
Nearly Symmetric Multi-Core Processors
Stefan Reif, Benedict Herzog, Fabian Hügel, Timo Hönig,

Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg

{reif,benedict.herzog,fabian.huegel,thoenig,wosch}@cs.fau.de

ABSTRACT
Multi-core processors are commonplace and continue to re-
quire rethinking (not only) in system software development.
It is still difficult to operate several functionally identical
computing cores efficiently. Onemisconception is to assume
that functionally identical cores of a multi-core processor
will behave non-functionally alike, especially at the speed
at which they execute the same non-sequential program.We
show that considerable deviations in the non-functional be-
haviour of otherwise identical cores are anything but un-
usual, and can be expected to vary by more than 20 %. The
paper documents the applied measurement methodology,
discusses measurement results obtained, and addresses con-
sequences for the coordinated operation of logically con-
nected concurrent threads in the context of Linux.

CCS CONCEPTS
• Computer systems organization → Multicore archi-
tectures; • Software and its engineering→ Software per-
formance; Operating systems.

KEYWORDS
Multi-core Processors, Symmetric Multiprocessing, Perfor-
mance Variation, Operating Systems

ACM Reference Format:
Stefan Reif, Benedict Herzog, Fabian Hügel, Timo Hönig, Wolf-
gang Schröder-Preikschat. 2020. Nearly SymmetricMulti-Core Pro-
cessors. In 11th ACM SIGOPS Asia-PacificWorkshop on Systems (AP-
Sys ’20), August 24–25, 2020, Tsukuba, Japan. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3409963.3410486

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APSys ’20, August 24–25, 2020, Tsukuba, Japan
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8069-0/20/08…$15.00
https://doi.org/10.1145/3409963.3410486

1 INTRODUCTION
Multi-core processors have conquered the domain of any-
purpose computing. The technological change towards the
multiplication of (identical/different) processing units inte-
grated on a single processor chip was mainly due to dimin-
ished performance gains in face of increasing operating fre-
quency, a phenomenon thatwas largely called forth by hand-
icaps, such asmemory [31], instruction-level parallelism, and
power, summarised as brick wall [2, 19].This, in turn, caused
software to be confrontedwith the problem of exploiting the
explicit parallelism made available by the hardware for be-
ing processed with good or even high-performance. An un-
dertaking that evoked and still brings “dire straits” to general-
purpose computing, but appears to be much more challeng-
ing for special-purpose computing in the domain of time-
dependent systems.

The constraint of real parallelism not only intensified the
already existing problem of non-deterministic operation, but
it also amplified interference with scheduling decisions not
only because of more difficult synchronisation methods re-
quired to ensure consistent operation in the data as well
as time domain. The difficulties go beyond that and are in-
creased by hardware-related shallows. For example, current
operating systems for multi-core processors usually assume
that a group of functionally identical cores also behave the
same in a non-functional way. It is believed that equally
clocked cores will also result in (nearly) identical runtimes
of the same non-sequential program section for the individ-
ual concurrent threads. Among others, this assumption ap-
plies to Linux and is deceptive—or the systems are just not
aware of possible deviations. Our investigations show de-
viations of more than 20 %. The noise that thus represents
jitter can cause significant disruptions in the coordinated
processing of logically connected concurrent threads, for ex-
ample in the case of co-scheduling [23] or barrier synchro-
nisation [4, 29]. As a result, strictly locally operated phase-
locked schedulers [25] can get out of hand and run the risk
of being unable to comply with the supposedly predictable
threads based on their operation principle.

Based onmeasurement series (i.e., performance and power
demand measurements) on systems with different “symmet-
ric” multiprocessing (SMP) CPUs we show that apparently
identical SMP cores vary greatly. The contributions of this

https://doi.org/10.1145/3409963.3410486
https://doi.org/10.1145/3409963.3410486

APSys ’20, August 24–25, 2020, Tsukuba, Japan Reif et al.

paper are three-fold. First, we reveal significant performance
differences between seemingly identical processor cores in
a broad variety of COTS hardware. Second, we present the
golden suite, a run-time system to exploit these performance
differences. Third, we discuss how to extend operating sys-
tems, such as Linux, for heterogeneity awareness of nearly
symmetric multi-core processors. The knowledge about ef-
fectively different core performance allows for (a) better load
balancing by migrating urgent tasks to fastest cores, (b) im-
proved energy efficiency by slowing down cores selectively
to re-balance their speed, and (c) improved predictability of
program execution times.

