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Abstract

When deployed in geo-distributed environments, existing
state-machine replication protocols require at least one wide-
area communication step for establishing a total order on
client requests. For use cases in which clients are not inter-
ested in the actual result of a request, but just need a guaran-
tee that the request will be processed eventually, this prop-
erty usually incurs unnecessarily high response times. To
address this problem we present Weave, a cloud-based geo-
replication protocol that relies on replica groups in multiple
geographic regions to efficiently assign stable sequence num-
bers to incoming requests. This approach enables Weave to
offer guaranteed writes which in the absence of faults only
wait for communication within a client’s local replica group
to produce an execution guarantee for a particular sequence
number. Our experiments with a distributed queue and a
replicated log show that guaranteed writes can significantly
improve response times of geo-replicated applications.
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1 Introduction

Geo-distributed state-machine replication [30] enables sys-
tems to tolerate failures of entire data centers by maintain-
ing consistent copies of an application’s state at different
geographic sites. Relying on traditional protocols such as
Paxos [7, 16, 18, 19] for this purpose, one of the sites acts as
leader and proposes an order on incoming client requests,
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which then needs to be confirmed by a majority of replicas
before the requests can be executed. Although effective, this
approach has two major drawbacks with regard to latency:
(1) Due to replicas being distributed across different regions,
the ordering of requests requires communication over wide-
area networks and therefore usually results in high response
times. (2) As all client requests must reach the leader before
they can be ordered, the end-to-end latency experienced by
clients may vary significantly depending on the geographic
location of a client relative to the leader replica.
Existing solutions for mitigating these problems include

the use of weighted quorums to increase the chance of a
fast consensus [31] as well as the optimized selection of the
leader location [12]. Alternatively, it is possible to design a
system in such a way that multiple replicas share the respon-
sibilities of the leader [10, 23], thereby allowing each client
to submit requests to the replica closest to its own location.
Unfortunately, these approaches still share one property:
They all require at least one wide-area communication step
before being able to guarantee the execution of a client re-
quest. In particular, this unnecessarily increases response
times for use cases in which clients are not interested in the
actual results of (write) requests, but only want to be sure
that their requests are executed eventually. For example, if
the replicated application implements a distributed message
queue through which a set of producer clients communicate
with a set of consumer clients [9], it is often sufficient for a
producer to learn that the enqueue operation of a message
will succeed in the future and the message therefore will not
be lost. Another typical example of such a use case is a reli-
able geo-replicated log persistently storing the modifications
to an application’s state [27], especially if the associated ap-
plication already can respond to the client once it has proof
that a modification will eventually be included in the log.
In this paper we present Weave, a Paxos-based geo-re-

plication protocol with multiple leaders that (in addition
to regular writes) features guaranteed writes to address the
problems discussed above. Unlike regular writes, guaran-
teed writes produce replies that do not contain the actual
result of an operation, but instead represent a guarantee
to the client that the request will later be processed at a
specific sequence number. Leveraging the availability char-
acteristics provided by modern cloud infrastructures such
as Amazon EC2, Weave’s novel architecture enables the
protocol to perform guaranteed writes without involving
wide-area communication. For this purpose, Weave models
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a system as a collection of replica groups that is distributed
across multiple geographic regions; within each region, the
replicas of a group are hosted in separate cloud-provided
fault domains (“availability zones” [2]). In combination with
the use of optimized quorums [14], this setting in the normal
case allows Weave to safely assign stable sequence num-
bers to guaranteed writes locally within each group, that is,
without wide-area interaction with other groups.

For reads, Weave offers clients the flexibility to trade off
latency for consistency [32] by choosing between different
guarantees. Among other things, this includes the possibility
to perform group-local reads that are ensured to reflect the
effects of a previous guaranteed write made by the same or
another client. To do so, in its read request a client states
the sequence number returned by the guaranteed write in
question, thereby instructing replicas to only invoke the read
operation after having executed the corresponding write.

In particular this paper makes the following contributions:
(1) It proposes guaranteed writes as a means for clients in
geo-replicated systems to quickly get an execution guarantee
for their requests. (2) It presents Weave, a multi-leader state-
machine replication protocol that employs multiple replica
groups and optimized quorum sizes to provide guaranteed
writes. (3) It experimentally evaluates Weave for two cloud-
based use cases: a distributed queue and a replicated log.

