
EnergyBudgets: Integrating Physical Energy
Measurement Devices into Systems Software

Luis Gerhorst1, Stefan Reif1, Benedict Herzog1, Timo Hönig2

1 Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
2 Ruhr University Bochum (RUB), Germany

{gerhorst,reif,herzog}@cs.fau.de, timo.hoenig@rub.de

Appears in: Proceedings of the X Brazilian Symposium on Computing Systems Engineering (SBESC 2020)
virtual, November 2020

Abstract—Excessive energy consumption is a critical problem
for mobile computing systems due to their limited battery
capacity. Software developers aim to improve energy efficiency
by monitoring and profiling the energy consumption of their
systems in order to discover and resolve energy hot-spots.
However, energy measurement is often tedious since it involves
a hardware setup as well as software integration. To support
accurate but also convenient energy measurements, we propose
the inclusion of external energy measurement devices into existing
performance profiling subsystems. This approach allows the
energy-consumption analysis of applications that run on the
system under test (SUT) using the same tools as used for other
performance metrics.

To enable low-overhead self-monitoring, we propose a modular
analysis approach, EnergyBudgets, which bridges external energy
measurement hardware to the Linux perf subsystem. The
evaluation of our implementation shows that energy budgets
accurately measure the energy consumed by different workloads
and allow for an overhead-reduction on the SUT by 20% to
51% in comparison to regular timers, while still guaranteeing
the same level of precision.

Index Terms—energy aware systems, tools, performance eval-
uation, resource management, design methodologies

I. INTRODUCTION

Modern operating systems (OSs) offer a variety of interfaces
dedicated to measuring and quantifying resource demand
related to time. For example, processors include components
usable to identify the current point in time, and dedicated
hardware devices (i.e., timers) that are programmed to notify
the processor—usually based on interrupts—when a specified
amount of time has elapsed. Since time measurement is
provided by the hardware, most operating systems can of-
fer corresponding standardised measurement subsystems. The
Portable Operating System Interface (POSIX), for example,
defines a variety of interfaces that are related to time, but so
far no interface related to energy [1].

However, energy is an equally critical resource to many
embedded computer systems. This applies for battery-powered
devices [2], [3] as well as energy-harvesting [4], [5] systems.
Nevertheless, only few hardware platforms offer a built-in
way to monitor the energy consumed by the system. In
consequence, no portable and generic built-in facilities are
provided by OSs to manage this resource.

As an exceptional case of built-in energy measurements,
recent Intel processors offer the the Running Average Power

Limit (RAPL) interface, which allows convenient monitoring
of the system’s energy consumption with the help of hardware
counters [6]. Tools such as the Linux kernel’s perf [7] read
the RAPL counters to enable userspace code to determine how
much energy an application consumes. The RAPL interface,
however, is only available on recent x86 processors [8]. On
most embedded platforms, in contrast, energy measurements
are usually not integrated into the processor, and therefore not
available in perf. Furthermore, even on Intel processors that
do support RAPL, external devices are required to monitor the
whole-system energy consumption, including peripherals. As
a consequence of this need for external energy measurement
devices, it is common for developers and researchers to apply
custom hardware and software efforts as dominant measure-
ment setup [9], [10], [11], [12], [13], [14], [15] in order to
achieve accurate physical energy analysis. This approach of
measuring energy separately from the co-existing performance
profiling infrastructure, however, leads to results that are hard
to reproduce and vulnerable to bugs, causing measurement
errors and, consequently, misguided system optimisations.

To reduce the efforts related to the use of external energy
measurement devices, we propose to access them indirectly,
via system-level tools for performance monitoring and pro-
filing. This approach allows for easy-to-use, reproducible,
accurate, and low-overhead physical energy measurement. In
this paper, we introduce EnergyBudgets, a generic protocol
which enables OSs to implement a variety of services employ-
ing external energy measurement devices. We have integrated
an implementation of our protocol into the Linux kernel’s
perf_event subsystem. Our work allows measuring an
application’s physical energy consumption with an external
device, and accessing results via the standard perf utility.

The contributions of this paper are three-fold. First, we
present the concept and design of EnergyBudgets which
solves the overhead, scalability, and synchronisation chal-
lenges of industry-standard physical measurement devices.
Second, we discuss the current prototype implementation of
EnergyBudgets and describe its integration into the Linux
operating system kernel’s performance analysis framework,
making energy consumption just another performance metric.
Third, we evaluate EnergyBudgets on the v4.19 Linux kernel
and validate its functional and non-functional characteristics
(i.e., overhead) with an ARM platform.



The paper is structured as follows, Section II reviews
related work on systems power management and energy
measurements. The design of EnergyBudgets is introduced in
Section III and our perf_event-based implementation on
an embedded system is documented in Section IV. Section V
evaluates the accuracy and precision of EnergyBudgets, also
comparing them to regular timer-based approaches. Section VI
discusses implementation challenges, followed by Section VII
which explores opportunities for future work. Finally, Sec-
tion VIII concludes this paper.

II. RELATED WORK

In this section, we present and discuss research and back-
ground knowledge related to the approach of EnergyBudgets.

A. Operating System Power Management

Le Sueur and Heiser demonstrated that generic processor
features like dynamic voltage and frequency scaling (DVFS)
as well as C states (sleep modes) can save power [16], but
also that the power savings drawn from DVFS are limited [17].
This pushes more of the responsibility to make systems energy
efficient towards application developers, who have to profile
their applications to identify bottlenecks. This however, is only
possible if the OS provides them with the appropriate tooling
for this task.