The paper is structured as follows. Section 2 provides back-
ground and discusses related research. Based on measure-
ment series on several systems, we reveal in Section 3 that
SMP cores are not completely equal. In Section 4 we present
a run-time support system which considers the heterogene-
ity of SMP cores and discuss a corresponding implementa-
tion for the Linux kernel. The evaluation in Section 5 com-
pares our run-time support system, which is aware of the
heterogeneity of SMP cores, to the state of the art, which is
unaware of the fact that SMP cores are unequal.

2 BACKGROUND AND RELATEDWORK
Variances in processors exist in vast extents and are rea-
soned for and addressed in various distinct technological
areas. In this section we particularly discuss related work
mostly from the hardware perspective to identify the root
causes of heterogeneity within SMP cores.

2.1 Semiconductor Variability
Allegedly identical chips show variable characteristics (i.e.,
different timing and power properties) for different reasons.
Among such reasons are transistor ageing and fabrication
tolerances during production. Transistor ageing [17] occurs
as a result of various physical phenomena (e.g., hot-carrier
injection, bias temperature instability, and oxide breakdown).
Therefore, it is common to face a certain degree of wear for
CMOS chips over their lifetime. In addition to wearout, the
fabrication variations and the continuous shrinkage of tran-
sistor sizes increases the chip variability. Within-die fabrica-
tion variations [5, 6, 15, 30] are responsible for differing per-
formance characteristics of individual CPU cores. For exam-
ple, the channel length and non-uniformities in the creation
of interconnect layers of CMOS circuits affect the maximum
clock frequency.

2.2 Integrated Circuit Design
Power leakage variations and the thermal distributionwithin
a processor die influence the performance of individual CPU

cores [3, 21]. Increased power leakage leads to higher ther-
mal dissipation and consequently prevents higher frequen-
cies in order to avoid exceeding the thermal design power
limit. Speed binning is a typical procedure of hardware man-
ufacturers to sell processors capable of higher maximum fre-
quencies for higher prices. Sartori et al. analyse different
speed binning metrics for multi-core processors and discuss
the influence of varying maximum frequencies per core on
the speed binning metric [26]. However, differences in hard-
ware do not only occur within a processor die or architec-
ture, but also for other types of hardware, for example, in
hard drive disks [18], wireless sensor nodes [16], and sys-
tems on chip [27]. This work analyses the variability of dif-
ferent systems on a chip of the same type. Our work, in con-
trast, focusses on the identification and utilisation of suppos-
edly homogeneous processor cores in symmetric multi-core
processors that actually show different characteristics (i.e.,
different timing and power properties). The development of
new hardware architectures bears the risk that functionally
equivalent processor cores show different non-functional
characteristics [8] . At the same time the number of design
bugs increases with the rising complexity of processors [7]
eventually leading to an increased probability of core-to-
core performance differences caused by design decisions in
the hardware architecture.

2.3 Processor speed variability
Some papers (e.g., [1, 11, 20]) have identified run-to-run,
core-to-core, and processor-to-processor performance vari-
ation in supercomputers. In addition, Marathe et al. [20]
have found that the variability tends to increase with new
processor generations. This paper extends these findings in
various ways. First, we consider laptop, desktop, and server
processors, listed in Table 1.We find performance variations
in all of these three processor classes. Second, we show that
the amount of performance heterogeneity is workload-de-
pendent. While most applications have little core-to-core
performance variations, someworkloads benefit greatly from
running on a specific core.Third, we demonstrate that single-
core applications can benefit from heterogeneity awareness,
and implement a prototypical run-time system.

3 HETEROGENEITY OF SYMMETRIC
MULTI-CORE PROCESSORS

As a motivating example, Figure 1 visualises the execution
time distributions of the sequential cg benchmark, which is
part of the NAS benchmark suite [12], with problem size A
on a desktop processor (CPU1, cf. Table 1). It shows that some
cores are faster than others1 and the run-to-run variation can-
not explain the core-to-core differences. Considering that
1Text in italics indicates conclusions drawn from our measurement results.

Nearly Symmetric Multi-Core Processors APSys ’20, August 24–25, 2020, Tsukuba, Japan

1.1 1.2 1.3 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Execution time [s]

CD
F

Core 0 Core 1 Core 2
Core 3 Core 4 Core 5

Figure 1: CDF of the execution time of the cg bench-
mark, per core (CPU1).

the mean execution time on Core 5 is > 10% higher than
Core 2, this section examines in detail which workloads and
what processors are affected by this type of performance
heterogeneity.

