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ABSTRACT
Edge systems enable large numbers of embedded nodes to communi-
cate in order to cooperate towards achieving a shared goal. However,
such systems operate under both timeliness and energy-efficiency
constraints. This paper proposes X-Leep, a run-time system that
detects the pace of the system, supporting Internet-of-Things and
Edge scenarios. X-Leep adapts the local processing speed accord-
ingly, considering time-related and energy-related constraints. Our
evaluation shows that X-Leep increases energy efficiency compared
to state of the art with only a minor effect on the quality of service.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; •Networks→ Network protocols; •Hardware
→ Power estimation and optimization.
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1 INTRODUCTION
Edge computing [6, 7] is key to ensure low latency and high relia-
bility for application domains in the Internet of Things (IoT) [26].
With the increasing amount of data acquisition (i.e., sensor data)
and pre-processing of interconnected nodes at the edge (i.e., data
computation of IoT devices), it becomes of greatest importance to
consider the energy demand of individual applications and usage
scenarios too. Activities at the software level, which originate from
various layers of the software stack, lead to energy demand of the
underlying hardware components.

In the spirit of work from operations research [17], parts of this
energy demand can be considered as different forms of waste, as
a careful look reveals that these can be avoided by design-time as
well as run-time adaptations. To achieve this in Edge scenarios, it
must be ensured that operations at the application level (i.e., user
space) and at the operating-system level (i.e., kernel space) adapt
to the run-time behaviour of the network stack [1, 13]. Cross-layer
optimisations have been subject to research [12, 22] and in-depth
analysis in previous work. Packet pacing [9, 11, 20, 25] and, in
particular, cross-layer pacing have been proven to be an effective
operating scheme to reduce jitter and improve latencies in large-
scale, networked systems.

In this paper we explore ways to leverage cross-layer pacing
to improve energy efficiency in edge computing scenarios. Our
approach exploits the information gathered by cross-layer pacing
at different layers of the system (i.e., application, network, and
operating system) . The collected run-time data is used to improve
the operations within the overall system dynamically at run-time.
For example, X-Leep adjusts the voltage and frequency of the CPU
to eliminate slack time while ensuring that certain quality of service
requirements, for example response time of the edge system, are not
violated. X-Leep achieves this without requiring application code
annotations or changes, but utilising already available information.

The contributions of this paper are threefold. Firstly, we discuss
and present the X-Leep approach. Our approach addresses current
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shortcomings in edge scenarios, where energy-efficiency improve-
ments are untapped as cross-layer concerns are not considered.
Secondly, we contribute a prototype implementation of X-Leep
and outline design considerations. Thirdly, we evaluate X-Leep and
discuss the results of our analysis.

The structure of the paper is as follows. Section 2 presents back-
ground information and the concepts underlying X-Leep. The im-
plementation of X-Leep is discussed in Section 3. Section 4 evalu-
ates the current X-Leep implementation. Related work is discussed
in Section 5 and Section 6 concludes the paper.

2 BACKGROUND
Energy efficiency plays an important role in the IoT domain, so
that a correct operation of battery-powered devices is ensured
and a sustainable deployment can be achieved. Sustainability is
particularly relevant in this case, given the mere amount of devices
expected to be deployed1, which makes desirable, if not mandatory,
to follow the Green IT principles [16]. Data samples captured by
sensors at the edge have strict latency constraints when monitoring
physical processes to keep them under control [2], thus requiring
timely delivery in order to guarantee the stability of such processes.
Therefore, since the value of information is reduced as time goes by,
the data loses value while it is buffered. This may result in the waste
of precious resources in case the data does not reach its destination
in time. For example, the energy used to forward a packet is wasted
if the packet can no longer arrive in time at the receiver.

Buffers can be found in end nodes and in-network nodes to allow
for asynchronous process communication and to cope with un-
avoidable bursts. However, they have the side effect that queues are
created when the communication and processing steps do not run
at the same pace2, which we define as the time a given step needs to
process a certain data unit. This may result in bufferbloat [8], i.e. per-
sistent queues that increase the end-to-end latency, and therefore
should be avoided.

