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Abstract—For the design and operation of today’s computer
systems, power and energy requirements are highest priorities.
Unlike performance analyses, however, power and energy mea-
surements of heterogeneous systems are difficult to conduct. Espe-
cially at the system-software level, performing power and energy
measurements remains challenging. Yet, such measurements are
essential to improve software components for low power and high
energy-efficiency.

In this paper, we analyze and discuss the power and energy
characteristics of several heterogeneous systems with up to
20 cores (160 hardware threads) and 1 TB of main memory.
For the analyzed systems, we outline challenges regarding power
and energy measurements and show ways to overcome limita-
tions (i.e., sampling constraints). To improve the current state of
the art in power and energy measurements at the system-software
level, we present the design and implementation of PINPOINT,
an energy-profiling tool which unifies different power and energy
measurement interfaces.

Index Terms—Power and Energy Measurements, Heteroge-
neous Systems, System Software

I. INTRODUCTION

Over the past years, power and energy demand have become
primary design criteria and critical operating resources for
computing systems. This applies to all types of systems,
from embedded systems to desktop computer systems, high-
performance computers, and supercomputers.

Until recently, the focus of system development has been on
performance. However, as technologies have progressed (i.e.,
parallel computing on multi- and many-core processors) to
address technologic limitations (i.e., breakdown of Dennard
Scaling, pervasion of dark silicon [1]), power and energy
requirements became the crucial points in computer systems’
design. Due to the diversity of different computing system
types (and their varying purposes), power and energy are im-
portant for various reasons. For small and embedded systems
available power and energy resources must be handled with
care to maximize the operating time (i.e., battery life) of
the computing systems [2], [3]. This is due to the limited
progress of battery technologies and the mediocre increase of
energy density of energy storage over the last decades [4].
For large, high performance and cluster computing systems,

however, power and energy became limiting factors as to
thermal stress and external constraints (i.e., dependencies at
the grid level) [5], [6]. The current Top-500 #1 system Fugaku
can demand over 28 MW peak power [7], which easily exceeds
the power demand of entire towns. The corresponding chal-
lenges arise by run-time requirements which demand dynamic
adaptation of system characteristics (i.e., change between low
and high power operations) on the go [8].

To improve the performance of computing systems, con-
siderations about the system performance [9], [10] commonly
is measured in the time dimension. For example, by spec-
ifying the execution time that is required to complete a
single operation or a compound task. In the network domain,
throughput [11] (e.g., rate at which operations are completed
within a period) and latency [12] (e.g., delay of processing
time of certain operations) are also seen on the background
of time. For different types of systems, performance analysis
procedures are similar: hardware-level timers are exposed via
the operating system as programming interfaces. Software de-
velopers can use these facilities (Linux high resolution timers,
for example) accordingly to analyze and improve performance,
throughput, and latency of their program code at run-time.

However, there are no alike, standardized programming
interfaces available in order to analyze or improve power and
energy characteristics of computing systems. Such easy-to-use
interfaces would be especially important as energy and power
efficiency not always correlate with performance [13]. Instead,
each and every hardware platform provides different means
(if any) to obtain power values during run-time. As a result,
there are no unified methods of performing measurements
to determine the system power demand for the majority of
platforms. Power measurements in combination with time
measurements can be used to reflect about the energy demand
(power over a period of time) of a system [14]. Thus, energy
demand analyses of computing systems suffer from the same
fact that unified programming interfaces are unavailable.

The increasing amount of computing systems’ heterogene-



ity (i.e., CPUs, GPUs, TPUs') make the situation even more
difficult: to provide a holistic view on the power and energy
demand of a computing systems, various different power-
measurement interfaces must be used and combined. The
manifold variants to measure power and energy—that are
diverse in character and control—make it inherently difficult
to improve not only performance properties, but also power
and energy properties of software.

As reliable energy models [15], [16] are commonly unavail-
able and became difficult to establish for many of hardware
components, we investigate the characteristics of different (on-
board and external) power and energy measurement technolo-
gies and use them for the analysis on nine heterogeneous
computing systems. Based on our findings, we describe the
design and implementation of a Perf-Inspired Energy Profil-
ing Tool (PINPOINT) [17], an advanced software tool that
eases research work that targets improving power and energy
efficiency of software for heterogeneous computing systems.