2 Background and Problem Statement

In this section, we provide background on geo-replicated
statemachines andmotivate why state-of-the-art approaches
incur a significant latency overhead for write requests when
a client only needs an execution guarantee.

2.1 Background

State-machine replication [30] frequently serves as the basis
to provide clients with a fault-tolerant service. It works by
running a deterministic state machine on multiple servers,
called replicas, which process client requests according to
a total order, thereby progressing through the same appli-
cation states. The replicas totally order requests by using a
consensus protocol to assign them to slots with consecutive
sequence numbers which define the execution order. This
also means that a replica can execute a request only after it
has received and processed all predecessors to ensure that all
replicas execute the same set of requests in the same order.

One way to implement the consensus algorithm is by us-
ing a variant of the Paxos protocol [7, 16, 18, 19] as shown in
Figure 1. As a first step the replicas elect a replica as leader
which needs votes from a majority quorum of replicas. Af-
terwards the leader assigns requests to sequence numbers
by sending Propose messages to all replicas. Each assign-
ment must be confirmed by a majority quorum of replicas by
replying with an Accept message to the leader. The leader’s
Propose message also implicitly counts as an Accept. Once
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Figure 1.Message pattern of Paxos (left) and Paxosbc (right)
to order a client request.

confirmed, the leader informs all replicas about the success-
ful assignment. In case a leader is assumed to be faulty, for
example due to not responding within a given timeout, the
other replicas elect a new leader. The majority quorums
guarantee that at least one replica that accepted a sequence
number assignment is also part of the majority quorum re-
quired for the leader election thus ensuring that a successful
assignment cannot change as a result of faults.
In the context of geo-replication, replicas are located in

data centers in several regions spread across the globe to
have replicas located near the clients. However, this has the
downside that Paxos will require several wide-area commu-
nication steps that add significant latency to the request
processing: As a first step, the client has to send its request
to the leader potentially located in a different region. After-
wards, ordering the request incurs two further wide-area
communication steps to a majority of replicas. And finally,
the leader forwards the decision to the followers, which can
then reply to the client afterwards. In total, it can take sev-
eral hundred milliseconds before a request can be processed.

2.2 Existing approaches

In the following, we review several approaches that reduce
the number of wide-area communication steps required in
order to improve the request processing latency.

As illustrated on the right-hand side of Figure 1, a simple
variation of Paxos, in the following referred to as Paxosbc,
removes one communication step [16, 19]: Replicas broadcast
their Accept message to all other replicas instead of just
sending it to the leader. Every replica can then execute the
client request right after collecting Accepts from a majority
quorum, allowing a replica near the client to send the reply.
Mencius [23] splits the leader role across all replicas by

statically partitioning the sequence number space and assign-
ing a part to each of them. A client sends its request to the
nearest leader to avoid the first wide-area communication
step. Each leader can then independently propose requests
for its sequence numbers. However, the replicas may need
to additionally coordinate over the wide-area network via
Skip messages to tell other leaders to close gaps between
sequence numbers, which can delay request execution.
Clock-RSM [10] avoids the latter problem with globally

synchronized clocks whose timestamps are used for ordering
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requests instead of sequence numbers. The assignment of
requests to timestamps is broadcast in a fault-tolerant way
comparable to Paxosbc. This communication also confirms
that all proposals up to a certain timestamp were received
and that all requests with an earlier timestamp can be exe-
cuted. Clock-RSM reduces the processing latency down to
two wide-area communication steps, but cannot remove the
delays completely.
For read requests it is possible to completely avoid wide-

area communication in case the client can handle the re-
trieval of slightly outdated data [8, 15, 32]. In that case, a
replica can process a read request solely based on its current
state thereby avoiding all wide-area communication.

The latter is also possible by splitting the application state
into smaller objects which are then located in a data center
near the client [1, 21, 26]. However, this has the downside
that by handling objects separately there is no longer a sin-
gle total order across replicas, making it unsuitable for repli-
cation of a single state machine. In addition, this requires
running a full Paxos cluster in each region.