3.1 Workload-Specific Behaviour
We run these measurements with the sequential versions of
the NAS Parallel Benchmarks, since they constitute repre-
sentative multi-core workloads, but allow for a performance
assessment of individual cores. Figure 3 shows that for all
NAS benchmarks, except for cg, the core differences are neg-
ligible2. This means that the performance differences depend
on workload characteristics which is a strong indicator that
the measured performance differences are caused by the hard-
ware, not the system-level software running on it (e.g., inter-
rupts or system noise). We argue that the performance differ-
ences of different processor cores observed for the cg bench-
mark are worth considering. As part of a highly-relevant
benchmark suite (i.e., NAS Parallel Benchmarks) the code
mimics the behaviour of real-world applications. In partic-
ular, the cg benchmark contains program code with irregu-
lar memory accesses and communication patterns [12]. We
conclude that not all workloads are sensitive to core heteroge-
neity, but some workloads can run > 10% faster if executed on
the right core. Thus, the processor offers free (performance)
lunch [28] for some applications.

3.2 Correlation with Energy
For additional insight to the microarchitectural behaviour,
we measure the energy demand via the RAPL interface. Fig-
ure 4a shows that the power demand correlates negatively
2We use problem sizes A and S and ignore the dt benchmark because it has
no sequential reference implementation; and the bt, dc, and lu benchmarks
because a single execution of the sequential version took too much time to
allow for a large number of iterations.The dataset is nevertheless sufficient
for the conclusions that we draw in this paper.

CPU1 CPU2 CPU3 CPU4 CPU5
1.00

1.05

1.00

1.10

1.15

1.20

1.25

11.20%

6.31%

20.96%

1.14% 1.75%

Pe
rfo

rm
an

ce
Ra

tio

Figure 2: Mean execution time of the cg.A benchmark
on the slowest core, normalised to the fastest core of
each processor.

cg ep ft is mg sp ua
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

11.20%

0.03% 0.45% 0.18% 0.17% 0.36% 0.28%

Pe
rfo

rm
an

ce
Ra

tio

Figure 3: Mean execution time of NAS Parallel Bench-
marks on the slowest core, normalised to the fastest
core (CPU1).

with the execution times (i.e., slower cores tend to have a
lower power demand), but the energy demand shows a pos-
itive correlation (i.e., slower cores tend to consume more
energy). However, RAPL applies energy models internally,
and the technical reference manuals do not provide the in-
formation whether these models account for core-specific
characteristics.We are therefore very cautious and only con-
clude that there is no evidence that slower cores need less en-
ergy, and that the activity below the hardware surface varies.

3.3 Causes of Heterogeneity
Considering that the cg benchmark is cache-intensive, we
develop severalmicrobenchmarks that stress the caches. List-
ing 1 shows one of these cache-stressmicrobenchmarks. Fig-
ure 4b visualises the result, indicating that the execution
time of the cg benchmark correlates positively with the ex-
ecution time of this microbenchmark. However, the propor-
tions do not match exactly, and the order of cores is slightly
off. In consequence, it is possible that the fastest core for one
workload is not optimal for another workload. Further mi-
crobenchmarks that we developed and tested show similar

APSys ’20, August 24–25, 2020, Tsukuba, Japan Reif et al.

1.00 1.02 1.04 1.06 1.08
1.00

1.02

1.04

1.06

Execution Time

En
er

gy
D

em
an

d

1.00 1.02 1.04 1.06 1.08
1.00

1.02

1.04

Execution Time

Po
we

rD
ra

w
(a) The execution time correlates positively with the energy demand, and neg-
atively with the average power demand (CPU2).

1.00 1.02 1.04 1.06 1.08 1.10 1.12
1.00

1.02

1.04

1.06

1.08

NAS CG Benchmark

M
icr

ob
en

ch
m

ar
k

(b) The cg and microbenchmark execu-
tion times correlate positively (CPU1).

Figure 4: Correlation of the cg execution time with energy and power demand, and microbenchmark execution
time (all values normalised, one point per core).