With this paper we make the following main contributions:

e an in-depth analysis and discussion of hardware and
software interfaces for power and energy measurements

« the design & implementation of PINPOINT, an advanced
software tool for power and energy demand analyses

« an analysis and evaluation of power and energy character-
istics for several platforms and accelerators (i.e., GPUs)

The paper is structured as follows. First, we outline power
and energy characteristics of nine different hardware plat-
forms (Section II). We include embedded systems (i.e., ARM
Cortex-A, and -M) that have become increasingly popular
in heterogeneous HPC systems [18], [19] and supercomput-
ers [20] as well as high-performance systems (i.e., AMD
Ryzen, Intel Xeon, and IBM POWERS) to discuss individual,
important differences. In Section III, we discuss details on
power characteristics of the hardware platforms and outline
their individual interfaces for power measurements. We share
our gained knowledge on how to perform power and energy
measurements on the discussed hardware platforms and de-
scribe the design and implementation of our contribution, a
platform-agnostic software tool for unified power and energy
measurements (PINPOINT) [17] in Section IV. We further
present and discuss evaluation results of several measure-
ment series and show operational details of the platform-
agnostic software tool for unified power and energy measure-
ments (Section V). Related work is discussed in Section VI,
and Section VII concludes the paper.

II. PLATFORMS

This section introduces several hardware platforms that
we have analyzed for this paper. Besides high-performance
computing systems from AMD, Intel, and IBM, we also
include hardware accelerator hardware (i.e., Tensor Processing
Units, GPUs) and embedded systems (i.e., ARM SoCs). Such

Itensor processing unit, accelerator application-specific integrated circuits
which improve the execution of neural networks

compute units have become increasingly popular in hetero-
geneous HPC systems [18], [19] and supercomputers [20]
over the last years. With this diverse selection of platforms
we stress the strong deviations and differences among the
heterogeneous systems that must be considered for power and
energy measurments. Table I outlines the requirements and
preconditions to measure each platform’s power or energy
demand and shows a system overview and provides details
about CPU, memory, and available accelerators hardware, if
applicable.

1) Coral USB Accelerator (Edge TPU): The advent of
machine learning (ML) techniques lead to an ever-rising need
for more processing power. Usually, the training process
(i.e., learning) is more compute-intensive than the inference
process (i.e., execution). Therefore, ML developers started
to accelerate their training utilizing GPUs and ASICs like
Tensor Processing Units (TPUs). However, 10T scenarios
require not only efficient training, but also energy-efficient
inference supported by accelerators [21]. The Coral USB
accelerator hosts an Edge TPU, a specialized ASIC for power-
efficient execution of ML models (i.e., neural networks). The
accelerator communicates with a host PC via a USB-C con-
nection controlled by an ARM Cortex MO+ microcontroller.
Additionally, the USB connection powers the accelerator. The
MO+ controls the communication channel and is not used for
inference. According to the vendor, the Edge TPU executes
ML models with up to 4 tera-operations per second (TOPS)
using 0.5 W per TOPS [22]. Unfortunately, the board provides
no means to retrieve the drawn power. To measure the energy
demand of the accelerator, we intercept the USB connection
and measure the power draw. Therefore, we use the LTC2991
voltage and current monitor, as described in Section III-B2.

2) NXP Kinetis FRDM-KL02Z: The NXP Freedom KL02Z
board runs an ARM Cortex MO+ microcontroller with a
slightly higher clock rate than the usual of 48 MHz [24]. It
has access to 4kB of SRAM and 32kB of flash memory.
For communication purposes, the board is equipped with an
nRF24L01+ transceiver from Nordic Semiconductor, which
transmits and receives in the 2.4 GHz ISM band [30]. This
setup resembles a low-power sensor node with flexible com-
munication abilities. We measure the power demand of the
whole setup (i.e., board, microcontroller, and transceiver) by
connecting the board’s power supply to the MeasureAlot
measurement device, as described in Section III-B1.

3) Microchip SAMA5D3  Xplained: ~The Microchip
SAMASD3 Xplained board hosts an ARM Cortex AS
microprocessor running with up to 536 MHz [25]. The
memory composition is very flexible as several memory
interfaces are available. In total, the memory in our
configuration consists of two 64 kB SRAM modules running
at CPU frequency, two 128 MB DDR2 modules, and 256 MB
SLC flash as persistent memory. One advantage of this board
is the extensive number of pins, where the power demand
of different components can be measured separately. In
fact, the board supports isolated measurements of the CPU



TABLE I: Details and characteristics of different hardware platforms. The table shows the utilized CPUs (including number
of cores and hardware threads), clock rate, and memory configuration. If available, additional accelerators are shown.

