
Precisely Timed Task Execution
Stefan Reif and Wolfgang Schröder-Preikschat
Friedrich-Alexander University Erlangen-Nürnberg

{reif,wosch}@cs.fau.de

Appears in: Proceedings of the 23rd International Symposium on Real-Time Distributed Computing (ISORC 2020)
virtual, May 2020

Abstract—The Internet of Things (IoT) requires that all com-
ponents operate on “fresh” data. However, ensuring a low Age of
Information (AoI) is challenging, in particular when communicat-
ing across the Internet. Achieving a low AoI requires cooperation
of networking strategies as well as node-local strategies so that the
entire system performs the right operation at the right moment in
time. However, most modern operating systems are not designed
to provide accurate timing—various low-level overheads cause
delays and jitter that affect communication significantly.

This paper presents CLOCKFIX, a run-time system for the
Linux user-space that executes jobs accurately and precisely
at their intended execution times. The evaluation shows that
CLOCKFIX reduces undesired delays by more than 95 %, and it
improves the AoI in a real-world network protocol by over 16 %.

Index Terms—Latency, Jitter, OS Noise, Predictability, Inter-
ference, Timed Task Execution

I. INTRODUCTION

The Internet of Things (IoT) connects billions of devices
with each other, enabling communication and cooperation [1].
Applications using internet-connected devices require that all
components operate on recent data. Achieving a low Age of
Information (AoI) is challenging, as it requires cooperation
of network-related schedules (i.e., when to transmit a data
packet) and node-local schedules (i.e., when to execute specific
functions) [2]–[4]. Implementing real-time network commu-
nication hence requires the execution of specific functions
with accurate and precise timing. To minimise the AoI, the
local schedules adapt to channel properties, particularly in
highly dynamic networks such as the Internet or wireless
connections [5]. In such systems, the network protocol detects
the optimal speed of operation, and both sender and receiver
have to adapt their timing to ensure smooth operation. A key
challenge is “buffer bloat” [6]—storing data packets temporar-
ily in application-level, system-level or network-level buffers.
Buffering causes significant delays and jitter for the stored
packet itself, and subsequent packets also have to wait until
they can be processed further. Providing a low and predictable
AoI therefore requires traffic shaping, and also that packets are
processed at the right moments in time [7]. This paper focusses
on node-local timing aspects.

Traditionally, operating systems offer multiple approaches
for timed task execution. First, hardware-timers (“time-
triggered execution”) are intended to fire at specific moments
in time. However, its timer-interrupt handling mechanism is af-
fected by delays due to the hardware (e.g., signal propagation
delays and latencies of programmable interrupt controllers),
software (e.g., interrupt handling overhead, context switches)

and also interference (e.g., synchronisation with locks and
interrupt suppression or scheduling). Even though these de-
lays are relatively small, they harm the performance signif-
icantly [8]. Second, interrupt-driven task execution (“event-
triggered execution”) waits for a hardware signal (e.g., packet
arrival). This mechanism suffers from the same latency issues
as time-triggered task execution. Furthermore, event-driven
task execution does not react on the absence of events (e.g.,
packet loss) and it is not suited for proactive measures (e.g.,
pre-allocation of buffers). Third, polling can eagerly check
hardware clocks or event sources for updates, avoiding the
interrupt handling mechanism and its overhead. However, it is
inefficient with respect to processing time and energy demand.
Since many embedded systems are power- or temperature-
constrained, minimisation of polling times is desirable.

This paper focusses on soft real-time systems, running
Linux or similar operating systems [9], which is typical for
the Internet of Things and Edge [10], [11] computers. In
such systems, node-local deadlines are considered soft because
the timing behaviour of Internet-traversing communication is
erratic anyway, and applications have to tolerate situations
where packets do not arrive in time.

We argue that being aware of latencies is a prerequisite
for solutions that reduce them. Our key observation is that
every event happens later than intended (in terms of physical
time), due to various delays. We integrate this observation
in CLOCKFIX, a run-time system for precisely timed task
execution, running in the Linux user-space. On the one hand,
we recognise that hardware- and software-related delays are
relatively constant, which means they are predictable. We use
on-line machine learning to anticipate these unintended delays.
We can thus purposefully reduce sleep times, correcting the
moment of wake-up. On the other hand, interference-related
delays tend to be chaotic and unpredictable. We therefore
handle such delays by a specific system architecture.

The contribution of this paper is as follows. First, we present
CLOCKFIX, a run-time system for precisely and accurately
timed task execution. It combines two approaches—a special-
purpose concurrent data structure that manages jobs without
blocking or suppressing synchronisation, and a low-overhead
on-line machine-learning approach ensures that the task execu-
tion starts as accurately as possible at the specified execution
time. Second, this paper presents an empirical evaluation using
micro-benchmarks that demonstrate a reduction of unwanted
latencies by more than 95 %, as well as an evaluation of a state-
of-the-art real-time transport protocol demonstrating a 16 %
improvement of the age of information.

se
n
d
er

re
ce
iv
er

maximum Age of Information

PDT IRT

IST
Time

Fig. 1. The maximum age of information is the sum of the Inter-Send Time
(IST), the Packet Delivery Time (PDT), and the Inter-Receive-Time (IRT).

The rest of the paper is structured as follows. Section II
briefly presents the necessary background information. The
architecture and the precise timing mechanism of CLOCK-
FIX are presented in Sections III and IV, respectively. Sec-
tions V and VI empirically evaluate CLOCKFIX with micro-
benchmarks as well as a network protocol. Section VII sum-
marises related work and Section VIII concludes the paper.