Weissel and Bellosa [18] use performance counters to esti-
mate the optimal clock frequency for an application, trading
in minor performance losses for substantial power savings.
Although RAPL was not available in 2002, they already
acknowledge that performance counters designed for energy
profiling would benefit their approach. In 2020, these are still
not ubiquitous, suggesting that external energy measurement
devices will continue to be used in the future.

B. Energy Measurement and Accounting

Flinn and Satyanarayanan developed PowerScope, a tool
which allows consumed energy to be attributed to individual
processes and procedures [10] using time-based statistical
sampling of the power consumption. EnergyBudgets in com-
parison, allow for energy-based statistical sampling [9].

To date, various energy monitoring devices and tools have
been presented in the literature [14], [13], [19]. Jiang et al.
designed sensor nodes that use a separate energy counter to
monitor their own energy consumption [12]. All of the refer-
enced monitoring devices use microcontrollers in between the
analog-to-digital converter (ADC) and the system that stores
the measurements. This shows that the hardware required for
EnergyBudgets is already widespread and a potential user only
has to flash the adapted EnergyBudgets firmware onto their
microcontroller.

Pathak et al. develop an energy accounting policy to map
the system energy consumption back to program entities [20].
EnergyBudgets can replace their energy model and be com-
bined with their accounting technique to allow for fine-grained
energy profiling of application code. In their implementation,
they model the component energy consumption based on

finite state machines (FSMs) whose power state transitions
are system-call driven. However, modeling the energy con-
sumption based on the device power state only works if the
events that trigger transitions are infrequent and traceable.
This is not possible on all modern hardware components. On
recent multi-core processors, DVFS is no longer performed
using discrete power states (P-States) which are selected by
the OS, but instead by choosing the desired performance level
on an abstract continuous scale (defined by the ACPI Collab-
orative Processor Performance Control specification [21] and
implemented, for example, by AMD processors with the Zen
2 microarchitecture). The selection of the performance level
can also be performed automatically by the processor without
being triggered by the OS. This makes FSMs unsuitable to
model processor power consumption because of a) the large
number of possible power states and b) the untraceability of
the frequent automatic transitions performed by the processor.

Power Sandbox, a more recent approach to accounting that
isolates applications in their vertical hardware and software
stack, assumes that the operating system has an interface
to monitor per-component power consumption with low-
overhead [22]. Our work provides this interface.

C. Energy Management Abstractions

Zeng et al. proposed the Currentcy model which allows
an OS to manage energy as a first-class resource [23], [24].
For their implementation however, the absence of a generic
interface for energy consumption forces them to rely on
approximations which are sufficiently accurate but very system
specific. A generic interface would allow their approach to be
applied in a broad variety of systems.

Roy et al. have identified energy reserves and taps as useful
low-level abstractions that allow control of application energy
usage by the OS [25]. Our tool complements their work by
giving the application a convenient method to determine when
the energy budget of a time frame, being determined by the
respective tap that feeds it and the reserve that was collected
previously, is about to expire. Before the budget has been used
up, the application may adapt its behavior when notified, or,
after the budget has been exhausted, the OS may preempt the
application on the EnergyBudget interrupt.

III. DESIGN

This section discusses challenges in integrating external
measurement devices into computing systems and concludes
our design of EnergyBudgets which solves these problems.
In order to allow software developers to easily monitor the
energy usage their applications cause in systems, multiple
requirements have to be met:
§A The user interface to access the energy consumption

must be independent of a specific measurement device
and its physical measurement method (e.g., shunts, hall
effect sensors, battery charge monitoring). Such an in-
terface is generic in the sense that various measurement
methodologies with, for example, different temporal
resolutions, can be applied and transparently accessed.



§B The user interface must allow an easy correlation of
energy consumption with other performance metrics.
This property is crucial to support energy profiling, such
as the detection of energy hot-spots.

§C The overheads and interferences caused on the system
under test (SUT) must be low. Especially on low-power
embedded devices, the processor has little performance
available, and most communication buses have a rela-
tively slow data rate.

§D Events regarding energy must be synchronized with
other performance-related events to enable correlation
analysis. In consequence, communication between the
energy-measurement infrastructure and the SUT must
occur frequent, but with little overhead and noise. A
typical approach based on signals via general-purpose
input/output (GPIO) [11] is tedious in practice as infor-
mation is transmitted bit-wise.

§E The interface must be integrated into the OS to sup-
port accounting of energy usage to individual applica-
tions [26], [27]. Besides, the OS integration promises to
improve accuracy as it minimises overheads related to
communication and event handling [28].

§F To improve the accuracy of accounting solutions imple-
mented on top of the interface, the energy consump-
tion from individual hardware components should be
reported separately when the measurement hardware
supports it.

Existing solutions to energy measurements do not meet
these requirements. On battery-powered devices, the system
can poll the remaining battery capacity, for example using
ACPI [21] and derive the energy and power consumption
from it. However, this approach is not generic (c.f., §A), and
the battery monitoring operates at a low temporal resolution
only reporting the accumulated energy consumption by all
system components (c.f., §F). In consequence, this approach
is usually not accurate enough for fine-grained power mea-
surements [26]. In consequence, even devices that have built-
in battery-capacity estimation are usually monitored using
external measurement devices during development, which are
attached while prototyping and removed in production [29].