2.3 Problem Statement

The reviewed approaches suggest that we can confirm the
execution of a (write) request to a client only after at least
one wide-area communication step, which causes high la-
tency. For operations such as adding messages to a queue or
logging state modifications, the client typically is, however,
only interested in the fact that the service will process the
command. This led us to ask whether it is possible to provide
the client with lower latency for such requests. In particular,
such a system should provide the following properties:

• Guaranteed writes: Provide the client with an execution
guarantee for its request without having to wait on
wide-area communication.

• Consistent: Ensure consistency of the replicated state
machines at all times, that is, process all write requests
according to a single total order.

• Flexible: Provide the client with the ability to choose
between reads with different consistency levels.

• Resource efficient: The system should use just enough
replicas to provide the previous properties in the fault-
free case and degrade gracefully in case of faults.

3 Weave

In this section we present Weave and detail how it organizes
and coordinates its replicas to enable guaranteed writes.

3.1 System Model

Weave focuses on stateful applications that are replicated
across data centers in several geographic regions worldwide,
with clients being located in the same areas. We assume
each client to know the region that is closest to itself from a
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Figure 2. Weave system architecture

latency perspective. The application is implemented as a de-
terministic state machine and offers write operations, which
canmodify application state, and read operations, that do not.

Replicas are assumed to only fail by crashing with a total
of up to f faults. Recovery of a failed replica is possible as
long as it ensures to not send conflicting messages (e.g. by
maintaining a persistent log of previous messages). Each re-
gion hosts multiple replicas running in different data centers
that are part of separate fault domains. Cloud providers offer
this as availability zones, which represent data centers with
independent power supplies and redundant network con-
nections that are located several kilometers apart from each
other [2]. This allows the replicas within a region to commu-
nicate with each other with low latency while at the same
time minimizing the risk of correlated failures or network
partitions of an entire region.
We assume the network communication to be asynchro-

nous in general with synchronous periods during which mes-
sages are delivered with a bounded but unknown delay [11].
For measuring time intervals, we assume that replicas are
equipped with real-time clocks whose frequency differs by
less than one percent, a requirement which is fulfilled by
typical real-time clocks [24].

3.2 General Approach

Weave enables replicas to quickly provide a client with guar-
anteed writes that will be executed at a certain sequence
number while also offering the flexibility for the client to
select the required consistency level for its read requests:

• Linearizable which requires waiting for one wide-area
communication step to the farthest replica to guaran-
tee a fully up-to-date reply.

• Consistent Prefix with Bounded Staleness which ensures
that a replica has executed at least all requests up to a
client-specified sequence number before replying.

• Consistent Prefix which just reads from the current
state of the replica.

Weave places f + 1 replicas, a so-called group, in each
of l regions yielding a total of n = l · (f + 1) replicas as
shown in Figure 2. The sequence numbers are suffixed with a
group index with each group being responsible for sequence
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Figure 3. Messages exchanged between Weave replica
groups to process a guaranteed write request x and a regular
write request y.

numbers with their index. Each group runs an instance of
Paxosbc in which one replica of the group serves as leader
and assigns requests to their sequence numbers while all
other replicas from all regions are tasked with accepting the
assignments. Based on work on the required quorum sizes
for Paxos by Howard et al. [14] we use a small quorum size of
f +1 in the normal case for accepting a proposal in exchange
for a larger quorum of size n − f for the much rarer leader
election. This allows a group to assign sequence numbers
to write requests without wide-area communication and to
quickly provide the client with the corresponding guarantee.
Before a replica can execute a request at sequence num-

ber s it must wait until it received the requests for all lower
sequence numbers. To avoid that the groups slow down each
other, each group sends new proposals only in regular inter-
vals while ensuring that they progress at a similar speed.

3.3 Reduced Quorum Sizes

Paxos traditionally uses majority quorums which grow with
the number of replicas. As discovered by Howard et al. [14]
the accept quorums do not need to overlap each other. It is
sufficient that all accept quorums intersect with all leader
election quorums. A Propose message along with f Accept
messages is sufficient for assigning a sequence number to a
request as this guarantees that in case of failures at least one
correct replica remains that has the request. With a leader
election quorum of sizen− f at least one of the f +1 accepting
replicas is included in both quorums, thus ensuring that
requests keep their sequence number across leader elections.