II. BACKGROUND

In order to keep the age of information low, both network-
related timings as well as node-local timings have to be
considered [2]. For dynamic channels, such as the Internet
or wireless networks, both the sender and the receiver have
to adapt their timings to the current conditions [12]. In
communicating systems, the minimum age of information on
the receiver side is the Packet Delivery Time (PDT). It is
effective if the sender produces a data item exactly ahead of a
packet transmission, and the receiver processes this informa-
tion immediately. However, achieving this minimum AoI is not
always feasible. For example, receivers can gather information
from multiple connections, but the packets typically do not
arrive all at exactly the same moment. In consequence, the
receiver has to store values temporarily and use them later.
Similarly, storing data temporarily can also be required in the
sender node, for example, when a sensor operates with a fixed
sampling rate. This paper therefore considers the maximum
AoI. As Figure 1 shows, the maximum AoI is the sum of the
Inter-Send Time (IST), the PDT, and the Inter-Receive Time
(IRT). The AoI reaches its maximum if an information item
is created right after a packet transmission, and the receiver
keeps the information until the subsequent packet replaces
it. Since both node-local as well as network-related timings
contribute to the AoI, its minimisation requires cooperation of
node-local and network-level schedules.

Systems that communicate through the Internet with pre-
dictably low age of information have been enabled by
BBR (“Bottleneck Bandwidth and Round-trip propagation
time”) [5]. This latency-avoiding [13] congestion control algo-
rithm achieves high throughput while avoiding buffer bloat [6].
BBR oscillates between bandwidth-sensing and round-trip-
time-sensing phases, to derive the optimal amount of data in-
flight. This information enables BBR to keep buffers mostly

empty, which minimises buffering-related delays and jitter on
the network level.

Keeping local buffers empty as well requires that the sched-
ules of each local data processing are controlled by precisely
timed task execution. For example, if a consumer operates too
early, the most-recent data item is not yet available. Hence it
has to operate on previous data items, prolonging the lifetime
of that piece of information unnecessarily. In contrast, if the
consumer is late, data is stored in buffers. Even if buffering
times are small, the delays accumulate and, in summary, cause
significant latency and jitter [8]. For producer tasks, timing
is equally important—producing early causes buffering, while
producing late forces other tasks to operate on out-dated
information or to wait. To keep the AoI low, it is therefore
mandatory that all data producers and consumers, on both the
sender and the receiver node, operate with the correct timing.
Ideally, the entire data processing pipeline operates at a steady
rate, where each component adapts to the current bottleneck
performance. Then, buffers are kept empty, which minimises
buffering-related latency and jitter.

However, operating systems typically introduce OS
noise [14]–[16], which summarises jitter that disturbs the ex-
ecution of applications. Sources of OS noise are, for example,
hardware interruptions or system-level tasks. Even though OS
noise has a low probability and typically causes only minor
overhead, its influence at application level can be significant.

III. TIMER ARCHITECTURE

The main goal of the CLOCKFIX architecture is to enable
timed task execution with minimal interference-related delays.
To this end, it avoids locks, interrupt suppression, and similar
techniques where threads have to wait for others to proceed.
Nevertheless, CLOCKFIX takes further measures to isolate job
execution from the remaining sources of interference.

a) Delegated Task Execution: The general architecture is
sketched in Listing 1. To minimise interferences, CLOCKFIX
uses a dedicated worker thread that executes all submitted jobs
sequentially. This worker thread ideally runs as isolated as
possible. Pinning and isolating the worker thread on a core
helps to minimise system-related interference. However, the
communication with this thread introduces another source of
interference. In CLOCKFIX, jobs are therefore managed in a
special-purpose data structure, which is designed to minimise
communication-related interferences.

b) Job Management: Listing 2 shows the lock-free linked
list that stores submitted timer jobs. Importantly, job submis-
sion can be executed concurrently to the worker, ensuring a
consistent state even if executions overlap. In consequence, the
worker thread can always search, find, and execute jobs, and
never has to wait for the completion of concurrent operations.

The list is based on three invariants. First, the list is always
valid and readable by the worker thread. In consequence, the
worker thread is always able to search and execute pending
jobs. Second, the jobs in the list are sorted by the intended
execution start time. This enables the worker thread to imme-
diately find the next pending job, without list walks. Third, the

Listing 1. The CLOCKFIX timer employs a worker thread for job execution.
timer_t *timer_new(int core) {
timer_t *self = new(timer_t);
self->list = list_new(core);
self->worker = thrd_new(core, timer_worker, self);
return self;

}

void timer_run(timer_t *self, work_t what, date_t when) {
if (list_add(self->list, what, when))
thrd_wake(self->worker);

}

void timer_end(timer_t *self) {
self->dead = true;
thrd_join(self->worker);

list_del(self->list);
del(self);

}

void timer_worker(timer_t *self) {
list_t *list = self->list;
while (true) {
node_t *item = list_get(list);

// check for termination
if (item->date == ∞

&& self->dead && item == list_get(list))
break;

// mark item as used
list_use(item);

// await execution date (simplified)
thrd_sleep_until(item->date);
if (item != list_get(list) || item->date > now())

continue;

// execute item
if (!item->done) {

item->what();
item->done = true;

}

// retire item
list_out(list, item);

}
}

list is never empty. To avoid an empty list, a dummy element
containing a job infinitely far in the future terminates the job
list. Thanks to the dummy element, fewer corner cases exist,
which simplifies synchronisation. Needing fewer corner cases
has also timing implications—there are no rarely-executed
slow paths in the list procedures that could cause tail latencies.

c) Data Structures: The list maintains three pointers into
the sorted job list. First, head always points to the oldest job
in the list. Second, work points to the next job to execute
most of the time. However, there are minor windows of
inconsistency when the job submission function has modified
the linked list but work is not yet updated. This inconsistency
window only matters if the submitted job has an intended
execution time before any other pending job. In this case, the
job submission function has to set back the work pointer to
finish the job submission, otherwise, the worker thread would
not notice the new work item. Third, hold is used by the
worker thread to avoid garbage collection of jobs that are still
needed to maintain list consistency. This is crucial when a job

is submitted with an execution time in the past—CLOCKFIX
allows job submission after its intended execution time. It
executes such requests as soon as possible.