In any system there is always at least one step which takes the
longest to process a data unit (e.g., communication channel, re-
ceiver application, etc.). We denote the pace of such a step as the
bottleneck pace. In order to keep buffers empty, we have imple-
mented cross-layer pacing, which measures the pace of every step
and communicates this information to all the other steps, so that
they can be aware of the bottleneck pace and adapt accordingly to
minimise the resource footprint. Figure 1 shows the relevance of the
cross-layer pacing approach for the control scenario. The unpaced
sensor samples a signal at a certain pace and then transmits the
samples over a channel, which in this case is the bottleneck with
a pace twice the sensor pace. Not only is the unpaced controller
not able to recover the original signal, but packets are eventually
dropped due to buffer overflows. In contrast, the paced sensor can
use the bottleneck pace information to adapt its sampling rate,
which results in the controller reconstructing the original signal
in time. In order to keep buffers empty, all the steps preceding
the bottleneck must run at the bottleneck pace, otherwise queues

1"Gartner Says 5.8 Billion Enterprise and Automotive IoT Endpoints Will Be in Use
in 2020", https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-
says-5-8-billion-enterprise-and-automotive-io
2The pace behaves similarly to energy demand, i.e. lower is better (fast pace = low
value, slow pace = high value).
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Figure 1: When the sensor uses cross-layer pacing, the sam-
pling rate is adapted to match the bottleneck—achieving
high fidelity and avoiding data loss due to buffer overflows.

appear as a result of the mismatch between input and output rate
at the buffer. The steps behind the bottleneck may decide to adapt
to it, for instance to optimise the resource usage (e.g., slow down
the CPU frequency to save energy) or to minimise the end-to-end
delay (e.g., run preparatory tasks in advance).

Cross-layer pacing has been implemented in the Predictably Reli-
able Real-time Transport (PRRT) protocol [10, 21], which provides a
latency-aware, partially reliable, in-order datagram delivery service.
The PRRT layer3 can measure the application and network pace,
and communicate this information end-to-end, so that the sender
and receiver are aware of the bottleneck pace, which makes it ideal
for the implementation of cross-layer pacing.

PRRT provides several means for the application to use cross-
layer pacing. First, the application can query the socket for the
bottleneck pace and in turn adapt its internal parameters to meet
it, thus becoming pacing-aware. Second, the transport protocol
can measure the application’s pace and artificially delay the send
calls when it detects the application runs too fast. This approach
is transparent to the application, as legacy applications need no
modifications. Finally, the application can use synchronous send
calls, which block until the next data packet can be created and
transmitted. This approach requires the application to have periodic
behaviour, so that its pace can be measured and accordingly adapt
the blocking behaviour to produce just-in-time processing.

Besides cross-layer pacing, PRRT also implements error control
to cope with the packet losses introduced by the communication
channel. It implements an interface for the application to state its
latency requirement and packet error rate tolerance, so the error
control function, which is implemented using aHybrid ARQ (HARQ)
scheme, can be optimised to reduce the amount of redundancy and
meet the application’s latency and error rate requirements. The
HARQ scheme also leverages information about the communication
channel to fine-tune its parameters, such as the propagation delay,
data rate and packet loss rate. The propagation delay is estimated
following a similar approach to that in NTP [15], while the IETF
3Typically, the PRRT layer is the transport layer, but it does not require specific services
from lower layers except datagram-delivery and process-multiplexing, so technically
it can run directly on top of, e.g. Ethernet or Wi-Fi.
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draft on delivery rate estimation [4] has been followed for the data
rate estimation. Finally, the receiver keeps track of received packets
to estimate the packet loss rate. The application constraints and
channel information are used to decide the number of redundancy
packets to be generated, which can be transmitted either proactively,
using forward error coding (FEC), or as a reaction to receiver’s
feedback, using automatic repeat request (ARQ). Therefore, given
the target latency specified by the application, the HARQ scheme
balances the amount of time budget that is used for ARQ and FEC.

Finally, congestion control is implemented to avoid network
congestion and ensure a fair share of network resources. The im-
plemented algorithm is based on BBR [3], which tries to operate
at the Bandwidth-Delay Product (BDP) to maximise the data rate
while minimising the delay. The network round-trip time and bot-
tleneck data rate are estimated as described above to calculate this
operating point. Besides maintaining the congestion window, BBR
also controls the sending rate by pacing the packet transmission to
meet the available data rate and keep in-network buffers empty.