Device CPU Cores/ Speed Memory Accel.
Threads
[23] Coral USB Cortex MO+ 1/1 32 MHz 2kB  SRAM 1x TPU
[24] FRDM-KL02Z  Cortex MO+ 1/1 48 MHz 4kB  SRAM —
8§MB SDRAM
[25] SAMASD3 Cortex AS 1/1 536 MHz 256 MB  DDR2 —
[26]  Odroid-C2 Cortex A53 4/4 2.00 GHz 2GB DDR3 —
[27]  Jetson TX2 Cortex AS57 4/4 2.00 GHz 8GB LPDDR4 1xiGPU
Denver 2 212 2.00 GHz
— Desktop PC Ryzen 3950X 16/32 3.50 GHz 32GB DDR4 —
[28] HPE BL460c 2xXeon ES 12/24 2.00 GHz 128 GB  DDR3 —
[29] IBM S824L 2xPOWERS 20/160 3.42GHz 1TB DDR3 2x dGPU
1x FPGA

core and embedded memories?, the DDR?2 interface, and
several other peripheral components. This allows fine-grained
and detailed power and energy demand measurements and
accurate attribution of induced energy demand to specific
hardware components. We measure the power draw using
the LTC2991 voltage and current monitor as described in
Section III-B2.

4) Odroid-C2: The Odroid-C2 [26] is a low-cost Single-
Board Computer (SBC) based on the Amlogic S905 SoC.
The S905 builds around an ARM Cortex-A53 quad-core CPU
clocked at up to 2.0 GHz. It is optimized for energy efficiency,
as the A53 is the energy-efficient counterpart to the more
powerful AS57 in big. LITTLE CPUs. At release, one advantage
of the C2 was the aarch64 Linux image, which could use the
64-bit ARMv8 CPU, compared to legacy 32-bit images of other
low-cost SBCs. Like the majority of SBCs, the C2 equips no
power monitoring facilities. To cover the C2 in our analysis,
the INA260 and MCP39F511N power monitors are employed
as elaborated in Section III-B.

5) Jetson TX2: Ranging from autonomous driving to
portable game consoles, NVIDIA Jetson compute modules tar-
get embedded use cases that require decent GPU performance
in a constrained power envelope. The Jetson TX2 is based
on the Tegra X2 SoC, which uses a Heterogeneous Multi-
Processing (HMP) approach to implement the 64-bit ARMvS
ISA. It comprises two NVIDIA Denver 2 CPU cores and
four ARM Cortex-A57 CPU cores to enable different power
and performance profiles. On the GPU side, it provides 256
CUDA cores based on the Pascal microarchitecture. For an
embedded platform, the TX2 provides a fast 128-bit memory
interface clocked at up to 1866 MHz. The board is equipped
with two INA3221 triple-channel power monitors. For all mea-
surements, the system operates in the unrestricted performance
and energy profile (i.e., Max-N).

6) Ryzen-based Desktop PC: The third Ryzen series shows
promising performance results for reasonable prices for both
desktop and server applications. Therefore, we analyze a
custom-built PC based on an AMD Ryzen 9 3950X with

2The incorrect JP1 routing, described in the board’s user guide, was
fixed before any measurement: http://ww 1.microchip.com/downloads/en/DeviceDoc/
Atmel-11269-32-bit-Cortex- A5-Microcontroller-SAMAS5D3- Xplained_User-Guide.pdf

16 cores and 32 hardware threads running at a base clock
rate of 3.5 GHz and maximum boost rates of 4.7 GHz [31].
The RAM configuration comprises two 16 GB DDR4 memory
modules. An important feature is a semi-compatible RAPL
interface available for third-generation Ryzen processors [32].
The contents of the RAPL model-specific registers (MSRs)
are identical to the Intel RAPL interface. However, the MSR
numbers differ. This allows a fine-grained on-board power
evaluation of the CPU package, specific cores, and CPU
subsystems.

7) HPE ProLiant BL460c Gen8 Server: The BL460c is a
blade server that is equipped with two Intel Xeon E5-2620
CPUs clocked at up to 2.0 GHz. Like most servers, it only
exposes coarse-grained power draw readings via the Intelligent
Platform Management Interface (IPMI). Therefore, only the
energy demand of the CPUs can be quantified at a sufficient
level of detail via the RAPL interface, because the power
rating of the blade center exceeds the limits of all external
measurement approaches presented in this paper. Section III-A
provides details about the IPMI and RAPL approaches.