All list functions assume that only a single thread submits
timer jobs. This makes the list effectively a single-writer data
structure, which again eliminates corner cases. If applications
have to submit timer jobs concurrently, they need further mea-
sures, such as locks. However, such additional synchronisation
only affects job submission, not the worker thread.

d) Garbage Collection: The worker thread performs no
house-keeping of the job list. Instead, it leaves finished jobs in
the linked list until any other thread submits further jobs. That
thread will then remove finished jobs from the list. Since jobs
are sorted by the execution time, the garbage collector can
start at the head of the list and follow next pointers until
it reaches a job that has not been executed yet. The usage of
garbage collection has two major benefits. First, it eliminates
situations where the worker thread modifies next pointers,
maintaining the single-writer structure. Second, it isolates the
worker thread from interferences from memory deallocation.
Typical allocators use locks and memory-related system calls
internally, which have the potential to stall the worker.

e) Job Submission: To submit jobs, a client thread has to
insert its job description into the linked list while maintaining
its invariants. The thread iterates over the list, searching for
the right spot to add the new job into the list, considering that
the list of jobs is sorted by their intended execution times. To
insert the job, the submission function first updates the next
pointers of the current and the previous list element. Then, it
updates the work pointer of the list conditionally. If work
points to a job that runs after the new one, work is updated
to enable the worker thread to find the new job. Otherwise, no
update is required, as work points to a job ahead of the new
one, and the worker thread will find the new one later.

f) Job Execution: The worker thread finds pending jobs
using the work pointer. It executes this request at the intended
moment, and then marks it as done. Since it is possible that
jobs in the list are already executed, the worker thread uses
the hold pointer to prevent simultaneous deallocation of the
currently used job descriptor.

IV. ACCURATE TIMING

The system architecture described in Section III elimi-
nates unpredictable jitter. In addition, CLOCKFIX compensates
for predictable delays, to achieve accurate timing. While it
conceptually uses machine learning techniques to anticipate
delays, relatively simple and light-weight algorithms are suffi-
cient in practice. CLOCKFIX measures the wake-up delays and
collects these measurement values. We use the term oversleep
for the actual (i.e., measured) delay between the intended
wake-up time and an actual wake-up event. Using the collected
measurements, CLOCKFIX applies multiple learning functions
that predict the oversleep of future sleeping operations. Then,
the sleep time is reduced by the anticipated delay. If this
prediction is correct, the resulting oversleep is zero, and the
task execution starts exactly at the intended moment in time.

Listing 2. The ordered job list enables finding jobs with little interference.
list_t *list_new(int core) {
// create dummy node
node_t *node = new(node_t);
node->what = ∅; // do nothing ...
node->when = ∞; // ... infinitely far in the future
node->done = false;
node->next = NULL;

// create list
list_t *self = new(list_t);
self->head = self->work = self->hold = node;

return self;
}

node_t *list_get(list_t *self) {
return self->work;

}

void list_use(list_t *self, node_t *node) {
self->hold = node;

}

bool list_add(list_t *self, task_t what, date_t when) {
// create new node
node_t node = new(node_t);
node->what = what;
node->when = when;
node->done = false;

// clean up old tasks
node_t *iter = self->head;
node_t *stop = self->work;
node_t *hold = self->hold;
while (iter != stop && iter != hold) {
node_t *next = iter->next;
del(iter);
iter = next;

}
self->head = iter;

// find position in ordered job list
node_t **addr = &self->head;
while (true) {
iter = *addr;
if (node->date < iter->date)

break;
addr = &addr->next;

}

// insert job
node->next = iter;

*addr = node;

// fix list if needed
node_t *work = self->work;
if (node->date < work->date

|| (addr == &work->next && work->done)) {
self->work = node;
return true;

}
return false;

}

void list_out(list_t *self, node_t *item) {
// advance self->work carefully
node_t *next = item->next;
CAS(&self->work, item, next);

}

void list_del(list_t *self) {
node_t *iter = self->head;
while (iter) {
node_t *next = iter->next;
del(iter);
iter = next;

}
del(self);

}

a) On-Line Learning: To predict the delays of future
sleep operations, CLOCKFIX uses timing measurements from
past sleep operations. Conceptually, this technique requires an
on-line machine learning approach. In practice, CLOCKFIX
utilises a maximum filter with a fixed-size sliding window to
predict oversleep times. While this is only a simple estimator,
the evaluation in Section V demonstrates that it achieves
significant latency reductions. In fact, the maximum filter has
two benefits, compared to other typical estimators. First, it
tends to over-estimate wake-up delays, causing CLOCKFIX
to wake up early. However, early wake-ups are not harmful
because they are compensated internally, while late wake-ups
cause application-noticeable jitter. Second, execution of this
learning algorithm itself has a relatively predictable timing,
compared to more elaborate learning methods. In consequence,
it does not introduce unnecessary jitter.

In addition to the maximum filter, CLOCKFIX uses a decay
mechanism. If the worker thread did not sleep between the
execution of two jobs, it reduces all observed oversleep values
in the filter window by 25 %. The decay is required to retain
curiosity for the learning algorithm. Without decay, it would
be possible that (due to, for example, an extraordinarily large
scheduling latency caused by another process), a single sleep
function wakes up extremely late. The consequence would be
that a wake-up delay outlier is observed, and the maximum
filter stores this value internally. For all subsequent sleeping
calls, CLOCKFIX would reduce the sleep time by this outlier
value, and then decide to never again go to sleep, as the
remaining sleep duration is negative. However, if the system
performs no further sleep calls, the outlier would never be
evicted from the filter window. Thanks to decay, outliers
diminish over time, until the oversleep estimation is low
enough to re-allow sleeping. If, however, CLOCKFIX does
sleep, a new oversleep measurement value is added to the
filter. In consequence, decay is not needed in these situations.

b) Second-Level Learning: Even though the on-line
learning function itself is relatively simple, it adds further
latency and jitter to CLOCKFIX. Therefore, CLOCKFIX applies
a second-level learning function to monitor the execution
time of the actual oversleep learning function, and to pre-
dict its execution time. However, this causes a chicken-and-
egg problem—the second-level learning function also has a
non-zero execution time. In theory, this calls for an infinite
hierarchy of learning functions—the latency and jitter of the
n-th level learning function requires a (n+1)-th level learning
function that predicts its execution time. In practice, however,
CLOCKFIX uses an appropriate second-level learning function
with low latency and jitter, so that no further learning func-
tion hierarchy is required—an Exponential Moving Average
(EMA) function predicts the execution time of the learning
function. This function can be implemented with near-constant
execution time thanks to a branch-free control flow.