A physical measurement device typically determines the
power consumption by intercepting the power supply of the
host system. It digitizes the current power draw measurement.
Some measurement devices support the integration of power
samples over time to yield the energy demand. A naı̈ve
approach is to connect the measurement device directly to
the host system. By using a direct communication channel,
the digital channel from the measurement device to the host
system may, for example, continuously stream power samples
to the host system, so that both power and timing-related
information is available there. This approach, however, leads to
continuous overhead (c.f., §C, §D, and §E) on the host system
as it either has to integrate over power samples in real-time,
or store all power values, but memory is a scarce resource
in embedded systems. As the rate at which power samples

tim
e

µctrl SUT

set energy budget to 1000mJ

1000mJ consumed

1000mJ consumed

set energy budget to 2000mJ

2000mJ consumed

pr
ec

is
e

lo
w

-o
ve

rh
ea

d

1

2
3

4

1

2

3

Fig. 1. Sequence diagram showing the packets sent between the measurement
device and the host system with EnergyBudgets.

are generated is determined by the measurement device, the
host system has very limited control over the amount of data
processing required. To avoid the processing overhead on the
host system, a dedicated system can be used to store the
samples temporarily [10]. However, this approach requires
complicated synchronization of the two systems to correlate
software events with power profiles [11] (c.f., §B).

To summarize, energy measurement hardware is very spe-
cific to a particular use case, considering that the maxi-
mum power draw, the measurement resolution, as well as
the sampling rate have to be dimensioned appropriately for
the host system. In consequence, monitoring interfaces are
tailored to specific use-cases. They are not standardized and
their integration therefore creates additional friction when
monitoring energy consumption.

To enable low-overhead energy monitoring, we propose the
EnergyBudgets protocol. A high-level summary is as follows:

1© The host system instructs the measurement device to
notify it whenever a certain amount of energy has
been consumed. It sets an energy budget. The energy
budgets are configurable to allow for a trade-off between
measurement precision and overhead.

2© The measurement device integrates over the power sam-
ples internally, aggregating the energy demand.

3© The host system is only notified when the previously set
energy budget has been consumed [12], [9], [30].

4© The measurement device proceeds accumulating the
energy demand internally, and every time a multiple
of the configured energy budget is exceeded, it sends
another notification.

A sample communication sequence between the host sys-
tem and the measurement device is illustrated in Figure 1.
The protocol allows for a trade-off between precision (small
energy budget and frequent interrupts) and accuracy (higher
energy budget and less frequent interrupts). This trade-off
allows it to be applied in a variety of domains each with



perf Linux
EB

ApplicationProfiler

Hardware
Measurement

device

µctrl

Power supply
intercept

Energy consumption
information

EB protocol

Fig. 2. The measurement device monitors the power consumption of the host
system by intercepting its power supply. The energy consumed is transmitted
using discrete packets while the current power draw is monitored continuously.

different power/performance profiles. It can both be used
for performance analysis, and also for energy monitoring
in production—if an EnergyBudgets-compatible measurement
device is attached during operation, embedded devices can
use small energy budgets to control the resource usage of
the running application. Besides being broadly applicable for
energy monitoring, EnergyBudgets also greatly simplify the
limiting of energy usage with regard to naı̈ve timer-based
approaches, where the user has to frequently poll whether the
current application’s energy limit has been exceeded already.

Figure 2 summarizes the system architecture. It includes
a microcontroller as indirection that translates between the
physical energy measurement device and the EnergyBudgets
protocol. On the host side, the protocol is tightly integrated
into perf, the performance monitoring subsystem of Linux.
It provides energy measurement values as virtual performance
counters for individual system components. Behind the scenes,
EnergyBudgets transparently and continuously updates the
energy values, by communicating with the microcontroller.

IV. IMPLEMENTATION

In this section we present our modular open-source imple-
mentation of EnergyBudgets1 that integrates into the existing
performance profiling subsystem of the Linux kernel, allowing
straight-forward analysis and correlation of energy with other
performance metrics.

Our implementation of the EnergyBudgets protocol includes
a kernel module for the SUT that communicates with the
external measurement device, and a firmware for an AVR
microcontroller which translates between the EB protocol and
a physical energy measurement device. For current and voltage
measurements, the microcontroller is attached to a LTC2991
current and voltage ADC [31]. The two devices and their
connections are displayed in Figure 3 and Figure 4. The
microcontroller and the host system communicate using a
serial line. This has the advantage that the overhead is kept
to a minimum in comparison to, for example, a network
connection, while the interface is still available on a variety of
devices. The communication protocol executed over the serial
line employs tested and well-documented methods whenever

1The EnergyBudgets source code is available at https://gitlab.cs.fau.de/i4/
pub/energybudgets under an open-source license.

fr
om

S
U

T

to
M

ic
ro

co
nt

ro
lle

r

Fig. 3. The LTC2991 current and voltage ADC is employed for accurate
physical energy measurements.

to
S

U
T

from ADC

Fig. 4. An AVR microcontroller accumulates the measurement samples and
communicates them to the SUT over a serial port (e.g., /dev/ttyUSB0).

possible, for example, the Serial Line Internet Protocol (SLIP)
is used for framing [32], and XMODEM’s CRC-16 is used to
ensure data integrity [33], [34]. To minimize the amount of
data, and therefore overhead, data is encoded in binary form.
Figure 5 displays an overview over the interacting subsystems
when our kernel module is used for energy measurements.
On the SUT, the EnergyBudgets module registers both a line

/dev/ttyUSB0

001011
101100

Line Discipline

Perf. Monitoring Unit

U
se

rs
pa

ce

se
te

ne
rg

y
bu

dg
et

en
er

gy
bu

dg
et

co
ns

um
ed

ldattach

perf, ...