8) Power System S824L: With a maximum rated power of
2.3kW, the IBM Power System S824L features two POWERS
CPUs with ten cores and eight buffered DDR3 memory
channels, each. Providing a per-channel memory bandwidth
of 24 GB/s, one of the system’s key strengths is its high total
memory bandwidth of up to 384 GB/s. The Simultaneous
Multithreading (SMT) level of the POWERS CPUs can be
configured to provide up to eight hardware threads per core,
resulting in a maximum of 160 hardware threads over 20 cores.
Furthermore, it is equipped with an NVIDIA Tesla K80 GPU
and a Nallatech N250S accelerator card featuring a Xilinx
Kintex UltraScale KU060 FPGA, making it a good candidate
to study heterogeneous system architectures. System-wide
power measurements are only supported through the coarse-
grained IPMI interface and two external MCP39F511N power
monitors. The latter power monitors are subject to our custom
system configuration and, thus, are commonly unavailable for
alike POWERS systems elsewhere.


http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11269-32-bit-Cortex-A5-Microcontroller-SAMA5D3-Xplained_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11269-32-bit-Cortex-A5-Microcontroller-SAMA5D3-Xplained_User-Guide.pdf

III. MEASURING POWER AND ENERGY

In this section we discuss the necessary different methods
for measuring the power demand of the hardware platforms
that we presented in Section II. We distinguish between on-
board measurement facilities (i.e., methods that are integrated
with the individual hardware platform and external measure-
ment facilities (i.e., methods that use standalone devices). Each
measurement device is best suited for an individual field of
application and we discuss the individual assets and drawbacks
(i.e., different sampling rates and measuring accuracy).

A. On-Board Measurement Facilities

1) NVIDIA Jetson TX2 module: NVIDIA equips the Jet-
son TX2 module with two triple channel INA3221 [33]
power monitors. The monitors report voltage and cur-
rent values of the power rails by averaging the last 512
samples from the continuously probed data with a preci-
sion of 5% [34]. From these values, the power draw is
computed and exposed via Linux sysfs-interface under
/sys/bus/i2c/drivers/ina3221x/. Individual mea-
suring points are provided for several subsystems such as
CPU, GPU, DDR memory, and the remainder of the SoC.
Additionally, the total power draw of the entire compute
module is measured. Since the exact conversion time settings
of the INA3221 are unspecified, we can only estimate that the
effective sampling frequency is in the order of 20 Hz.

2) Running Average Power Limit (RAPL): Starting with
Sandy Bridge CPUs, Intel integrated the Running Average
Power Limit (RAPL) interface in its CPUs [35]. The main
objective of RAPL is limiting the power drawn by the CPU.
These limits are helpful, for example, for data centers to
control the power consumption at rack level and maximize its
power supply utilization. However, the RAPL interface also
provides a means to measure the energy demand of the CPU
at different granularities (e.g., whole CPU package, cores,
integrated GPU). The energy demand is determined by detailed
energy models with access to many CPU-internal performance
counters. The energy model is enhanced by actual energy
measurements, depending on the specific CPU architecture
and model. The RAPL Energy Status registers contain the
cumulative energy consumption and are updated every 1 ms.
During high load the registers wrap around after around 60 s,
depending on the CPU’s maximal power demand. Starting with
the third-generation of Ryzen processors, AMD provides a
semi-compatible RAPL interface (i.e., same register contents,
but different register locations) [32].

The main advantages of RAPL are its convenient usage,
little overhead, and accurate measurements. However, it is not
possible to generate fine-grained information about the power
demand over time, but only about the energy demand.

3) Baseboard Management Controller: Using the base-
board management controllers available in servers, most ven-
dors expose basic power consumption measurements via IPMI.
Even though the implementation can vary from vendor to
vendor, we found that with roughly 1 Hz, the sampling rate is

usually very low. As such, these measurements are not suitable
for detailed energy profiling tasks.

B. External Measurement Facilities

1) MeasureAlot: The usual approach of energy demand
measurements consists of sampling the power demand over
a period of time and eventually integrating over the power
demand to calculate the energy demand. However, this may
lead to inaccuracies if the power demand differs significantly
between two samples (i.e., power-demand peaks). Increasing
the sampling rate, which usually requires expensive measure-
ment devices, reduces these inaccuracies, but cannot eventually
avoid them.

Our custom-built MeasureAlot device avoids this problem
by not sampling at all [13]. Instead, it uses a current mirror to
duplicate the drawn current to charge a capacitor with known
capacity. If the capacitor is fully charged, the current mirror
is redirected to charge a second capacitor. In the meantime,
the first capacitor is discharged and can be used again once
the second capacitor is fully charged. The energy demand can
be calculated by multiplying the number of capacitor charges
with the energy required to charge the capacitor once.