The expected costs of learning are treated like other
delays—the sleep time is reduced accordingly. In consequence,
CLOCKFIX can execute the learning function between the
wake-up time and the job execution time.

c) Deferred Learning: The two-level learning approach
enables CLOCKFIX to compensate for most oversleep situa-
tions, since the learning functions tends to over-estimate wake-
up delays. In addition, deferred learning tackles situations of
unusually large oversleep values.

Since the sleep time is reduced by the expected learning
function execution time (∆T (EMA)

needed), the learning function
can typically be executed between wake-up and job execution.
However, if the oversleep happens to be unexpectedly large,
not enough time is available (∆Tavail) to execute the learning
function before the job is supposed to run (at Texec). In this
case, CLOCKFIX defers the execution of the learning function
until the job has completed. Since the second-level learning
function computes the average execution time of the learning
function, a safety margin is added—the learning operation is

deferred if ∆Tavail := Texec − Tnow
?
< 2×∆T (EMA)

needed.
d) Clock Polling: If CLOCKFIX over-estimates the wake-

up latency, the worker thread wakes up too early. In the
remaining time, it can execute the learning functions, but
nevertheless, it is possible that task execution time is not yet
due. In this case, CLOCKFIX polls the clock until the intended
task execution time is reached. In consequence, the behavior
of CLOCKFIX is aligned with typical delay functions that
forbid premature wake-ups. Indeed, this behavior is required
for many applications. In real-time network protocols, for
example, premature task execution can cause problems if data
items are not yet available, causing the task to operate on the
wrong data set.

In summary, CLOCKFIX uses a hybrid approach for precise
and accurate timing. It combines time-triggered execution that
enables power-efficient sleep states to the extent possible. In
addition, it utilises clock polling when needed, to improve the
timing precision. The estimated oversleep constitutes an upper
bound for the polling duration.

V. MICRO-BENCHMARK EVALUATION

Our evaluation uses three different hardware platforms.
First, an Intel Xeon E3-1275 v5 Processor (“Xeon”) with 4
cores plus hyper-threading, running at 3.6 GHz fixed, with
16 GiB RAM is the most powerful evaluation platform. It is
representative for edge-located systems that have relatively
powerful hardware and constitute one end-point of the real-
time network protocol for the communication with embedded
nodes. It runs Ubuntu 16.04 LTS with the official 4.4.0-
146-lowlatency kernel. Measurements with the standard non-
lowlatency kernel show slightly higher latencies, but the key
observations are similar. Second, the Raspberry Pi 3B+ is
a off-the-shelf single-board computer. We run Raspbian 10
with a Linux 4.19.66-v7+ kernel. The processor frequency is
fixed at 1.4 GHz. Third, the Odroid XU4 is a single-board
computer with higher performance than the Raspberry Pi. It
runs Ubuntu 18.04-1 LTS with Linux 4.14.85-152 kernel. For
our evaluation, we disable the “little” cores and only use
the “big” ones to obtain repeatable results. The processor
frequency is set to 2.0 GHz.

Time
now() now()

∆ Time clock precision

Time
now() item->what()

now()δT
>
0

∆ Time

item->when

oversleep

Fig. 2. Time uncertainty (∆Time) measurement routines to compare the
oversleep time with the clock precision.

101 102 103 104 105 106
0.0
0.2
0.4
0.6
0.8
1.0

Oversleep [ns] @103 ns

C
D
F

nanosleep clock nanosleep

futex ClockFixnolearn

ClockFix+avg ClockFix+max

Xeon

101 102 103 104 105 106
0.0
0.2
0.4
0.6
0.8
1.0

Oversleep [ns] @104 ns

C
D
F

Xeon

101 102 103 104 105 106
0.0
0.2
0.4
0.6
0.8
1.0

Oversleep [ns] @105 ns

C
D
F

Xeon

Fig. 3. CLOCKFIX reduces the oversleep significantly, compared to standard
library functions and system calls. The plots show intended sleeping durations
between 103 ns and 105 ns. For comparison, a nolearn CLOCKFIX variant
shows the effect of the timer architecture with oversleep prediction disabled.

Linux initialises the timer slack to 50µs by default to
group timer expiration events, for efficiency reasons. Inter-
nally, this default configuration implicitly increases all sleep-
ing times. Grouping multiple timer expirations in order to
handle them together reduces overhead, such as the num-
ber of context switches, but it increases response times for
individual timer expirations. We therefore set this configu-
ration to its minimum value, 1 ns, in all experiments using
prctl(PR_SET_TIMERSLACK) [17].

102 103 104 105 106 107
0.0
0.2
0.4
0.6
0.8
1.0

Oversleep [ns] @104 ns

C
D
F

nanosleep clock nanosleep

futex ClockFixnolearn

ClockFix+avg ClockFix+max

Raspberry Pi

102 103 104 105 106 107
0.0
0.2
0.4
0.6
0.8
1.0

Oversleep [ns] @105 ns

C
D
F

Raspberry Pi

103 104 105
0.0
0.2
0.4
0.6
0.8
1.0

Oversleep [ns] @104 ns

C
D
F

Odroid XU4

103 104 105 106 107
0.0
0.2
0.4
0.6
0.8
1.0

Oversleep [ns] @105 ns

C
D
F

Odroid XU4

Fig. 4. Standard library functions and system calls can double the waiting time
on a Raspberry Pi 3B. CLOCKFIX improves the oversleep time significantly.
On the Odroid XU4, all delays are higher.