Listing 1: A cache-stress microbenchmark.
void microbenchmark () {

char mem[N];
for (r = 0; r < R; r++) { // repeat ...

for (n = 0; n < N; n += sizeof(cacheline)) {
mem[n]++;
clflush (&mem[n]);

}
mfence ();

}
}

results, we therefore omit them in this paper for space rea-
sons. This means that the cache is, at least partially, respon-
sible for the performance differences—the cache-intensive mi-
crobenchmark triggers performance differences between pro-
cessor cores. In fact, the last-level cache on recent Intel mi-
croprocessors is not fully uniform [13], which could be one
potential reason for the observed performance differences.
However, another mechanism possibly causes additional per-
formance differences because the performance differences
vary between cg and the microbenchmark.

In consequence, identification of the microarchitectural
causes of core-to-core performance differences, and detec-
tion of sensitive workloads, demands for a more detailed
analysis. However, we consider suitable workload classifica-
tion techniques as future work. Instead, this paper examines
the behaviour of sensitive workloads more closely.

3.4 Processor Model Comparison
Figure 2 displays the mean execution time of the cg bench-
mark on the slowest core, for multiple computers, each nor-
malised to the mean [14] execution time on the correspond-
ing fastest core. The processor details are listed in Table 1.

The CPU4 and CPU5 machines both only show minimal per-
formance differences. This means that not all processors ex-
hibit heterogeneous behaviour. However, all processor types
can be affected, including desktop (CPU1), laptop (CPU2), and
server (CPU3) models. Besides, the performance differences
tend to be stronger on machines with more physical cores. Re-
markably, the server machine CPU3 has a performance dif-
ference > 20%. Extrapolating these results, and consider-
ing the trend that the number of cores has been growing for
years, we conclude that the SMP core heterogeneity will be
more prevalent in future (many-core) systems.

Figure 5 visualises the core performance characteristics
of CPU3 in detail. Both axes contain the logical core IDs, as
enumerated by Linux (i.e., “physical” cores first, then physi-
cal cores on second socket, then their “hyperthreads”). Since
CPU3 has 96 logical cores, we can examine in detail to what
degree the core performances differ. For this evaluation, we
compute the k-sample Anderson-Darling Test (k = 2) for
each pair of logical cores. This test takes the execution-time
distribution of the cg benchmark of each core as inputs, and
categorises core pairs either as “similar” or as significantly
(p-value is 0.01) “different”. The black dots, which indicate
that the performance is similar, are most prevalent when
comparing a core to itself (i.e., the diagonal line in the cen-
tre) or to the hyper-thread that share the same physical core
(i.e., the two parallel diagonal lines through the points (0, 48)
and (48, 0)). This again indicates that caches are a cause of
performance differences, since a “physical core” and its “hy-
perthread” share caches. However, almost all other core pairs
exhibit significant performance differences, even when com-
paring cores on the same socket. To further examine the ma-
jority of significantly different core pairs, we compute the
two-sample Kolmogorov-Smirnov test statistics that quanti-
fies the differences between cores. The resulting differences

Nearly Symmetric Multi-Core Processors APSys ’20, August 24–25, 2020, Tsukuba, Japan

Core ID

Co
re

ID

slightly ... very differentsimilar

0
0

8

8

16

16

24

24

32

32

40

40

48

48

56

56

64

64

72

72

80

80

88

88

95

95

Figure 5: Core similarity matrix of the 96 logical cores
of CPU3. A black dot represents similar performance,
and non-black space indicates a significantly different
performance distribution. Colours display the degree
of performance difference between cores.

are visualised as a colour gradient in Figure 5, where blue
colour represents small differences, and red colour repre-
sents large differences. The colours show that there are clus-
ters of cores with smaller performance differences, and some
clusters repeat with a period of 24 (e.g., cores 9, 33, 57, 81),
indicating that the intra-processor heterogeneity is alike on
both sockets.

4 OPERATING SYSTEM SUPPORT
Our findings in the previous section reveal that processor
cores are not exactly identical. As todays operating systems
treat SMP cores to be equal, we discuss our implemented
prototypical run-time support system and the correspond-
ing integration for the Linux kernel. Our implementation is
publicly available under an open-source license:

https://gitlab.cs.fau.de/i4/pub/apsys2020/golden

4.1 Run-time Support System
Motivated by the core performance differences described in
Section 3, we have developed a run-time support system to

establish awareness for core heterogeneity. It comprises of
three tools:
First, the golden-sample script executes the cache-stress