Fig. 5. Illustration displaying the interacting subsystems when EnergyBud-
gets are used for measurements. Userspace attaches a custom line discipline to
the serial port on which the measurement device is connected. Thereafter, the
line discipline interprets the packets and feeds them into the performance
monitoring unit from which userspace can request the information, for
example using the perf(1) tool.

https://gitlab.cs.fau.de/i4/pub/energybudgets
https://gitlab.cs.fau.de/i4/pub/energybudgets


discipline and a perf performance monitoring unit (PMU).
When a new measurement device is connected to a serial port
on the host system, the user attaches the custom line disci-
pline to that serial port, using for example, ldattach [35].
This causes data received on this port to be interpreted as
EnergyBudget packets, which constitute the notifications from
the measurement device about consumed energy chunks. In
response to these, the perf counter is updated internally. Note
that the bytes received on this particular serial line are not
copied to userspace to minimize latencies and context-switch
related interferences. The module exports sysfs files that
allow userspace to control how often the system is notified by
the measurement device. Notifications can either be energy or
time-driven, that is, the system is either notified whenever a set
timer elapses or whenever a certain amount of micro joules has
been consumed. To ensure portability, the code implementing
the protocol is encapsulated in a library which at this point is
already used by both the kernel module and the AVR firmware.
Using our work, an application developer can measure the
energy consumed by their application simply by entering the
command shown in Listing 1.

Listing 1. Using perf stat, application developers can easily deter-
mine the amount of energy consumed during a task using the EnergyBud-
gets (ebudgets) PMU.
$ perf stat -e ebudgets/energy/ sleep 1
Perf. counter stats for ’system wide’:

66121 uJ ebudgets/energy/
1.015791273 seconds time elapsed

Energy consumption is reported in the same way, and record-
ing is started and stopped in synchronisation with any other
perf_event metric which include various hardware and
software events. This enables more advanced analysis tasks
like correlation of energy consumption with software and
hardware events, the creation of energy models, and hot-
spot detection. Thus, EnergyBudgets make energy just another
performance metric for application developers.

V. EVALUATION

In this section, we first evaluate whether the measurements
performed with our tool show the expected properties for
known workloads. We then compare them to measurements
performed without our tool to determine the measurement
trueness. Finally, we demonstrate that energy budget interrupts
allow for higher-precision energy measurement than timer
interrupts at the same interrupt rate.

To confirm the correctness of our implementation, we have
measured the power consumption of known workloads on the
Microchip SAMA5D3 Xplained board which hosts a single-
core 528MHz ARM Cortex-A5-based microprocessor unit.
The system runs the Yocto Project Reference Distribution
(Poky) v3.0 Zeus with a v4.19 Linux kernel. All resources
required to build the used applications and systems software
are published under an open-source license. Figure 6 shows the
energy consumed by the processor, the embedded memories

0

500

1000

1500

0.0 2.5 5.0 7.5 10.0

Runtime [s]

E
ne

rg
y

[m
J]

Workload:

Dhrystone

Idle

Fig. 6. Energy consumption of the SAMA5D3 Xplained board’s core
components while idle and under load measured using the EnergyBudgets
perf PMU. As expected the amount of energy consumed increases linearly
with the runtime because of the constant power draw. The power draw during
Dhrystone is 2.4 × higher than the power draw while the system is idle.

and the peripherals2 while idle and during the Dhrystone
benchmark, measured using an energy budget of 8.0mJ. Each
measurement presented in this section represents the mean
value calculated from 10 samples. For graphs, the variation
among the samples was always below the displayed resolution
(i.e., point size). For numerical values, the maximum distance
to the respective minimum and maximum is indicated using a
plus-minus sign (±) behind the value. The displayed distance
also accounts for the measurement precision (i.e., 8.0mJ for
the following measurement). While the system is idle, allowing
the CPU to frequently enter low power standby mode, our
tool reports a mean power consumption of 66.4±0.5mW.
During the Dhrystone 2 [37] benchmark a mean power
draw of 158.4±1.0mW is reported. This closely matches
the power consumption during Dhrystone reported in the
board’s datasheet, which is 162.5mW [38]. The difference in
4.1±1.0mW between our value and the consumption reported
by Microchip may be caused by a difference in

• measurement hardware and even in hardware of the
same type, for example, due to aging and manufacturing
variances. The datasheet does not indicate which mea-
surement hardware was used by Microchip [38].

• system software, compiler version, and specific imple-
mentation of the Dhrystone benchmark.

• measurement software. While we used EnergyBudgets we
do not know which measurement system was used by
Microchip and whether it imposes overhead on the SUT.

