30, 2019 from https://www.
capstone-engine.org/.

The AUTOSAR partnership. 2019. Automotive Open System Architecture (AUTOSAR). Retrieved July 30, 2019 from
https://www.autosar.org/standards/adaptive-platform/.

Vara Prasad, William Cohen, F. C. Eigler, Martin Hunt, Jim Keniston, and J. Chen. 2005. Locating system problems
using dynamic instrumentation. In Proceedings of the Linux Symposium 2005. Citeseer, 49-64.

Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas Stauner. 2007. Software engineering for automo-
tive systems: A roadmap. In Future of Software Engineering (FOSE’07) (ICSE’07). 55-71. DOI : https://doi.org/10.1109/
FOSE.2007.22

Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet, Michael Lowry, Suzette Person, and
Mark Pape. 2008. Combining unit-level symbolic execution and system-level concrete execution for testing nasa
software. In Proceedings of the 2008 International Symposium on Software Testing and Analysis (ISSTA’08). ACM, New
York, NY, USA, 15-26. https://doi.org/10.1145/1390630.1390635

Anh Quach, Rukayat Erinfolami, David Demicco, and Aravind Prakash. 2017. A multi-OS cross-layer study of bloating
in user programs, kernel and managed execution environments. In Proceedings of the 2017 Workshop on Forming an
Ecosystem Around Software Transformation (FEAST’17). ACM, New York, NY, USA, 65-70. https://doi.org/10.1145/
3141235.3141242

Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through piece-wise compilation and loading.
In Proceedings of the 27th USENIX Security Symposium (USENLX Security’18). USENIX Association, Berkeley, CA, USA,
869-886. https://www.usenix.org/conference/usenixsecurity18/presentation/quach.

Anh Quach, Aravind Prakash, and Lok Yan. 2018. Piecewise debloating toolchain. Retrieved July 30, 2019 from
https://github.com/bingseclab/piecewise.

Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018. TRIMMER: Application specialization
for code debloating. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE 2018). ACM, New York, NY, USA, 329-339. https://doi.org/10.1145/3238147.3238160.

Andrey Shedel, Gopikrishna Kannan, and Hari Pulapaka. 2019. DTrace on Windows. Retrieved July 30, 2019 from
https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/DTrace-on- Windows/ba-p/362902.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.


http://dtrace.org/guide/
https://doi.org/10.1145/3273045.3273050
https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf
https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/2695664.2695751
https://doi.org/10.1145/2695664.2695751
https://doi.org/10.1145/3274694.3274703
https://www.blackhat.com/docs/us-15/materials/us-15-Mulliner-Breaking-Payloads-With-Runtime-Code-Stripping-And-Image-Freezing.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Mulliner-Breaking-Payloads-With-Runtime-Code-Stripping-And-Image-Freezing.pdf
https://arxiv.org/abs/1902.06570
https://doi.org/10.1109/ISIE.2010.5637677
https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://www.autosar.org/standards/adaptive-platform/
https://doi.org/10.1109/FOSE.2007.22
https://doi.org/10.1109/FOSE.2007.22
https://doi.org/10.1145/1390630.1390635
https://doi.org/10.1145/3141235.3141242
https://doi.org/10.1145/3141235.3141242
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://github.com/bingseclab/piecewise
https://doi.org/10.1145/3238147.3238160
https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/DTrace-on-Windows/ba-p/362902

Honey, | Shrunk the ELFs: Lightweight Binary Tailoring of Shared Libraries 102:23

[40] Peter Szor. 2007. Return-to-LIBC attack blocking system and method. US Patent 7,287,283.

[41] Zhi Zhang, Yueqiang Cheng, Surya Nepal, Dongxi Liu, Qingni Shen, and Fethi Rabhi. 2018. KASR: A reliable and prac-
tical approach to attack surface reduction of commodity OS kernels. In Research in Attacks, Intrusions, and Defenses
(RAID 2018). Springer International Publishing, Cham, 691-710.

Received April 2019; revised June 2019; accepted July 2019

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 102. Publication date: October 2019.