microbenchmark described in Listing 1 on each core and
analyses the results. Second, the golden-ratio script dis-
plays the results of golden-sample in a human-readable
format. Thus, the golden-ratio script enables the system
administrator to find out to which extent the system is af-
fected by core heterogeneity. As shown in Figure 2, the per-
formance differences vary greatly between processor mod-
els. Third, the golden-run program executes a given appli-
cation on the fastest processor cores in the system. Thereby,
the number of cores is configurable. The system adminis-
trator can thus enforce that heterogeneity-sensitive work-
loads run only on the fastest cores, achieving optimal per-
formance. Linux will then automatically migrate other pro-
cesses to slower cores. If these processes are not sensitive to
heterogeneity, this migration has only a negligible perfor-
mance penalty.
The golden-suite thus helps system administrators to clas-

sify their systems and to exploit core heterogeneity. Avoid-
ing slow cores improves performance and reduces tail laten-
cies [9] related to heterogeneity.

4.2 Linux Integration
Our run-time support system has further optimization po-
tential by integrating it deeper into operating systems.
First, we suggest automated workload classification. It is

helpful to automatically detect which application is sensi-
tive to core heterogeneity. Such an automated system could
utilise performance counters to detect performance bottle-
necks, and react when the bottleneck causes heterogeneous
behaviour (e.g., caches). However, we could not implement
this automatic detection because (a) it is hard to detect per-
formance bottlenecks in a portable way and (b) and we do
not have complete knowledge about the root causes of het-
erogeneity. Indeed, our microbenchmark experiments sug-
gest that further causes, besides caches, exist. Therefore, in-
formation from hardware vendors is necessary. Second, we
suggest automatedworkloadmigration. Based on automated
workload classification, the operating system can migrate
heterogeneity-sensitive applications to fast cores. Similarly
to our golden-run program, the heterogeneity-sensitive ap-
plication benefits from the migration, but the victim that is
moved to a relatively slow core has no performance penalty
if it is heterogeneity-oblivious.This is the case for most NAS
Parallel Benchmarks (c.f. Figure 3). A third useful feature is
noise migration. For applications where performance consis-
tency matters, the operating system should migrate all noise
causes to fast cores. It can thus re-balance the relative core

https://gitlab.cs.fau.de/i4/pub/apsys2020/golden

APSys ’20, August 24–25, 2020, Tsukuba, Japan Reif et al.

Table 1: Processors used in the evaluation.

Name CPU #Cores
CPU1 Intel i5-8400 6 (1 × 6)
CPU2 Intel i5-8250u 8 (2 × 4)
CPU3 Intel 2× Xeon E7-4830 v3 96 (2 × 2 × 24)
CPU4 AMD R7 1700X 16 (2 × 8)
CPU5 Intel Xeon E3-1275 8 (2 × 4)

speed and minimise its disturbance to the application per-
formance.

The Linux kernel has recently integrated energy-aware
scheduling [22, 24], which exploits different power and per-
formance characteristics of heterogeneous processors. This
sub-system is intended for architectures that combine “big”
(i.e., fast) and “little” (i.e., slow but more energy efficient)
cores. As a consequence, this system assumes that heteroge-
neity affects all workloads, and that cores within groups are
identical. Our findings suggest extensions to this subsystem
to improve heterogeneity awareness.

5 EVALUATION
First, this section describes the evaluation environment used
in Section 3. Afterwards, it empirically evaluates the golden-
suite, the heterogeneity-aware run-time system proposed in
Section 4.

5.1 Evaluation Setup
We have conducted all of our experiments on several ma-
chines with five different CPUs, which span a large range
from a laptop system to a many-core server system. Table 1
summaries the machines used in our experiments. The pro-
cessors cover a wide range, including models for laptops,
desktops, and servers. CPU1 does not provide hyperthread-
ing, and CPU3 is a dual-socket machine.

On all systems, we use the performance frequency scal-
ing governor or policy. All machines have their in-hardware
boost technology enabled3. We start each experiment with
10 warm-up iterations, per core, which are excluded from
the result data set. Afterwards, we repeat every experiment
1 000 times per core. The only exception is the many-core
system, CPU3, where we execute only 100 repetitions per
core because of the large number of cores (i.e., 96 hardware
threads)—the total execution time on this machine of the cg
experiment displayed in Figures 2 and 5 was over 6 hours,
and Figure 5 shows that the performance differences are sta-
tistically significant.
3Linux did not recognise the boost option on the AMD machine but we
verify that the hardware boosts above nominal clock speed using the
cpufreq-aperf tool.