To determine to which degree the difference is caused by En-
ergyBudgets, we have also measured the power consumption
during Dhrystone 2 and while idle without EnergyBudgets but
still using the same physical measurement device and the same
systems software. To process and store the measurement data,
we use a separate system therefore generating no overhead

2Measured by intercepting VDDCORE using JP1. The incorrect JP1 routing
described in the board’s user guide [36] was fixed.



on the SUT. In this setup, our measurement hardware reports
a mean power draw of 66.8mW while idle, and 154.7mW
during Dhrystone 2 when measured over the course of 10 s.
The standard deviation among the 16ms power samples was
0.7mW and 1.5mW, respectively. We conclude that Energy-
Budgets can measure the idle power draw of the device with
high accuracy and has no significant impact on the overall
system performance.

The reduction of the mean Dhrystone power draw by
3.7mW when the EnergyBudgets tool is not running on the
SUT can be explained by an increase in the cache-pressure that
is caused by the regular processing of the notifications from the
measurement device. We conclude that the difference between
our measurement and the measurement by Microchip is caused
by differing measurement hardware and systems software.

In the following, we compare our energy-centric moni-
toring approach with the common time-based methodology.
EnergyBudgets guarantee to the processor, that since the last
notification, at most the set energy limit has been consumed.
When a regular timer is used instead, the processor can not
know whether the pending interval is one with large or small
energy consumption. Therefore, to guarantee that at most
a certain amount of energy was consumed since the last
interrupt, the user has to assume the maximum power draw
possible when deciding on the timer interval. This causes the
timer interval derived to be unnecessary small as the device
rarely consumes that much power during a typical workload.
The small interval causes more frequent interruptions to the
SUT and therefore hurts measurement trueness.

To demonstrate this advantage of EnergyBudgets, we have
measured the energy consumption of a fixed workload using
both energy budgets between 0.8mJ and 40.0mJ, as well as
regular timers between 4ms and 200ms. Microchip does not
list any information on the maximum power draw of the core
components in the datasheet or user guide of the SAMA5D3
Xplained board [39], [36], [38]. Still, this information is
required to determine the guaranteed level of precision for
energy measurements when regular timers are used. Therefore,
the user has to estimate the value based on additional measure-
ments. EnergyBudgets in turn, do not require this information
in the first place which is another advantage. Our measure-
ments show a maximum power consumption for the board
of at least 178.0mW. Given some headroom we therefore
estimate 200.0mW to be the upper limit.3 Assuming this
maximum power draw, Figure 7 displays how energy budgets
compare to regular timers regarding the overhead required for
a given guaranteed level of measurement precision. Overhead
constitutes itself in the number of notifications to the host
system that update the energy counter maintained by perf.
The set energy budget, or if regular timers are used, the timer
interval multiplied with the maximum power draw, gives an
upper limit on the amount of energy consumed after the last
notification. Because computing systems rarely consume the

3EnergyBudgets outperform regular timers even when a lower maximum
power draw is assumed. Choosing any value above 150.0mW leads to the
conclusion that EnergyBudgets give better precision.

10

100

1000

0 10 20 30 40

Precision [mJ]

O
ve

rh
ea

d
[IR

Q
s]

Measurement Method:

Energy Budgets

Timer Interrupts

Fig. 7. Measurement displaying the tradeoff between overhead and precision
enabled by EnergyBudgets. To guarantee the same level of precision, energy
budgets require fewer packets to the host because regular timers force the
user to assume the worst-case power draw, that is the maximum power draw
possible, occurred since the last notification.

maximum amount of power possible, energy budgets allow
for lower overhead while guaranteeing the same upper limit
of unaccounted energy consumption.

VI. DISCUSSION

EnergyBudgets provides a generic concept and a practical
solution for a broad range of different application scenarios
that require energy measurements at the software level. In
contrast, approaches that pursue similar concepts [12], [9], [30]
to EnergyBudgets are designed to address specific individual
problems, only. They particularly provide one-shot solution for
specific problems at hand. We believe that the modular open-
source design that we provide with EnergyBudgets jointly with
the well-integrated protocol supports and encourages future
work. Both, our host systems’ software and the protocol work
off-the-shelf and do not require any further modification to be
used by others. As part of our research work on EnergyBudgets
we provide a firmware for the LTC2991 measurement device
and the addition of new ADCs is aided by our portable
communications library, therefore only requiring basic AVR
programming skills.

In the previous section we have shown that the interrupts
updating the energy counter on the SUT do not significantly
impact the measurement accuracy of EnergyBudgets. Still, to
allow for more rapid evaluation with fewer measurements,
greater accuracy and even less overhead is always desirable.
For plain energy measurements without any profiling, the SUT
would ideally only request an update to the energy counter
from the measurement device when it actually needs the
value after the application has terminated. This would allow
for measuring the energy consumption without any overhead
on the SUT while the process is running. However, we do
not believe this is possible without significantly changing the
design of the Linux kernel’s perf_event subsystem which
was created under the assumption that performance counters
are maintained by the CPU and not by an external device



time

po
w

er

gzip factorProcess:

scheduling
interrupt

scheduling
interrupt

Fig. 8. Illustration displaying how energy budgets can be used for
energy-driven scheduling. Applications with increased power draw due to
IO (gzip) get preempted earlier than applications that only exercise the
processor (factor).

connected over a serial port. Updating the kernel’s energy
counter on demand would induce a significant polling delay
which we do not expect to be tolerable in the perf code path. A
possible solution to this problem may be the use of an interface
capable of direct memory access (DMA) between the SUT and
the measurement device. This would allow the measurement
device to continuously update the kernel’s energy counter
without creating overhead on the CPU of the SUT.