The MeasureAlot device provides general-purpose in-
put/output (GPIO) pins to a) start and stop a measurement or
b) trigger an intermediate result while continuously measuring.
The GPIO pins allow for a low-overhead measurement control.
Results are buffered on the device and can be retrieved via a
USB connection during or after a measurement process.

This approach has the advantage to include all power peaks,
independent of their duration, and thus provide precise mea-
surements. However, this approach provides only the energy
demand between two points in time and no fine-grained
information about the power demand. Additionally, due to the
design of the measurement device, the energy demand is at
least doubled during measurements.

2) Linear Technology LTC2991: We use an LTC2991 tem-
perature, voltage, and current monitor with up to four channels
for a variety of small hardware platforms [36]. The LTC2991
sits on a DC1785B board, which provides a (replaceable) shunt
resistor for each measurement channel. The provision of dif-
ferent shunts allows simultaneous measurements of hardware
components with different power demands, that is, relatively
high and low power demand, respectively. The LTC2991
utilizes a 14-bit analog-to-digital converter (ADC) with 1%
accuracy and a sampling rate of 250 Hz. If more than one
device-under-test (DUT) is connected to the measurement
board, the ADC multiplexes between all connected channels.
Hence, the per-channel sampling rate depends on the number
of connected DUTs.

We use an Atmega328P connected to the DC1785B to
integrate the power measurements and provide a USB interface
to a host. The host retrieves the measurement data, which is
either power or energy demand, over the USB connection.

3) Texas Instruments INA260: To enable use cases ranging
from continuous monitoring of a small SBC cluster down to
fine-grained tracing of a workloads executed on individual
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Fig. 1: Sampled power draw on Jetson TX2 during the execution of a heat dispersion simulation workload first using OpenMP,
then CUDA. In (a), the internal power measurement infrastructure is used, yielding individual measurement points for CPU,
GPU, DDR memory, and the remainder of the SoC. In (b), we measure the total power draw using the internal measurement
facilities and the external MCP39F511N measurement method. Different Y-axis scales are used to present more details.

cluster nodes, we designed a custom power measurement sys-
tem based on the INA260 single-channel voltage and current
monitor chip [37]. The system consists of one or more modules
with four INA260 chips each sharing a common input voltage
rail. Each channel can theoretically sustain a current of 15 A
at 30V, but based on the board layout, we estimate the total
load across all four channels should not exceed 20 A.

The monitor chips are connected to an I12C-Bus, which
can be shared across up to four modules. The fastest single-
channel measurement is achieved with minimal voltage and
current conversion times, resulting in a sampling rate of
(2-0.14ms)~! = 3.6 kHz. With 16 active channels, the data
rate constraint on the I2C bus allows for a sample rate of
925 Hz per channel. At the highest accuracy, each channel
produces samples at a rate of (2 -8.2ms)~! = 61 Hz.

4) Microchip MCP39F51IN: A common problem to many
systems is the absence of convenient access to the power sup-
ply of specific components or subsystems. For these systems,
often the only practical way to measure the power demand is
to intercept the system’s power supply and measure the power
drawn from the wall socket. The Microchip MCP39F511N is
a dual-channel power measurement device that measures the
power demand between the wall socket and a system [38].
A USB connection allows the easy retrieval of measurement
data either by an external control host or by the measured
device itself. The latter case introduces overhead during the
measurement (i.e., retrieving the measurement data adds to the
energy demand). However, it allows the measuring device to
gain knowledge about itself and hence allows self-awareness.

The MCP39F511IN allows up to 15A at a maximum of
230V, which is sufficient for most desktop and server plat-

forms. The power demand is measured over a 2m{) shunt
with a 24-bit delta-sigma analog-to-digital converter (ADC).
This allows an accuracy of 0.5 %. The sampling rate is phase-
locked to the line frequency and allows a configurable number
of samples per line-frequency cycle. Usually, we decided to
use four samples per cycle, which results in a sampling rate of
200 Hz to 240 Hz (depending on the country’s line frequency).
Due to small changes in the line frequency, the time between
measurement samples may not be equidistant, which is why a
timestamp for each power sample is recorded. By integrating
the power demand over all measurement samples, the energy
demand can be calculated.

IV. ENERGY PROFILING WITH PINPOINT

In stark contrast to the availability of standardized per-
formance measurement tools, comparable software infrastruc-
tures do not exist for power and energy measurements. As
to the existence of manyfold power and energy measuring
methods (cf. Section III) a corresponding unification at the
system-software level is necessary, for example to provide
standardized programming interfaces that implement power
and energy measurements.