A. Oversleep Evaluation

We compare the application-observed oversleep of CLOCK-
FIX with standard approaches for timed task execution.
We include the raw futex Linux system call and the
nanosleep and clock_nanosleep library functions for
comparison. These functions take sleep-time parameters that
support nanosecond precision. The evaluation further includes
a CLOCKFIX variation with a sliding window average filter,
instead of the maximum filter, as primary learning function.
The motivation of the average filter is that it makes “reason-
able” oversleep estimations, but it is inherently prone to under-
estimations, which could cause CLOCKFIX to miss the target
job execution time. Furthermore, a CLOCKFIX version without
any learning function at all is included to evaluate the overhead
of the dedicated worker thread and its communication.

The oversleep measurement routine is depicted in the bot-
tom half of Figure 2. For the oversleep evaluation, we use
a special-purpose micro-benchmark that submits a series of
timer jobs. First, CLOCKFIX waits until a job is intended
to run. Then, as soon as a jobs start executing, it reads the
clock and compares it to its intended execution time. For each
evaluation scenario, the micro-benchmark first submits 100
jobs where it ignores the results for warm-up, and then it exe-
cutes 106 measurement iterations that are further analysed. We
do not perform outlier elimination for the micro-benchmarks.
In consequence, a small number of packets (� 1 %) is still
affected by system noise in all evaluation scenarios, and shows
extremely large values.

Figure 3 summarises the application-level oversleep time on
the Xeon machine, as Cumulative Density Functions (CDFs),
for sleep durations between 103 ns and 105 ns. The evaluation
shows that all standard library functions perform similarly.
Besides, for the CLOCKFIX version without learning, the
oversleep time is similar to the standard library functions,
indicating that the architecture with a dedicated worker thread
causes only a minor overhead, if any. The learning variants,
in contrast, show significantly lower delays. For example,
the median oversleep time decreases by 98.2 %, compared
to nanosleep, for 105 ns waiting time. CLOCKFIX also
reduces jitter—the 1st and the 99th percentile differ by 35 ns
for CLOCKFIX+max, and by 527 ns for nanosleep.

Comparing the learning functions, the average filter is more
susceptible to tail latencies than the maximum filter. For very
short sleeping times, the oversleep duration is sometimes even
as large as it is for the standard library functions. In contrast,
the maximum filter reduces the probability of latency tails,
compared to the average filter. In many cases, however, both
learning functions perform similar. This result indicates that
more sophisticated learning functions would not lead to more
accurate task execution times.

Figure 4 summarises the oversleep evaluation on the Rasp-
berry Pi and the Odroid. The results are higher than on the
Xeon, since the processor cores run at a lower frequency.
Again, the delays with CLOCKFIX are significantly lower than
the standard library functions—the median latency is reduced
by 97.7 %, compared to nanosleep. The difference between
the 1st and the 99th percentile is 3124 ns for nanosleep,
but only 728 ns for CLOCKFIX+max. The Odroid platform has
higher oversleep times than the Raspberry Pi, even though it
has a higher clock frequency. Further measurements that are
discussed below show that the reason for the large delay is that,
on this platform, the clock precision is relatively coarse, which
limits the precision of polling. Again, CLOCKFIX reduces the
median oversleep time by 95.6 % at 105 ns waiting time.

In summary, CLOCKFIX+max improves oversleep times sig-
nificantly. Similar improvements (i.e., a > 95 % reduction of
latencies) can be observed on all three evaluation platforms.
Thereby, the main contributor to latency reduction is the
learning approach of CLOCKFIX. It effectively anticipates
delays and thus reduces oversleep durations.

0 20 40 60 80 100
0.0

0.5

1.0

∆ Time [ns]

C
D

F
ClockFix+max clock precisionopt

Xeon

0 200 400 600 800 1 000
0.0

0.5

1.0

∆ Time [ns]

C
D

F

Raspberry Pi

0 1 000 2 000 3 000
0.0

0.5

1.0

∆ Time [ns]

C
D

F

Odroid XU4

Fig. 5. The remaining oversleep time of CLOCKFIX is close to the clock
precision on all evaluation platforms.

B. Time Uncertainty Evaluation

Since the timing precision of CLOCKFIX depends on clock
polling, we evaluate the clocks of all three hardware platforms.
We measure the clock precision by reading the clock in a
tight loop. The timing difference between two consecutive
calls is, approximately, the execution time of the function that
reads the clock. Even though the Linux system calls return
values with nanoseconds precision, the execution time of the
corresponding system call represents the timing uncertainty
because it is not clear at which moment in time the physical
hardware clock is accessed. The measurement method with
a tight loop is optimistic because it warms up caches. Non-
repeated clock-read operations can therefore need more time.

Figure 2 explains the comparison between the timing un-
certainty of the clock-read operation and CLOCKFIX. Thereby,
CLOCKFIX internally polls the clock until the current time is
after the desired job execution time (δT > 0). Afterwards, it
executes the submitted job. To measure the oversleep times, we
use a micro-benchmark which, as soon as its execution starts,
compares the (then slightly increased) time with its desired
execution time. Since δT > 0, the measured oversleep is
expected to be above the clock precision. Indeed, the optimistic
clock precision is a lower bound for the task execution delay.
Thus, the time uncertainty describes the potential behaviour of
an optimal learning algorithm that perfectly predicts oversleep
times, but would still be limited by the clock precision.