3.4 Replica Groups

Each of the l regions contains a group of f + 1 replicas,
which together with the accept quorums of size f + 1 allows
a group’s leader to assign requests to sequence numbers
without waiting for wide-area communication during nor-
mal operation, that is, the fault-free case. Clients in each
region communicate directly with their region’s leader thus
ensuring that their requests and the associated replies are
transmitted locally and therefore with low latency.
This structure enables guaranteed writes. As shown in

Figure 3 for example the leader replica of group A can early
on provide a guarantee to client 1 that its request x will be

executed in the future. This is safe as evenwith themaximum
of f faults at least one correct replica from the accept quorum
of size f + 1 remains, which knows the request assignment,
and which would also be part of the n − f quorum required
for a leader election, thus ensuring that the request cannot
be lost if a leader replica fails. Therefore the request for a
guaranteed write will be executed eventually.
The sequence numbers are distributed equally onto all

groups. A sequence number s consists of a counter c suffixed
with a group index д: s = c |д. The total order is defined
by the lexicographical order over the sequence numbers.
Each group is responsible for all sequence numbers with
its group index, which allows the leader of each group д
to order requests without coordination with other groups.
However, the execution of a request has to wait until all
preceding sequence number slots were filled by all groups.
For example as shown in Figure 3 the regular write request y
of client 2 is executed after group B receives a sequence
number assignment from group A.

In case the leader of a group has failed, one of the remain-
ing replicas in the group will be elected as leader. The leaders
of all other groups are unaffected by this change.

The replica groups and guaranteed writes are optimized for
the normal case in which all replicas are working. In case of
a failure the affected group needs help from other replicas to
order a request which takes two wide-area communication
steps. The Propose message has to reach a replica in another
region which then replies with the missing Accept message
to complete the ordering. This slow-down only affects the
group with the faulty replica(s), all other groups still work at
their normal speed. These groups can complete the ordering
with Accept messages from their own group.

3.5 Group Coordination

As a request can only be executed after all lower sequence
number slots are filled, the groups need to coordinate to
avoid blocking each other. Weave ensures that the leaders
propose their assignment for a counter value c at roughly
the same time. The mechanism consists of three parts:
a) Each leader only proposes a new assignment roughly

every δ milliseconds. It contains either a batch of all requests
received since the previous assignment, a single request or
a special no-op request that is skipped during execution, in
case no requests are available. δ should be chosen such that
it is a few times smaller than the wide-area communication
latency and thus only adds a small amount of additional
latency to the execution of each request.
b) Each leader measures the communication latency to

other leaders in regular intervals and uses it to estimate the
one-way communication latency. For this each leader i sends
Ping messages containing a unique value u to all other lead-
ers. Once a leader j receives a Ping message it will at once
respond with a Pong message. The leader i measures the
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time between sending the Ping and receiving the Pong mes-
sage. We assume the one-way communication latency d(i, j)
between two replicas to be symmetrical and thus set it to half
the minimum latency measured during the last 100 pings.
The minimum is used to filter out interference like conflict-
ing network traffic which can only increase the measured
ping time, but not reduce it. The ping messages are piggy-
backed on the regular Propose and Accept message to avoid
the message overhead.
c) Each leader estimates its current progress relative to

all other leaders and adapts its proposal speed accordingly
to stay in sync even with small differences in the leaders’
clock speeds. When a Propose message with the sequence
number s = c j |j from group j arrives at the leader of group i
it is already d(i, j) milliseconds old, which is the one-way
communication latency between the groups’ leaders. Based
on this the leader of group i estimates its time offset o(i, j)
towards the leader of group j by assuming that the latter
kept proposing requests in the meantime. A positive time
offset means that group i is ahead of group j and vice versa
for a negative offset. It is calculated as follows:

o(i, j) = ci · δ −
(
c j · δ +min(t(i, j), 2δ ) + d(i, j)

)
The formula calculates the time offset based on the difference
between the current sequence counters of group i and j . For
the latter the formula accounts for the time t(i, j) that has
passed since receiving c j and the network delay d(i, j). t(i, j)
is bounded to 2δ to ensure that the time offset starts to grow
if the next Propose message is long overdue.