Inspired by the perf [39] performance analysis tools in
Linux, we implemented Perf-Inspired Energy Profiling Tool
(PINPOINT) to fill this gap. PINPOINT collects and processes
power measurements and enables users to determine the en-
ergy demand of arbitrary applications. On startup, PINPOINT
detects available power measurement data sources by probing
known kernel interfaces and device ports from user space.
Our current prototype implementation supports the Microchip
MCP39F511N (which we use in conjunction with systems like
our POWERS installation, see Section II) and the NVIDIA



Jetson’s INA3221 power monitors. We designed PINPOINT
to easily integrate and support additional power and energy
measurement methods.

Like perf, PINPOINT offers many switches that users can
leverage to optimize their measurement setup. Options include
a list of power measurement data sources to be used, the
number of runs the measurement should be repeated, the
desired sampling interval, as well as forerun and trail times to
be included in the analyses. By default, the raw energy demand
per power data source is reported. However, a switch can be
supplied to report the Energy Delay Product (EDP) [40] for the
workload under test. Additionally, the series of sampled power
draws can be recorded or live-streamed over the network for
off-site analysis and visualization. Finally, the source code of
PINPOINT has been made freely available on GitHub [17].

Internally, PINPOINT takes a modular approach towards
the diverse set of possible data sources: new data sources can
be implemented against a stable interface for data acquisition
and auto-detection routines, which are bound to PINPOINT
at compile time. The actual measurements are performed by
a sampling component, which spawns the workload, takes
timestamps and synchronizes the data acquisition across one
or more data sources. Finally there is the evaluation com-
ponent that takes care of postprocessing the acquired data.
It orchestrates multiple workload runs collecting statistical
information, and can either output raw power samples or
perform a numerical lower Darboux integration to determine
consumed energy and the energy-delay product.

To achieve a close synchronization between workload ex-
ecution and power measurements, PINPOINT runs alongside
the measured workload. Even though this setup might theoret-
ically interfere with the workload under test, the tool sleeps
between taking samples and does not perform heavy compu-
tations during workload execution. Therefore, the degree of
self-interference caused by this setup is minimal and can be
neglected in practice. When external measurement techniques
are employed, the tool can also be executed on a different
machine than the workload under test. In that case, timestamps
are used to align start and end of the workload with the power
samples. However, this approach still requires a minimal
overhead on the device under test for capturing timestamps
and depends on very accurate clock synchronization between
machines.

V. EVALUATION

Having presented a variety of different, heterogeneous
hardware platforms and measurement facilities in Sections II
and III, respectively, this section provides an insight into how
both worlds can be brought together. First, it is essential
to determine which measurement facilities can be used in
conjunction with each individual hardware platform. Second,
we demonstrate how PINPOINT (cf. Section IV) ties hardware
platforms and measurement facilities together.

To address the first issue, Table II provides an overview of
the measurement facilities suitable for the different hardware
platforms. The sparsity of the result matrix presented in

TABLE II: Available measurement facilities for the different
hardware platforms.
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Table II clearly communicates the unsatisfactory situation that
a wide range of external measurement facilities are required to
cover all platforms. On the positive side, a number of platforms
are covered by more than one measurement technique.

For the evaluation of PINPOINT, we analyze the energy
demand of CPU and GPU based execution of a heat dispersion
simulation as an exemplary workload. The multi-threaded,
CPU-based version is implemented using OpenMP, whereas
the GPU-based version is implemented using CUDA. Oper-
ating on a 1000 x 1000 matrix of single-precision floating-
point cells, 10000 timesteps of the simulation are executed.
Using a low-power compute platform and a high-performance
compute node to represent the two ends of the spectrum of
heterogeneous compute platforms, we perform our tests on a
NVIDIA Jetson TX2 compute module (see Section II-5) and
an IBM Power System S824L server (see Section II-8).

Figure 1 illustrates the raw power draw series measured
with PINPOINT during the execution of first the CPU and
then the GPU-based implementations on the Jetson TX2
board. Throughout all measurements, the board operates in the
unrestricted performance and energy profile (i.e., Max-N). In
Figure la, the internal INA3221 power monitors quantify the
power consumption of individual subsystems, including CPU,
GPU, DDR memory, and the remainder of the SoC. Being
able to observe the power consumption of different subsystems
provides valuable insights into the detailed system behavior.