Figure 5 shows that the oversleep time of CLOCKFIX is
close to the optimistic clock precision. On all architectures,
the time uncertainty of CLOCKFIX is below 3× the time

101 102 103 104
0.0
0.2
0.4
0.6
0.8
1.0

Learning duration [ns]

C
D
F

avg max nolearn ema

Xeon

Fig. 6. All learning algorithms need similar amounts of time, with EMA
being slightly faster. The nolearn entry shows the overhead of the time
measurement routine, which equals the clock precision.

uncertainty of reading the clock, except for a small latency
tail on the Raspberry Pi. On the Odroid platform, the clock
is particularly imprecise—the median difference between two
consecutive clock-read operations is 1042 ns. This result ex-
plains why the oversleep is higher on this platform, compared
to the Raspberry Pi, despite the higher processor frequency.

C. Learning Duration Comparison

Figure 6 shows the execution time of learning functions,
on the Xeon platform. Both the average and the maximum
window filters have a similar execution time (approx. 80 ns)
with little jitter. The EMA function is slightly faster, and
it also shows only minimal jitter. As expected, a baseline
measurement of not executing any learning function equals the
clock precision (i.e., 18 ns). These results strengthen our point
that the relatively simple learning algorithms in CLOCKFIX
cause little noise.

VI. REAL-TIME NETWORK PROTOCOL EVALUATION

We also evaluate CLOCKFIX with PRRT, a state-of-the-
art real-time network protocol tailored for IoT systems [12].
PRRT with CLOCKFIX is available online [18] under an open-
source license. This protocol provides a partially reliable low-
latency packet stream with configurable packet deadlines. It
further combines a BBR variant with node-local timing mea-
surements to detect the bottleneck component in the system
and to adapt the node-local schedules accordingly.

We connect two Raspberry Pi 3B+, with the same con-
figuration as described in Section V, via Gigabit Ethernet.
Figure 7 visualises the experiment setup. Each node supports
two protocol versions—one using CLOCKFIX and one using
nanosleep to adapt the node-local timing1. We evaluate
each protocol version individually.

Before the experiment, we synchronise the system clocks
with a local NTP server, and disable NTP during the experi-
ment execution to avoid cross-traffic and erratic clock jumps.
Despite the NTP synchronisation, the clocks diverge slightly
but noticeably during the experiment execution, which affects
the packet delivery time (PDT) measurements. As shown in
Figure 1, the first time-stamp of the PDT is taken on the

1Both versions also occasionally use other standard timing-functions inter-
nally, such as the futex system call, where appropriate.

Raspberry Pi
Switch

Raspberry Pi
Experiment
Controller

Fig. 7. The real-time network protocol evaluation uses two Raspberry Pi
computers that communicate via Ethernet.

sender node, and the second time-stamp is taken on the
receiver node. The difference between the two time-stamps
(i.e., the PDT) is thus distorted by the clock drift. We therefore
design the experiment specifically in a way that enables for a
compensation of minor clock synchronisation imprecisions.

A. Clock Drift Correction

The packet delivery time (PDT) measurement is affected by
clock speed differences—if the clock on the sender side runs
slower than its receiver-side counterpart, the measured PDTs
increases over time. Vice versa, if the receiver-side clock is
faster, the measured delivery times decrease. In consequence,
packets at the beginning of the experiment automatically show
a different measured delivery time, compared to packets at the
end of the experiment. Since it is impractical to synchronise
clocks during the experiment (it adjusts the local clocks
unpredictably), we synchronise the clocks retroactively, by
analytical measures.

To compensate for slightly different clock speeds, we ex-
ploit the fact that the measured delivery times diverge. We
execute multiple experiment iterations, and evaluate the two
protocol versions alternatingly. If the clocks really diverge, the
measured delivery time either increases or decreases as the
experiment progresses. This divergence enables an analytical
Clock Drift Correction (CDC), as depicted in Figure 8. We
fit two parallel lines into the two data sets (A, B) of the two
protocol versions, using the experiment dates and the measured
PDTs, with a least-squares approximation [19]. The (identical)
slope of the fitted lines constitutes the clock drift, which we
subtract from the delivery time measurement. In consequence,
the corrected clocks on the two nodes run at the same speed.

B. Constant Clock Offset Correction

The CDC computes virtual clocks that have the same speed
on both the sender and receiver node. However, the two
clocks still have an offset which, as both have the same
speed, remains constant during the experiment execution. Our
method to derive and correct this Constant Clock Offset (CCO)
works similarly to NTP. We execute an additional reverse
iteration where the sender and receiver node swap roles. The
CCO affects the communication in both directions, but in one
direction, it increases the measured PDTs, and it decreases
the values in the other direction. For the CCO correction,
we consider the minimum packet delivery time (i.e., the
fastest packet) of each direction and assume that these packets
faced no obstructions during delivery, which implies that
the corrected delivery time is symmetric. We hence compute

A

A A A A
A

B B B B
B

. . .

. . .

2×
C
C
O PDT

CDC

Time

(M
ea
su
re
d
)

d
el
iv
er
y
ti
m
e

Fig. 8. The Packet Delivery Time (PDT) is adjusted by the Clock Drift
Correction (CDC) to compensate for slightly different clock speeds. An
inverse iteration reveals the remaining Constant Clock Offse (CCO).

0 1 2 3 4
×105

0.0

0.5

1.0

Inter-Send Time [ns]

C
D
F

nanosleep ClockFix+max

0 1 2 3 4 5 6 7 8
×105

0.0

0.5

1.0

Packet Delivery Time [ns]

C
D
F

0 1 2 3 4 5
×105

0.0

0.5

1.0

Inter-Receive Time [ns]

C
D
F

0 2 4 6 8 10 12 14
×105

0.0

0.5

1.0

Maximum Age of Information [ns]

C
D
F

Fig. 9. CLOCKFIX improves the application-level AoI in a real-world real-
time transport protocol by reducing the node-local task execution delays.

the CCO as 1
2

(
min{pdt↓} −min{pdt↑}

)
. If, however, the

actual delivery time of the two packets was not perfectly
symmetric, a small (but still constant) offset remains, and this
offset is added to all PDT and AoI values. Hence, the clock-
corrected results are nevertheless comparable.