EnergyBudgets accurately measures the energy consump-
tion of individual system components (e.g., as in the eval-
uation: the processor core, the DDR2 memory, the peripher-
als, and the NAND flash), this must not necessarily reflect
the energy consumed by a specific application. On multi-
core systems, for example, multiple processes trigger energy
consumption on the processor simultaneously, and even on
single-core systems applications are preempted frequently to
serve interrupts and schedule background tasks. Still, while
profiling, measuring the energy consumption of individual
hardware components allows for the analysis of the consump-
tion a specific implementation choice triggers in individual
system components. This is very valuable to developers while
profiling, especially because embedded systems become in-
creasingly specialized into running dedicated homogeneous
applications. More fine-grained analysis is achieved on the
basis of combining EnergyBudgets with an solution for energy
accounting [20], [27], [26], [25]. Because EnergyBudgets
already reports the energy consumption of arbitrary individual
system components separately, the accuracy of the chosen
accounting mechanism is improved, too. Also, as illustrated
in the following section, the complexity associated with fine-
grained accounting is not even required when an individual
CPU core is monitored using small energy budgets. This is the
case, because the application code interrupted on it is directly
responsible for the associated energy consumption.

VII. FUTURE WORK

In future work EnergyBudgets can be used to implement
a variety of other OS services besides simple energy mea-
surements. Using programmable EnergyBudgets, a scheduler
can preempt applications based on energy limits not CPU time
budgets as illustrated in Figure 8. Also, interrupts occurring ev-
ery N joules can be used to determine where in an application
most of the energy is consumed [40], [9]. Figure 9 illustrates

time

po
w

er

sampling
interrupt

main()

fib() printf()

Stack:

Fig. 9. Our tool allows for energy-driven statistical sampling. The more
energy a subroutine consumes, the higher is the number of samples for that
routine, therefore indicating where an application consumes the most energy.

how increased energy consumption in a subroutine causes
a greater number of profiling samples be collected for the
code section when the energy budget is sufficiently small. For
this, the interrupt handler must record the current context, for
example, the current value of the instruction pointer, for later
analysis which may be implemented using perf’s existing
sampling capabilities.

VIII. CONCLUSION

This paper presented EnergyBudgets, which leverage a pow-
erful design that allows for the integration of external energy
measurement devices into OS kernels. We have integrated
energy budgets into the Linux perf_event subsystem,
giving users a convenient and powerful interface to perform
physical energy measurements. Our evaluation shows that
energy budgets both allow for accurate measurements, but
also that they outperform traditional timers regarding their
guaranteed precision. In future work, energy budgets may be
used for energy profiling and also energy-driven scheduling.

We therefore are the first to present a design that integrates
physical energy measurement devices directly into the feature-
rich performance profiling subsystem of a general-purpose OS,
making energy just another performance metric to users.

ACKNOWLEDGMENT

This work was partially funded by the FAU Emerging
Talents Initiative (ETI) and by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – project
number 146371743 – TRR 89 “Invasive Computing” and grant
no. SCHR 603/15-2. Furthermore, we thank Heiko Janker
for his help in implementing the firmware for the AVR
microcontroller and in setting up the measurement hardware.

A preliminary work of EnergyBudgets was submitted to
the 2020 ACM Student Research Competition (SRC) Grand
Finals [41], we thank the anonymous reviewers for their
thoughtful feedback.

REFERENCES

[1] IEEE and The Open Group, “POSIX.1-2017,” 2017, accessed August
7, 2020. [Online]. Available: http://pubs.opengroup.org/onlinepubs/
9699919799/

[2] J. R. Lorch and A. J. Smith, “Software Strategies for Portable Computer
Energy Management,” IEEE Personal Communications, vol. 5, no. 3, pp.
60–73, June 1998.

http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/


[3] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” in Mobile Computing, T. Imielinski and H. F.
Korth, Eds. Boston, MA: Springer US, 1996, pp. 449–471.

[4] J. Hester and J. Sorber, “The Future of Sensing is Batteryless, Intermit-
tent, and Awesome,” in Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems, ser. SenSys, 2017, pp. 1–6.

[5] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent
Computing: Challenges and Opportunities,” in Proceedings of the 2nd
Summit on Advances in Programming Languages, ser. SNAPL, 2017,
pp. 8:1–8:14.

[6] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory Power Estimation and Capping,” in Proceedings of the 2010
ACM/IEEE International Symposium on Low-Power Electronics and
Design, ser. ISLPED, 2010, pp. 189–194.

[7] V. M. Weaver, “Self-monitoring Overhead of the Linux perf event
Performance Counter Interface,” in Proceedings of the 2015 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software,
ser. ISPASS, 2015, pp. 102–111.

[8] J. Pan, “RAPL (Running Average Power Limit) Driver,” 2013, accessed
August 7, 2020. [Online]. Available: https://lwn.net/Articles/545745/

[9] F. Chang, K. I. Farkas, and P. Ranganathan, “Energy-Driven Statistical
Sampling: Detecting Software Hotspots,” in Proceedings of the 2002
International Workshop on Power-Aware Computer Systems, ser. PACS,
2003, pp. 110–129.