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22
0.0

0.2

0.4

0.6

0.8

1.0

Execution time [s]

CD
F

w/o golden w/ golden

Figure 6: The golden-suite improves execution time,
especially the tail latency, for heterogeneity-sensitive
applications (CPU1)

5.2 Heterogeneity Awareness
Figure 6 compares the execution time of the sequential cg
benchmark on the CPU1 machine with golden-run, com-
pared to the default where Linux is free to choose a proces-
sor core for the program. Thereby, golden-run picks the
second-fastest core due to discrepancies between the mi-
crobenchmark and the cg performance. Our system thus
constitutes an imperfect (i.e., realistic) performance oracle.
Using golden-run, the mean execution time is reduced

by 1.2%. In the best case, the two scenarios achieve the
same execution time because the OS can place the bench-
mark on the fastest core by chance. However, the default
version has a higher tail latency when the benchmark runs
on a slow core. The worst-case (99th percentile) execution
time is 4.6% slower in the default version. Notably, this
performance improvement does not require modification of
hardware or software components—it is achieved only by
being aware of the core-to-core performance differences.

We also execute the same experiment with the is bench-
mark, which is equally fast on all cores. In consequence, no
performance gain is expected, but we critically evaluate the
overhead of the golden-run tool. Indeed, the overhead is
negligible (mean ≈ 0.10% slower), which matches the la-
tency of the execvp operation within golden-run. There
are, however, indirect costswhen an administrator erroneous-
ly pins a core-oblivious program to the fastest core and thus
causes a heterogeneity-sensitive application to run on a non-
optimal, slower core. Such an erroneous application place-
ment could be avoided by automatedworkload classification
and migration.

5.3 Threats to validity
There are two significant threats to the general applicability
of our results to real-world systems.

Nearly Symmetric Multi-Core Processors APSys ’20, August 24–25, 2020, Tsukuba, Japan

First, a selection bias is involved. Compared to the bil-
lions of processors out in the wild, we conducted our ex-
periments only on a small number of machines. We do not
know whether their results are representative for all proces-
sors. Our experiments, however, cover a broad spectrum of
relevant real-world systems, ranging from laptops to many-
core server processors. Regarding the AMD machine, CPU4,
we do not know whether its result is representative for all
AMD processors. For newer AMD processors, the hardware
communicates core-to-core performance differences to the
operating system [10].
Second, we do not know to which extent real-world appli-

cations are heterogeneity-sensitive.Most NAS Parallel Bench-
marks do not show performance differences between cores.
However, we argue that observed per-core performance dif-
ferences of > 10% on the desktop processor (CPU1) and
> 20% on the server machine (CPU3) demand for a run-time
system that utilises this free (performance) lunch.

6 CONCLUSION
This paper has examined the heterogeneity of individual pro-
cessor cores in supposedly symmetric multi-core and many-
core machines. Our experiments show that, depending on
the workload and the machine, the per-core performance
can vary by more than 10% within a single multi-core pro-
cessor. On our 96-core server system, the performance dif-
ference can even be above 20%.
We have createdmicrobenchmarks that reveal that caches

are one contributor to the performance differences. How-
ever, there are additional causes for heterogeneity which
we could not identify with our observation-based approach.
Accurate per-core and workload-specific performance mod-
elling, potentially based on reverse engineering, is left as
future work. As discussed in Section 4, additional informa-
tion from the hardware vendors would be very helpful to
automate workload classification and migration.

Based on our experiment results, we have implemented a
run-time support system for core heterogeneity, the golden-
suite. It improves the mean execution time by 1.2% com-
pared to the default Linux process placement. The mean dif-
ference is relatively small because, in the best case, Linux
unknowingly selects a fast core, resulting in equal perfor-
mance. In the worst case (99th percentile), the default Linux
strategy is 4.6% slower on a typical desktop processor. No-
tably, this difference comes at absolutely no cost—neither
hardware nor software components need to be modified. In-
stead, our system only exploits knowledge about heteroge-
neity, of which neither developers nor operating systems
are aware of. Furthermore, our system’s performance could
greatly benefit if hardware vendors provide more hetero-
geneity-related information.

ACKNOWLEDGEMENTS
This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under grants
no. SCHR 603/15-2 (“e.LARN”), SCHR 603/8-2 (“LAOS”), and
Project Number 146371743 – TRR 89 Invasive Computing.

REFERENCES
[1] Bilge Acun, PhilMiller, and Laxmikant V. Kale. 2016. VariationAmong

Processors Under Turbo Boost in HPC Systems. In Proceedings of the
30th International Conference on Supercomputing (ICS’16). ACM Press,
New York, NY, USA, Article 6, 12 pages.