C. Experiment Results

We run 10 iterations for each protocol version, plus an
inverse iteration, with 1000 packets each. Then we correct
the clock drift and offset as described above. Figure 9 vi-
sualises the results for each component of the AoI—on the
sender node (IST), in the network (PDT), and on the receiver

node (IRT), as described in Figure 1. We remove outliers
from the data set because the network protocols can handle
unexpected delays—it signals packet loss to the application.

The results show that both the sender-side and receiver-
side timings improve, thanks to CLOCKFIX—the durations
between packet transmissions and receptions decrease, and
also become more predictable since the range of inter-packet
time values narrows down. In consequence, the packet rate is
much more stable, thanks to CLOCKFIX. However, the packet
delivery time increases slightly with CLOCKFIX. This adverse
effect is caused by BBR—the bandwidth probing mechanism
acts more greedily if the network is faster, causing in-network
buffers to be filled temporarily. This is a well-known issue
of BBR [20], and a recent topic of communication systems
research. In summary, the node-local timing improvements of
CLOCKFIX outweigh the delivery time increases. The median
AoI decreases by more than 16 %.

VII. RELATED WORK

Several papers have analysed latencies in Linux. Reginer
et al. [21] provide a high-level analysis. Other papers iden-
tify the timer resolution and non-preemptable sections [22],
scheduling latency [23], interrupt bottom handlers [24], and
the hardware [25] as latency sources.

Approaches to reduce latencies typically remove commu-
nication indirections, for example by moving network con-
trollers closer to the processor [26] or kernel bypass net-
working [27], [28]. Latencies generally become a problem
in network-dependent applications because network speed
grows [29]–[31] while the single-core processor performance
has been stagnating [32]. Thereby, even seemingly small
latencies can accumulate [8] and severely harm the system’s
performance [15], [16], [33]. In consequence, delays that
were considered negligible in the past (most prominently, the
system-call overhead) are becoming problematic in networked
systems. Our evaluation demonstrates that the interrupt han-
dling overhead should be avoided, but can be compensated.

A notable approach to make interrupt latencies in Linux
more predictable is the Preempt-RT patch set [21], [23],
[34]. CLOCKFIX minimises such interferences by thread iso-
lation. Patel et al. propose TimerShield [35] to avoid noise
by disabling low-priority timer interrupts while high-priority
tasks execute. This approach reduces the amount of possible
interruptions, and thus the worst-case execution time, for high-
priority tasks. In comparison, CLOCKFIX assumes that the
network-defined task execution times do not conflict2, which
implies that no task priorities are needed internally.

Non-deterministic execution times have also become a con-
sistency problem [36]. If threads access shared data concur-
rently, but the execution time is not deterministic, it is unclear
which thread observes which version of the shared state. Thus,
a system-level non-functional property (i.e., timing) propagates
to application-level functional properties (data consistency, age
of information). An approach to make data flow deterministic

2If the execution times overlap, CLOCKFIX executes requests sequentially.

is Logical Execution Time (LET) [37], where threads copy all
input data into local buffers ahead of execution, and write back
modifications afterwards. Thus, LET relies on precise timing
for the copy and write-back operations. However, the write-
back operation is scheduled pessimistically, after the worst-
case execution time, to make data-flow chains deterministic. In
consequence, the pessimistic execution time of the write-back
operation causes relatively long data processing durations,
which increase the AoI.

VIII. CONCLUSION

This paper has presented CLOCKFIX, a run-time system
that executes jobs as precisely and accurately as possible
at the intended moment in time. CLOCKFIX combines mul-
tiple techniques to eliminate unwanted delays and jitter. It
tackles system-related noise by core pinning and isolation,
communication-related noise by a dedicated data structure, and
the remaining delays by an on-line machine learning approach.
Our empirical evaluation results show that CLOCKFIX reduces
unwanted latencies by more than 95 %, compared to the state
of the art. The remaining delays are close to the clock precision
on all evaluated platforms (< 3×). In a real-world real-
time network protocol, the timing precision improvements of
CLOCKFIX cause the AoI to decrease by over 16 %.

IX. ACKNOWLEDGMENT

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under grants no.
SCHR 603/15-2 (“e.LARN”) and SCHR 603/8-2 (“LAOS”).
We would like to thank Andreas Schmidt and Pablo Gil Pereira
for their insightful feedback.

REFERENCES

[1] “Gartner says 5.8 billion enterprise and automotive IoT endpoints
will be in use in 2020,” https://www.gartner.com/en/newsroom/press-
releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-
io, 2019, acc. 2020-01-23.

[2] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proceedings of the 8th Annual
Conference on Sensor, Mesh and Ad Hoc Communications and Net-
works. IEEE, 2011, pp. 350–358.

[3] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proceedings of the 2015 International Sympo-
sium on Information Theory (ISIT 2015). IEEE, 2015, pp. 1681–1685.

[4] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proceedings of the 31st Annual International Conference
on Computer Communications (INFOCOM 2012). IEEE, 2012, pp.
2731–2735.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” ACM Queue, vol. 14,
no. 5, pp. 50:20–50:53, Dec. 2016.

[6] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the Internet,”
ACM Queue, vol. 9, no. 11, pp. 40:40–40:54, Nov. 2011.

[7] A. Ousterhout, A. Belay, and I. Zhang, “Just in time delivery: Leveraging
operating systems knowledge for better datacenter congestion control,”
in Proceedings of the 11th Workshop on Hot Topics in Cloud Computing
(HotCloud 2019). USENIX, 2019, pp. 1–7.

[8] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the
killer microseconds,” Communications of the ACM, vol. 60, no. 4, pp.
48–54, 2017.