After proposing sequence number ci the leader calculates
the time offsets o(i, j) to all other groups j and uses the largest
value as reference point oi to adapt its proposal interval δi
for the next sequence number. It reacts to small differences
in progress with small adjustments while making bigger
adaptions to its proposal speed for large differences:

• δi = 0.5δ : Propose at twice the normal speed, if oi is
less than −10δ , as leader of group i lags far behind all
other groups.

• δi = 0.95δ : Speed up slightly, if oi is less than −δ/2.
• δi = δ : Propose at normal speed, if the value of oi is
between −δ/2 and δ/2.

• δi = 1.05δ : Slow down a bit, if oi is less than 20δ .
• δi = ∞: Temporarily pause proposals, if oi is larger
than 20δ . This ensures that the groups cannot diverge
too much if one of them is stuck, for example while
electing a new leader. The proposal speed calculation
must be repeated every 2δ milliseconds as long as this
case applies or when new proposals arrive.

These adjustments cause groups which are behind to speed
up their proposals to catch up with the other groups. Faster
groups will also slightly slow down their proposal speed to
help the slower groups catch up and to ensure that all groups
propose the same sequence numbers at the same time.

3.6 Read Consistency Levels and Guaranteed Writes

For a read or write request to the application a client c sends
a ⟨Reqest, c, tc ,o,m,a⟩ message to the leader of its nearest
group. tc is a client-specific request identifier, for example a
counter that is increased for every request. The operation to
execute is specified by o and the execution modem can be
either linearizable read / write, guaranteed write or read with
consistent prefix. The first mode requires the leader to totally
order the request and execute it afterwards, the second mode
quickly returns an execution guarantee to the client and
the last mode allows the leader to reply based on its local
application state. A client can specify that the request must
only be processed after the leader has reached a sequence
number of at least a. For a read operation with bounded
staleness the client sets a to the minimum expected sequence
number. If consistent prefix is sufficient as consistency level,
that is reading the state at an arbitrary point in the total
order, the client just sets a to zero.
The replica groups described in Section 3.4 enable the

leader of a group to quickly confirm a guaranteed write to
the client. Once such a request was assigned to a sequence
number s , the leader sends this guarantee in the form of
a ⟨Guarantee, tc , s⟩ message to the client. The client must
then specify the returned sequence number s in later requests
to ensure that these are executed after the guaranteed write
and therefore provide sequential consistency.

After executing a regular read or write request the leader
sends the result r in a ⟨Reply, tc , r , s⟩ message to the client.
It contains the request identifier tc to enable the client to
match the reply to the corresponding request. The leader
also informs the client about the sequence number s of the
latest totally ordered request after which o was processed.

4 Evaluation

In this section we experimentally evaluate the Weave proto-
type using a distributed queue and a replicated log as appli-
cations. We compare the results of Weave with Menciusbc,
which uses the Paxos broadcast optimization, and is the
protocol implementation of Mencius providing the lowest
latency [23]. In addition, we built an optimized version of
Menciusbc called Mencius*bc, which we modified to provide
guaranteed writes and reads with different consistency lev-
els for a fair comparison with Weave. Mencius*bc sends the
write guarantee once a request was ordered, that is once the
leader replica for the corresponding sequence number slot
has collected a quorum of accept messages, which requires
two wide-area communication steps. All systems are based
on a common code base to ensure comparability. We leave
the comparison with Clock-RSM to future work.
All replicas are spread across the three Amazon EC2 re-

gions in Ohio, Frankfurt and Sydney and run in t3.micro
instances (2 vCPUs, 1GB RAM, Ubuntu 18.04.4 LTS and
OpenJDK 11). We use a setup that tolerates one fault (f = 1).
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Figure 4. Median and 90th percentile of the response
times for the distributed message queue.