[2] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A Yelick. 2006. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical Report
UCB/EECS-2006-183. Electrical Engineering and Computer Sciences,
University of California at Berkeley.

[3] MaryamAshouei, Abhijit Chatterjee, Adit D Singh, Vivek De, and TM
Mak. 2006. Statistical Estimation of Correlated Leakage Power Vari-
ation and Its Application to Leakage-Aware Design.. In VLSI Design.
IEEE Computer Society Press, New York, NY, USA, 606–612.

[4] Pete Beckman, Kamil Iskra, Kazutomo Yoshii, and Susan Coghlan.
2006. The Influence of Operating Systems on the Performance of Col-
lective Operations at Extreme Scale. In Proceedings of the 8th Annual
International Conference on Cluster Computing (ICCC’06). IEEE Com-
puter Society Press, New York, NY, USA, 1–12.

[5] Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Ke-
shavarzi, and Vivek De. 2003. Parameter Variations and Impact on Cir-
cuits and Microarchitecture. In Proceedings of the 40th Annual Design
Automation Conference (DAC’03). ACM Press, New York, NY, USA,
338–342.

[6] Keith A Bowman, Steven G Duvall, and James DMeindl. 2002. Impact
of die-to-die and within-die parameter fluctuations on the maximum
clock frequency distribution for gigascale integration. IEEE Journal
of solid-state circuits 37, 2 (2002), 183–190.

[7] Kypros Constantinides, Onur Mutlu, and Todd Austin. 2008. Online
design bug detection: RTL analysis, flexible mechanisms, and evalua-
tion. In Proceedings of the 41st annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE Computer Society Press, Los Alami-
tos, CA, USA, 282–293.

[8] Weilong Cui and Timothy Sherwood. 2017. Estimating and un-
derstanding architectural risk. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM Press,
New York, NY, USA, 651–664.

[9] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.
ACM 56, 2 (Feb. 2013), 74–80.

[10] Advanced Micro Devices. 2020. https://www.amd.com/en/support/
kb/release-notes/rn-ryzen-master-2-3-0-1591. Acc. 2020-07-24.

[11] Saurabh Dighe, Sriram Vangal, Paolo Aseron, Shasi Kumar, Tiju Ja-
cob, Keith Bowman, Jason Howard, James Tschanz, Vasantha Erra-
guntla, Nitin Borkar, Vivek De, and Shekhar Borkar. 2011. Within-Die
Variation-Aware Dynamic-Voltage-Frequency-Scaling With Optimal
Core Allocation andThread Hopping for the 80-Core TeraFLOPS Pro-
cessor. IEEE Journal of Solid-State Circuits 46, 1 (Jan. 2011), 184–193.

[12] NASA Advanced Supercomputing Division. 2020. https://www.nas.
nasa.gov/publications/npb.html. Acc. 2020-07-24.

[13] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, and Dejan Kostić.
2019. Make the Most out of Last Level Cache in Intel Processors. In
Proceedings of the 14th EuroSys Conference (EuroSys’19). ACM Press,

https://www.amd.com/en/support/kb/release-notes/rn-ryzen-master-2-3-0-1591
https://www.amd.com/en/support/kb/release-notes/rn-ryzen-master-2-3-0-1591
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html

APSys ’20, August 24–25, 2020, Tsukuba, Japan Reif et al.

New York, NY, USA, Article 8, 17 pages.
[14] Philip Fleming and John Wallace. 1986. How Not To Lie With Statis-

tics: The Correct Way To Summarize Benchmark Results. Commun.
ACM 29, 3 (March 1986), 218–221.

[15] Eric Humenay, David Tarjan, and Kevin Skadron. 2007. Impact of
process variations on multicore performance symmetry. In Proceed-
ings of the conference on Design, automation and test in Europe. IEEE
Computer Society Press, New York, NY, USA, 1653–1658.

[16] Philipp Hurni, Benjamin Nyffenegger, Torsten Braun, and Anton Her-
genroeder. 2011. On the Accuracy of Software-Based Energy Esti-
mation Techniques. In Proceedings of the 8th European Conference on
Wireless Sensor Networks (EWSN’11). Springer-Verlag, Berlin, Heidel-
berg, 49–64.

[17] J. Keane and C. H. Kim. 2011. An odomoeter for CPUs. IEEE Spectrum
48, 5 (May 2011), 28–33.