[9] “IoT developer survey 2019 results,” https://iot.eclipse.org/resources/iot-
developer-survey/iot-developer-survey-2019.pdf, 2019, acc. 2020-01-23.

[10] W. Shi and S. Dustdar, “The promise of edge computing,” IEEE
Computer, vol. 49, no. 5, pp. 78–81, May 2016.

[11] M. Satyanarayanan, “The emergence of edge computing,” IEEE Com-
puter, vol. 50, no. 1, pp. 30–39, Jan. 2017.

[12] A. Schmidt, S. Reif, P. Gil Pereira, T. Hönig, T. Herfet, and W. Schröder-
Preikschat, “Cross-layer pacing for predictably low latency,” in Proceed-
ings of the 6th International IEEE Workshop on Ultra-Low Latency in
Wireless Networks (Infocom ULLWN’19). Paris, France: IEEE, Apr.
2019.

[13] D. Zarchy, R. Mittal, M. Schapira, and S. Shenker, “An axiomatic
approach to congestion control,” in Proceedings of the 16th Workshop
on Hot Topics in Networks (HotNets-XVI). ACM, 2017, pp. 115–121.

[14] R. Mraz, “Reducing the variance of point to point transfers in the ibm
9076 parallel computer,” in Proceedings of the 7th Annual International
Conference on Supercomputing (SC 1994). IEEE, 1994, pp. 620–629.

[15] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “The influence of
operating systems on the performance of collective operations at extreme
scale,” in Proceedings of the 8th Annual International Conference on
Cluster Computing, 2006, pp. 1–12.

[16] D. Tsafrir, Y. Etsion, D. Feitelson, and S. Kirkpatrick, “System noise,
os clock ticks, and fine-grained parallel applications,” in Proceedings of
the 19th Annual International Conference on Supercomputing (ICS’05).
ACM, 2005, pp. 303–312.

[17] M. Kerrisk et al., “The Linux man-pages project,”
https://www.kernel.org/doc/man-pages, 2019, version 5.00.

[18] A. Schmidt and contributors, “Predictably reliable real-time transport
(prrt),” http://prrt.larn.systems, 2020.

[19] P. Arbenz, “8.4.1 fitting two parallel lines,”
http://people.inf.ethz.ch/arbenz/MatlabKurs/node86.html, 2008,
acc. 2020-01-23.

[20] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of bbr
congestion control,” in Proceedings of the 25th International Conference
on Network Protocols (ICNP 2017). IEEE, 2017, pp. 1–10.

[21] P. Regnier, G. Lima, and L. Barreto, “Evaluation of interrupt handling
timeliness in real-time Linux operating systems,” ACM SIGOPS Oper-
ating Systems Review, vol. 42, no. 6, pp. 52–63, 2008.

[22] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole, “A measurement-
based analysis of the real-time performance of Linux,” in Proceedings
of the 8th Real-Time and Embedded Technology and Applications
Symposium (RTAS 2002). IEEE, 2002, pp. 133–142.

[23] F. Cerqueria and B. Brandenburg, “A comparison of scheduling latency
in Linux, PREEMPT-RT, and LITMUSRT,” in Proceedings of the 9th
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT’13), 2013, pp. 20–30.

[24] M. Wilcox, “I’ll do it later: Softirqs, tasklets, bottom halves, task
queues, work queues and timers,” in Proceedings of the 3rd linux.conf.au
Conference, 2003, pp. 1–6.

[25] M. Samadzadeh and L. Garalnabi, “Hardware/software cost analysis of
interrupt processing strategies,” IEEE Micro, vol. 21, no. 3, pp. 69–76,
May 2001.

[26] S. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. Ousterhout,
“It’s time for low latency,” in Proceedings of the 13th Workshop on Hot
Topics in Operating Systems (HotOS’11). USENIX, 2011, pp. 1–5.

[27] S. Peter, J. Li, I. Zhang, D. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” in Proceedings of the 11th Symposium on Operating
Systems Design and Implementation (OSDI 2014). USENIX, 2014,
pp. 1–16.

[28] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A protected dataplane operating system for high
throughput and low latency,” in Proceedings of the 11th Symposium on
Operating Systems Design and Implementation (OSDI 2014). USENIX,
2014, pp. 49–65.

[29] B. H. Leitao, “Tuning 10Gb network cards on Linux,” in Proceedings
of the Linux Symposium (OLS’09), 2009, pp. 169–184.

[30] J. D’Ambrosia, “100 gigabit ethernet and beyond,” IEEE Communica-
tions Magazine, vol. 48, no. 3, pp. 6–13, 2010.

[31] N. Hanford, V. Ahuja, M. Farrens, D. Ghosal, M. Balman, E. Pouyoul,
and B. Tierney, “Improving network performance on multicore systems:
Impact of core affinities on high throughput flows,” Future Generation
Computer Systems, vol. 56, pp. 277–283, 2016.

[32] A. Kaufmann, T. Stamler, S. Peter, N. Sharma, A. Krishnamurthy, and
T. Anderson, “TAS: TCP acceleration as an OS service,” in Proceedings
of the 14th EuroSys Conference (EuroSys 2019). ACM, 2019, pp. 24:1–
24:16.

[33] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[34] D. B. de Oliveira and R. S. de Oliveira, “Timing analysis of the
PREEMPT RT linux kernel,” Software: Practice and Experience, vol. 46,
no. 6, pp. 789–819, Apr. 2016.

[35] P. Patel, M. Vanga, and B. Brandenburg, “TimerShield: Protecting high-
priority tasks from low-priority timer interference (outstanding paper),”
in Proceedings of the 23rd Real-Time and Embedded Technology and
Applications Symposium (RTAS’17). IEEE, 2017, pp. 3–12.

[36] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” Journal of Systems Architecture, vol. 80, pp. 104–113, Oct.
2017.

[37] C. Kirsch and A. Sokolova, “The logical execution time paradigm,” in
Advances in Real-Time Systems. Springer, 2012, pp. 103–120.