To unequivocally determine which implementation requires
less energy on the TX2, the power integral is computed.
As Listing 1 demonstrates, PINPOINT fully automates this
tedious process, as it takes care of capturing measurement
data and postprocessing tasks. Using the Jetson-internal power
monitor facilities, we measured that the CPU-based imple-
mentation with OpenMP consumed 95.93 J, whereas the GPU
version with CUDA consumed 86.93 J, confirming that GPU-
based execution indeed is more energy-efficient on the TX2
for the workload at hands.

Figure 1b compares power measurements on the same
Jetson TX2 board gathered via two different measurement
techniques: The internal series reports the total power draw of
the Jetson’s internal power sensors, whereas the MCP series
are taken externally at the wall power level with the Microchip



tx2$> pinpoint -i 50 -r 10 ./heat 1000 1000 10000 in.csv

1

2 [interval: 50ms, before: Oms, after: Oms, runs: 10]
3

4 47436.04 mJ CPU ( +- 4.65% )

5 8084.43 mJ GPU (+- 5.22% )

6 9904.58 mJ SOC (+- 4.26% )

7 19315.06 mJ DDR ( +- 3.58% )

8 95933.73 mJ INPUT ( +- 4.63% )

9

10 8.91673945 seconds time elapsed ( +- 5.92% )

11

Listing 1: Example call of PINPOINT, inspecting the OpenMP
workload’s mean energy demand on the Jetson TX2 with the
internal measurement facilities across 10 runs using a sampling
interval of 50 ms.

I s8241$> pinpoint -i 50 -r 10 ./heat 1000 1000 10000 in.csv

2 [interval: 50ms, before: Oms, after: Oms, runs: 10]
3

4 1499510.65 mJ INPUT ( +- 6.19% )

5

6 1.53317275 seconds time elapsed ( +- 6.19% )

7

Listing 2: Example call of PINPOINT, inspecting the OpenMP
workload’s mean energy demand on the IBM Power System
S824L with the external MCP39F511N measurement method
across 10 runs using a sampling interval of 50 ms.

MCP39F511N power meter. The MCP measurement setup
also includes the switching power supply of the TX2. Even
though the basic shapes correspond, there are some interesting
differences between the curves. As expected, the external
measurement yields consistently higher power draws than
the internal sensors. The difference is about 2W, which
is plausible as the internal sensors capture only the actual
module power consumption, while the external measurement
also includes the carrier board, fan and power supply.

Besides the offset between curves, there is an interesting
difference between the curve details: the external measurement
produces about 100 mW noise, whereas the internal sensors
yield much smoother results. This effect can be explained by
the configuration that NVIDIA employs for the INA3221 mon-
itors, where the moving averages from the last 512 samples
are reported [34]. While this configuration reduces noise, the
external measurement curve responds directly with a sharp
slope at the start of the example workloads, while the internal
curve exhibits a significantly dampened response. Also, the
external measurements show more clearly that the power draw
during GPU-based execution is much more stable compared
to CPU-based execution.

On the TX2, the additional power draw caused by our
test workload exceeds the idle power draw significantly. A
strikingly different picture is given by the power draw mea-
surements of the IBM Power System S824L, as presented
in Figure 2. On this system, the idle power draw exceeds
the additional power draw caused by the workload execution
significantly. On closer look, large amounts of the idle power
draw in the S824L can be attributed to power-hungry compo-

nents such as a large RAID array consisting of twelve SAS
15K hard drives, as well as a large amount of main memory.

The power draw measurements of the S824L have been
performed using the external MCP39F511N measurement
method, with two units and two channels each to cover all
four power supplies of the S824L. Unfortunately, we were
unable to use a second power draw measurement method, as
the time resolution of the IPMI method turned out to be too
coarse on this machine.

Input (External)
1000

External
800 -

OpenMP
CUDA

600

w

S

Fig. 2: Sampled power draw on IBM Power System S824L
during the execution of a heat dispersion simulation workload
first using OpenMP, then CUDA. The total power draw is mea-
sured using the external MCP39F511N measurement method.

In contrast to the TX2, the measurements presented in
Figure 2 suggest that on the S824L, CPU-based execution
of the heat dispersion simulation workload is faster and
also more efficient compared to GPU-based execution. Using
PINPOINT, we were able confirm this observation, as the
CPU implementation consumed 1499.51 J, whereas the GPU
version consumed 1982.84 J.

These examples demonstrated in our evaluation show that
care should be taken for choosing the most efficient execution
target for a certain workload. Also, the variety in measurement
characteristics indicates that it is useful to incorporate multiple
data sources in the same experimental setup, in order to gain
additional insights and also validate different sources against
each other.