[18] Elie Krevat, Joseph Tucek, and Gregory Ganger. 2011. Disks Are Like
Snowflakes: No Two Are Alike. In Proceedings of the 14th Conference
on Hot Topics in Operating Systems (HotOS’13). USENIX Association,
Berkeley, CA, USA, 1–5.

[19] John L. Manferdelli, Naga K. Govindaraju, and Chris Crall. 2008. Chal-
lenges and Opportunities in Many-Core Computing. Proc. IEEE 96, 5
(May 2008), 808–815.

[20] Aniruddha Marathe, Yijia Zhang, Grayson Blanks, Nirmal Kumbhare,
Ghaleb Abdulla, and Barry Rountree. 2017. An Empirical Survey of
Performance and Energy Efficiency Variation on Intel Processors. In
Proceedings of the 5th International Workshop on Energy Efficient Su-
percomputing (E2SC’17). ACM Press, New York, NY, USA, Article 9,
8 pages.

[21] Diana Marculescu and Emil Talpes. 2005. Variability and energy
awareness: a microarchitecture-level perspective. In Design Automa-
tion Conference, 2005. Proceedings. 42nd. IEEE Computer Society Press,
New York, NY, USA, 11–16.

[22] IngoMolnar. 2018. scheduler changes for v4.21. https://lkml.org/lkml/
2018/12/24/296.

[23] John K. Ousterhout, Donald A. Scelza, and Pradeep S. Sindhu. 1980.
Medusa: An Experiment in Distributed Operating System Structure.
Commun. ACM 23, 2 (1980), 92–105.

[24] Quentin Perret. 2018. Energy Aware Scheduling. https://lkml.org/
lkml/2018/7/24/420.

[25] Simon Peter, Adrian Schüpbach, Paul Barham, Andrew Baumann, Re-
becca Isaacs, Tim Harris, and Timothy Roscoe. 2010. Design Princi-
ples for End-to-end Multicore Schedulers. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Parallelism (HotPar’10). USENIX
Association, Berkeley, CA, USA, 10–10.

[26] John Sartori, Aashish Pant, Rakesh Kumar, and Puneet Gupta. 2010.
Variation-aware speed binning of multi-core processors. In Proceed-
ings of the 11th International Symposium on Quality Electronic Design
(ISQED’10). IEEE Computer Society Press, New York, NY, USA, 307–
314.

[27] Guru Prasad Srinivasa, Rizwana Begum, Scott Haseley, Mark Hemp-
stead, and Geoffrey Challen. 2017. Separated By Birth: Hidden Dif-
ferences Between Seemingly-Identical Smartphone CPUs. In Proceed-
ings of the 18th International Workshop on Mobile Computing Systems
and Applications (HotMobile’17). ACMPress, New York, NY, USA, 103–
108.

[28] Herb Sutter. 2005. The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software. http://www.gotw.ca/publications/
concurrency-ddj.htm. Dr. Dobb’s journal 30, 3 (2005), 202–210.

[29] Dan Tsafrir, Yoav Etsion, Dror Feitelson, and Scott Kirkpatrick. 2005.
System Noise, OS Clock Ticks, and Fine-grained Parallel Applications.
In Proceedings of the 19th Annual International Conference on Super-
computing (ICS’05). ACM Press, New York, NY, USA, 303–312.

[30] Jim Tschanz, Keith Bowman, and Vivek De. 2005. Variation-tolerant
Circuits: Circuit Solutions and Techniques. In Proceedings of the 42nd
Annual Design Automation Conference (DAC’05). ACM Press, New
York, NY, USA, 762–763.

[31] William A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall:
Implications of the Obvious. ACM SIGARCH Computer Architecture
News 23, 1 (March 1995), 20–24.

https://lkml.org/lkml/2018/12/24/296
https://lkml.org/lkml/2018/12/24/296
https://lkml.org/lkml/2018/7/24/420
https://lkml.org/lkml/2018/7/24/420
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Semiconductor Variability
	2.2 Integrated Circuit Design
	2.3 Processor speed variability

	3 Heterogeneity of Symmetric Multi-core Processors
	3.1 Workload-Specific Behaviour
	3.2 Correlation with Energy
	3.3 Causes of Heterogeneity
	3.4 Processor Model Comparison

	4 Operating System Support
	4.1 Run-time Support System
	4.2 Linux Integration

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Heterogeneity Awareness
	5.3 Threats to validity

	6 Conclusion
	References