[10] J. Flinn and M. Satyanarayanan, “PowerScope: A Tool for Profiling
the Energy Usage of Mobile Applications,” in Proceedings of the
IEEE Workshop on Mobile Computing Systems and Applications, ser.
WMCSA, 1999, pp. 2–10.

[11] S. Reif, P. Raffeck, H. Janker, L. Gerhorst, T. Hönig, and W. Schröder-
Preikschat, “Earl: Energy-Aware Reconfigurable Locks,” in Proceedings
of the the 9th Embedded Operating Systems Workshop, ser. EWiLi, 2019,
pp. 1–6.

[12] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro Power Meter
for Energy Monitoring of Wireless Sensor Networks at Scale,” in
Proceedings of the 2007 6th International Symposium on Information
Processing in Sensor Networks, ser. IPSN, 2007, pp. 186–195.

[13] T. Stathopoulos, D. McIntire, and W. J. Kaiser, “The Energy Endoscope:
Real-Time Detailed Energy Accounting for Wireless Sensor Nodes,”
in Proceedings of the 2008 International Conference on Information
Processing in Sensor Networks, ser. IPSN, 2008, pp. 383–394.

[14] A. Schulman, T. Thapliyal, S. Katti, N. Spring, D. Levin, and
P. Dutta, “BattOr: Plug-and-Debug Energy Debugging for Applications
on Smartphones and Laptops,” Stanford University, Tech. Rep., 2016,
accessed June 2, 2020. [Online]. Available: http://cseweb.ucsd.edu/
∼schulman/docs/battor-tr.pdf

[15] I. Manousakis, F. S. Zakkak, P. Pratikakis, and D. S. Nikolopoulos,
“TProf: An Energy Profiler for Task-Parallel Programs,” Sustainable
Computing: Informatics and Systems, vol. 5, pp. 1–13, March 2015.

[16] E. Le Sueur and G. Heiser, “Slow Down or Sleep, that is the Question,”
in Proceedings of the 2011 USENIX Annual Technical Conference, ser.
USENIX ATC, 2011, pp. 1–6.

[17] E. Le Sueur and G. Heiser, “Dynamic Voltage and Frequency Scal-
ing: The Laws of Diminishing Returns,” in Proceedings of the 2010
International Conference on Power Aware Computing and Systems, ser.
HotPower, 2010, pp. 1–8.

[18] A. Weissel and F. Bellosa, “Process Cruise Control: Event-driven Clock
Scaling for Dynamic Power Management,” in Proceedings of the 2002
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, ser. CASES, 2002, pp. 238–246.

[19] S. Köhler, B. Herzog, T. Hönig, L. Wenzel, M. Plauth, J. Nolte,
A. Polze, and W. Schröder-Preikschat, “Pinpoint the Joules: Unifying
Runtime-Support for Energy Measurements on Heterogeneous Systems,”
in Proceedings of the 2020 International Workshop on Runtime and
Operating Systems for Supercomputers, ser. ROSS, 2020, to appear.

[20] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app? Fine Grained Energy Accounting on Smartphones with Eprof,”
in Proceedings of the 7th ACM European Conference on Computer
Systems, ser. EuroSys, 2012, pp. 29–42.

[21] UEFI Forum, Inc., “ACPI Specification, Version 6.3,” 2019, accessed
July 30, 2020. [Online]. Available: https://uefi.org/sites/default/files/
resources/ACPI 6 3 final Jan30.pdf

[22] L. Guo, T. Xu, M. Xu, X. Liu, and F. X. Lin, “Power Sandbox: Power
Awareness Redefined,” in Proceedings of the 13th EuroSys Conference,
ser. EuroSys, 2018, pp. 1–15.

[23] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “Currentcy: A
Unifying Abstraction for Expressing Energy Management Policies,” in
Proceedings of the 2003 USENIX Annual Technical Conference, ser.
USENIX ATC, 2003, pp. 43–56.

[24] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “ECOSystem: Manag-
ing Energy as a First Class Operating System Resource,” in Proceedings
of the 10th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS, 2002,
pp. 123–132.

[25] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich, “Energy Management in Mobile Devices with the Cinder
Operating System,” in Proceedings of the 6th Conference on Computer
Systems, ser. EuroSys, 2011, pp. 139–152.

[26] R. Neugebauer and D. McAuley, “Energy is Just Another Resource: En-
ergy Accounting and Energy Pricing in the Nemesis OS,” in Proceedings
of the 8th Workshop on Hot Topics in Operating Systems, ser. HotOS,
2001, pp. 67–72.

[27] F. Bellosa, “The Benefits of Event-Driven Energy Accounting in Power-
Sensitive Systems,” in Proceedings of the 9th Workshop on ACM
SIGOPS European Workshop: Beyond the PC: New Challenges for the
Operating System, ser. EW, 2000, pp. 37–42.

[28] B. Herzog, L. Gerhorst, B. Heinloth, S. Reif, T. Hönig, and W. Schröder-
Preikschat, “INTspect: Interrupt Latencies in the Linux Kernel,” in
Proceedings of the 2018 VIII Brazilian Symposium on Computing
Systems Engineering, ser. SBESC, 2018, pp. 83–90.