VI. DISCUSSION AND RELATED WORK

Determining or estimating the power and energy demand
of computing systems at the software level has received
increased attention [41], [42], [43], [44] as to new emerg-
ing technologies that require low power and energy-efficient
operations. However, power measurement facilities in HPC
systems are as system-specific as they are in the selection of
platforms discussed in Section II. For example, the measure-
ment methodology described by Laros et al. [45] is specific
to Cray XT systems. The GEOPM framework [46] proposes



a cluster-level power management architecture, with a focus
on extensible job scheduling and power capping mechanisms.
Being rooted in x86 system architectures, the intended vari-
ation points concentrate more on workload management and
instrumentation instead of power measurement mechanisms.
Nevertheless there are efforts to adapt GEOPM to different
hardware platforms [47]. In contrast to GEOPM, PINPOINT
operates on the node- instead of cluster-level and is focused on
supporting a wide variety of power measurement mechanisms
without requiring workload instrumentation.

Grant et al. [48] conclude that for detailed energy demand
attribution in scenarios where no application code knowledge
can be assumed, external measurements are the preferred col-
lection method. However, they also agree that corresponding
measurement facilities are only available in selected platforms
as they require specialized measurement hardware. This ob-
servation supports our impression that there is a large gap
between coarse-grained external measurement methods at the
level of power distribution units that do not allow breakdowns
to the component level, and internal measurement methods
such as the RAPL counters that have a limited scope and are
platform-dependent.

Rieger et al. have recently presented a case study on the
state of the art of assessing software energy consumption
[49]. While numerous tools exist in the Android smartphone
ecosystem, the few approaches available that are targeting
desktop, server, or high-performance computing systems are
platform-dependent. As a follow-up work, Rieger et al. have
published a short paper in which they formulate the goal
of platform-independent, method-exact energy measurement
techniques [50]. However, they only use a single measure-
ment technique and the aspect of platform-independence is
only brushed at best. Their main contribution is that they
evaluate two techniques for attributing energy measurements
to methods in the application code, namely linear scaling
and dynamic time warping. They conclude that both methods
provide unsatisfactory results.

Measuring and improving the power and energy char-
acteristics of HPC applications has been subject to many
research works [51], [52] that rely on external hardware equip-
ments (i.e., multi meters, power meters) which often provide
mixed interfaces. Due to its adaptability and extensibility by
design, our proposed tool-based measurement infrastructure
PINPOINT makes existing measuring interfaces available via
a generic programming interface.

To interface with existing software techniques, we consider
that using established performance measurement methods
(e.g., Linux perf [39]) are well-suited to integrate power
and energy measurement analysis techniques, too. In contrast
to performance analytics [9], [10], however, this paper has
shown that necessary programming interfaces and analysis
methods are manyfold and as heterogeneous as the underlying
hardware platforms. We therefore advocate the design and
implementation of unified and platform-agnostic power and
energy measurement infrastructures to facilitate power and
energy measurements at the software level. In the context

performance analytics, the PAPI project [53] offers a well
established and platform agnostic API to expose and access
hardware performance counters. PAPI is aimed at internal
performance counters, whereas PINPOINT integrates external
measurement methods as well. Though it has not been a focus
of this work, an integration of the PINPOINT backend into
PAPI is an interesting line of future work.

An interesting aspect that has been beyond the scope of
this work—and therefore is subject to future research—are
methods for profiling the amount of energy required to transfer
data [54], also in combination with a fine-grained system-level
power demand analysis driven by PINPOINT.

VII. CONCLUSION

Power and energy demand of software and hardware com-
ponents has emerged as a primary design criterion for all types
of heterogeneous computing systems. On the one hand, battery
capacities of uninterrupted power supplies (UPS) and embed-
ded systems must be used efficiently—every joule counts—
and on the other hand, high performance systems must ad-
here to thermal limits and their individual cooling capacities.
During operation, the systems therefore must adhere to certain
power and energy requirements. To improve the understanding
of power and energy characteristics for different types of
platforms, we discussed specific peculiarities of heterogenous
systems, discussed different measurement methods, and dis-
cussed our gained insights and experiences. To advance the
analyzability of systems we further propose PINPOINT, a
platform-agnostic software tool for unified power and energy
measurements. Compared to previous approaches [41], [42],
[43], [44], PINPOINT provides a generic programming inter-
face at the system-software level which enables power and
energy measurements on heterogeneous systems independent
of the available measurement backend(s).
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