Both Mencius variants comprise a single replica per region,
whereas Weave relies on f + 1 = 2 replicas per region,
each being located in a different availability zone (i.e., fault
domain) to reduce the risk of correlated failures. Weave
proposes new requests with an interval of δ = 20ms .

The clients are co-located in the same regions but in a dif-
ferent availability zone than the replicas. All client instances
of a region run in a single virtual machine. The clients are
configured to issue their requests in a closed loop; that is,
they send the next request immediately after getting a reply
to the previous one. The request payload is set to 200 bytes.

4.1 Distributed Message Queue

In our first experiment, we evaluate the latency benefit of
guaranteed writes and compare the results for Weave with
those for Mencius. The clients representing a distributed
application are split into producers and consumers, which
coordinate via a distributed message queue. For this purpose,
they enqueue and dequeue small messages. It is sufficient for
the producers to learn that a message will be enqueued even-
tually, which is a textbook example for the use of guaranteed
writes. The consumers on the other hand need the opera-
tion’s result and thus have to issue regular write requests.
We evaluate four settings: three configurations with all

clients located in each one of the three regions, and one
configuration with clients equally spread across all regions.
Each configuration uses a total of 60 client instances. The
measured median and 90th percentile response times for the
enqueue and dequeue operations are shown in Figure 4.
The dequeue operation, that is regular write requests, in

Menciusbc and Mencius*bc take between 187 and 283ms to
complete with a single active client location. With multiple
client locations, the 90th percentile of Menciusbc improves to
233ms. Weave on the other hand completes regular writes
within 100 to 161ms, outperformingMencius by up to 142ms
for clients in Sydney. It also provides more stable response
times with multiple active client locations than Mencius.
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Figure 5. Median and 90th percentile response times
for the replicated log.

Mencius requires at least two wide-area communication
steps for coordination between leaders, whereas the replica
groups and the continuous proposals of new sequence num-
bers enable Weave to only wait for one wide-area commu-
nication step and provide much lower response times.
For enqueue operations, which use guaranteed writes,

Weave consistently achieves low response times below 21ms.
Evenwith the ability to process guaranteedwrites, Mencius*bc
still needs 96ms or more to issue an ordering guarantee. In
other words, Weave’s response time is more than 78% lower
than the response time of Mencius*bc. This improvement is en-
abled by the replica groups of Weave which allow requests
to commit without waiting for wide-area communication.

4.2 Replicated Log

The second experiment evaluates the latency benefit of com-
bining guaranteed writes and reads with consistent prefix
consistency to hide high execution latency. The scenario con-
sists of an appender client which issues guaranteed writes to
reliably append state updates to a replicated log. After ten up-
dates it sends the sequence numberw contained in the latest
guaranteed write confirmation to a compactor client which
retrieves, processes and garbage collects the state updates.
For this it issues a read request with consistent prefix consis-
tency that is marked for execution after sequence numberw ,
allowing it to issue the read request while the corresponding
log append request still waits for its execution. Afterwards
the compactor client sends a guaranteed write to garbage
collect old requests. We measure three workloads for which
both clients are located in one of the three regions.
Figure 5 shows the response times for the individual op-

erations. Menciusbc can only issue regular requests and it
therefore takes more than 560ms between the appender
client issuing the write request and the collector receiving
the result (A+R).WithMencius*bc the response time decreases
to between 188 and 284ms as the appender client is able to
notify the collector earlier on, which then waits until the
state update is added to the log.Weave completes the append
and read operation with a similar response time as is needed
for just executing a single regular write. This takes within
113 to 162ms depending on the client location, maintaining
a large performance improvement compared to Mencius*bc.
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5 Related Work

Fast Paxos [20] totally orders requests while allowing all
replicas to directly propose sequence number assignments
for their requests, thus avoiding the communication step to
the leader needed in Paxos. This requires a larger fast quo-
rum of size ⌈ 3n4 ⌉ to maintain safety. In case replicas propose
different assignments additional communication steps are
required to resolve the conflict. EPaxos [25] removes the
leader role and instead allows each replica to directly pro-
pose requests. Commutative requests are ordered once they
are accepted by a fast quorum of replicas, whereas conflicts
are resolved using further communication steps. In Weave
clients send their requests to the leader of their local replica
group, thus avoiding the high latency associated with wide-
area communication. As each replica group works on its own
part of the sequence number space, no conflicts can arise.