[29] P. Wägemann, F. Harbecke, B. Heinloth, H. Hofmeier, and
W. Schröder-Preikschat, “An Energy-Neutral, WiFi-Connected Room
Display with Hand-Crank-Based Energy Harvesting,” 2019, accessed
July 31, 2020. [Online]. Available: https://www.fau.de/2019/05/news/
kluge-ideen-aus-dem-maschinenraum-der-fau/

[30] P. Wägemann, T. Distler, H. Janker, P. Raffeck, and V. Sieh, “A Kernel
for Energy-Neutral Real-Time Systems with Mixed Criticalities,” in
Proceedings of the 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium, ser. RTAS, 2016, pp. 1–12.

[31] Analog Devices, “LTC2991,” 2019, accessed June 2, 2020. [Online].
Available: https://www.analog.com/en/products/ltc2991.html

[32] J. Romkey, “A Nonstandard for Transmission of IP Datagrams over
Serial Lines: SLIP,” 1998, accessed June 2, 2020. [Online]. Available:
https://tools.ietf.org/html/rfc1055

[33] C. Forsberg, “XMODEM/YMODEM Protocol Reference,” 1986,
accessed June 2, 2020. [Online]. Available: http://techheap.packetizer.
com/communication/modems/xmodem-ymodem reference.html

[34] AVR Libc Developers, “AVR Libc: CRC Computations (Function
_crc_xmodem_update),” 2016, accessed June 2, 2020. [Online].
Available: http://www.nongnu.org/avr-libc/user-manual/group util
crc.html

[35] T. Schmidt, “ldattach - Attach a Line Discipline to a Serial
Line,” 2008, accessed June 2, 2020. [Online]. Available: https:
//manpages.debian.org/buster/util-linux/ldattach.8.en.html

[36] Atmel, “SAMA5D3 Xplained User Guide,”
2015, accessed June 2, 2020. [Online]. Avail-
able: http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-11269-32-bit-Cortex-A5-Microcontroller-SAMA5D3-Xplained
User-Guide.pdf

[37] R. P. Weicker and UnixBench Contributors, “The BYTE UNIX
Benchmarks, DHRYSTONE Benchmark Program (dhry2),” 2018,
accessed June 2, 2020. [Online]. Available: https://github.com/kdlucas/
byte-unixbench/tree/070030e09f6effdf0c6721e8fcc3a5c6fb5bed1a

[38] Atmel, “SAMA5D3 Series Datasheet,” 2016,
accessed June 2, 2020. [Online]. Avail-
able: http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3
Datasheet B.pdf

[39] Microchip Technology Inc., “SAMA5D3 Xplained,” 2019, accessed
August 7, 2020. [Online]. Available: https://www.microchip.com/
DevelopmentTools/ProductDetails/PartNO/ATSAMA5D3-XPLD

[40] S. Schubert, D. Kostic, W. Zwaenepoel, and K. G. Shin, “Profiling
Software for Energy Consumption,” in Proceedings of the 2012 IEEE
International Conference on Green Computing and Communications,
ser. GreenCom, 2012, pp. 515–522.

[41] L. Gerhorst, “SOSP: U: EnergyTimers — Integrating Physical
EnergyMeasurement Devices into Operating System Kernels,” 2020,
accessed October 8, 2020. [Online]. Available: https://src.acm.org/
binaries/content/assets/src/2020/luis-gerhorst.pdf

https://lwn.net/Articles/545745/
http://cseweb.ucsd.edu/~schulman/docs/battor-tr.pdf
http://cseweb.ucsd.edu/~schulman/docs/battor-tr.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://www.fau.de/2019/05/news/kluge-ideen-aus-dem-maschinenraum-der-fau/
https://www.fau.de/2019/05/news/kluge-ideen-aus-dem-maschinenraum-der-fau/
https://www.analog.com/en/products/ltc2991.html
https://tools.ietf.org/html/rfc1055
http://techheap.packetizer.com/communication/modems/xmodem-ymodem_reference.html
http://techheap.packetizer.com/communication/modems/xmodem-ymodem_reference.html
http://www.nongnu.org/avr-libc/user-manual/group__util__crc.html
http://www.nongnu.org/avr-libc/user-manual/group__util__crc.html
https://manpages.debian.org/buster/util-linux/ldattach.8.en.html
https://manpages.debian.org/buster/util-linux/ldattach.8.en.html
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11269-32-bit-Cortex-A5-Microcontroller-SAMA5D3-Xplained_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11269-32-bit-Cortex-A5-Microcontroller-SAMA5D3-Xplained_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11269-32-bit-Cortex-A5-Microcontroller-SAMA5D3-Xplained_User-Guide.pdf
https://github.com/kdlucas/byte-unixbench/tree/070030e09f6effdf0c6721e8fcc3a5c6fb5bed1a
https://github.com/kdlucas/byte-unixbench/tree/070030e09f6effdf0c6721e8fcc3a5c6fb5bed1a
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet_B.pdf
https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/ATSAMA5D3-XPLD
https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/ATSAMA5D3-XPLD
https://src.acm.org/binaries/content/assets/src/2020/luis-gerhorst.pdf
https://src.acm.org/binaries/content/assets/src/2020/luis-gerhorst.pdf

	Introduction
	Related Work
	Operating System Power Management
	Energy Measurement and Accounting
	Energy Management Abstractions

	Design
	Implementation
	Evaluation
	Discussion
	Future Work
	Conclusion
	References