Multi-Ring Paxos [5, 6] consists of multiple rings of repli-
cas which independently order requests. An application can
subscribe to multiple rings whose requests are then merged
deterministically. Unlike Weave, which is optimized for low
latency, Multi-Ring Paxos focuses on maximum throughput
and requires all nodes, that is replicas and subscribers of a
ring, to forward protocol messages along the ring. Especially
in a geo-replicated setting with subscribers located in differ-
ent regions, the latter increases the latency until a request is
delivered to all subscribers. Merging requests from different
rings requires that each ring proposes a fixed amount of
sequence numbers per time interval. In Mult-Ring Paxos this
is coordinated using globally synchronized clocks, whereas
Weave only needs clocks running with a similar frequency.

CORFU [3] implements a distributed log by mapping se-
quence number ranges in a round robin manner onto mul-
tiple groups of storage nodes. The actual ordering happens
on the storage nodes which enforce a write-once semantic
in order to produce a totally ordered log. Conflicts between
clients are avoided by using a central sequencer which as-
signs slots in the log. CORFU, in difference to Weave, is
designed for local-area environments and would, when used
in a wide-area environment, incur several wide-area com-
munication steps for coordination via the central sequencer
and for replication within a group resulting in high latency.

The use of replica groups is an established building block
in the design of state-machine replication protocols. COP [4],
SAREK [22] and Agora [29], for example, exploit replica
groups to parallelize request agreement and enable a repli-
cated system to effectively utilize multiple cores on each
participating server. Omada [13] builds on this idea to sup-
port systems with heterogeneous servers by introducing
groups with different weights. All mentioned protocols rely
on full-fledged replica groups that contain enough replicas
to handle both normal-case operation as well as fault tol-
erance within a replica group. In contrast, replica groups
in Weave are designed to receive assistance from replicas

outside of their group in case one or more members of their
own group are faulty or slow. This enables Weave to operate
with smaller groups and thereby improve resource efficiency.

MDCC [17] partitions its application state into objects and
uses a generalized version of Fast Paxos to order updates and
transactions involving multiple objects. The use of a fast quo-
rum of replicas, however, leads to high latency as it requires
communication with far away replicas. DPaxos [26] allows
objects to be placed in a region near the client. Using the
quorum optimization from FPaxos [14], state modifications
are ordered within one or a small number of regions near the
client. WPaxos [1] also uses optimized quorums and com-
bines them with the ability for leader replicas to steal object
ownership from other regions in order to adapt to workload
changes. In comparison to Weave these approaches either
require a large fast quorum or use a full set of at least 2f + 1
replicas per region and only work for applications whose
state can be partitioned.
Pando [33] which provides a wide-area optimized data

storage with strong consistency, avoids the need for a fixed
per-object leader replica for Paxos. Instead, for each write
request which a replica receives, it tries to become leader for
the accompanying object and orders the request afterwards.
The transition from leader election to ordering is delegated
to a centrally located replica, which combined with opti-
mized quorums allows Pando to approach the latency of just
executing the ordering step in the normal case while also
avoiding the need to communicate with a leader in a possibly
distant location. Weave has a leader replica in each region
which also provides each client with a nearby leader.

SDPaxos [34] splits the request dissemination and the ac-
tual ordering into separate steps and combines them such
that these require only a single round trip to a majority of
replicas when tolerating up to two faults. The dissemination
step is executed by every replica and therefore splits the
transmission load whereas the more lightweight ordering is
handled by a single leader replica. Canopus [28] is optimized
for high throughput and forms groups consisting of nearby
replicas, which each agree on an ordered sets of requests,
which is then disseminated and merged into a single total or-
der along an overlay tree. In Weave the load for distributing
requests is split between the leader replicas.

6 Conclusion

In this paper we presented Weave, which provides guaran-
teed writes that enable clients to quickly get an execution
guarantee for their requests. The latter is enabled by placing
groups of f +1 replicas in each region, allowing them to order
requests without waiting for wide-area communication.
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