3 IMPLEMENTATION
In this section we present the implementation of X-Leep, a run-
time system to leverage network-level knowledge in order to select
a power-efficient CPU frequency. X-Leep operates between the
transport protocol and the operating system and adjusts the execu-
tion speed to the most power-efficient value. The optimal execution
speed in our case is the lowest possible execution speed without
deadline violations, and hence the lowest possible power demand.
Therefore, X-Leep configures the dynamic voltage and frequency
scaling (DVFS) algorithm of the operating system to set the CPU
frequency accordingly.

In order to collect application knowledge, X-Leep provides an
application interface. The layers above X-Leep are expected to re-
port the current period length (tper iod ) and the actual required
execution time (texecution ) at the end of each period to X-Leep.
If the application does not report this data, the network protocol
collects the required information and provides it to X-Leep. From
these two values, X-Leep can determine whether changes to the
execution speed are necessary. If texecution is considerably lower
than tper iod the application runs too fast and can be slowed down.
In contrast, if texecution is equal or higher than tper iod the appli-
cation violates deadlines and needs to speed up its execution.

X-Leep does not only consider the last application report, but
a configurable number of past reports is kept in a sliding-window
average filter. This allows to track changes over time and reduces
the influence of outliers. Furthermore, we enforce that a frequency
change can only happen after a minimal amount of time has passed
since the last change, thereby avoiding flip-flopping between CPU
frequencies when the sensing rate is higher than the actuation
rate, which also allows to amortise the overhead caused by CPU
frequency changes. Non-controllable factors, for example operating-
system noise, may increase the number of narrow deadline misses,
as this approach tries to make the execution speed converge as close
as possible to the period length. Consequently, small increases in the
execution time would lead to deadline violations. This is the reason
why X-Leep includes a configurable safety margin to optimise for

a slightly reduced period length and to reduce the probability for
narrow deadline violations.

The application reports are used to determine the currently opti-
mal execution speed and thus frequency. The optimal frequency is
calculated by the following equation, where tper iod and texecution
are the values as reported by the application and fcur is the cur-
rently applied CPU frequency.

fopt := fcur ×
texecution
tper iod

Assuming that the execution speed scales linearly with the CPU
frequency, the equation calculates the optimal CPU frequency in
one step. This assumption is generally true for CPU-bound ap-
plications, where the execution speed depends only on the CPU
frequency. However, for memory-bound applications and applica-
tions including I/O, the execution speed scales sub-linearly with
the CPU frequency. In these cases, the algorithm approaches the
optimal CPU frequency in several steps and eventually reaches the
optimal frequency.

Furthermore, this algorithm automatically copeswith deadline vi-
olations. If for one period the deadline is violated, that is texecution
is greater than tper iod , the fraction solves to a value greater than
1 and the CPU frequency is increased again. This allows continu-
ous adaptations at run-time even for changing environments that
require different epoch lengths and execution speeds. This con-
trol algorithm, together with suppressing of flip-flopping between
two CPU frequencies, allows X-Leep to be robust—assuming the
underlying cross-layer pacing implementation is robust as well.

The integration of X-Leep in PRRT can be achieved either by
adding calls into X-Leep directly from an application or by ex-
tending the PRRT implementation itself. The advantage of a PRRT
integration is the utilisation of application-specific knowledge with-
out changes to the application itself. The only prerequisite is the
use of PRRT in the application.

In our implementation, X-Leep is integrated into the pacing
mechanism of the sender’s side of PRRT. Specifically, after each
transmission PRRT calculates whether a sender node has to be
slowed down and hence has knowledge about the actual execution
time and period length. Consequently, PRRT reports these values
on behalf of the application to X-Leep.

Application reports are decoupled from the actual CPU frequency
changes. This allows for different backends that are responsible for
changing the CPU frequency, which are tailored to the available
hardware features, respectively. For our system we use the Linux
userspace governor, which allows DVFS configurations from user
space utilising the sysfs interface. Initially, the highest available
CPU frequency is used. Once the first application reports are col-
lected, the frequency is dynamically adapted as described above.

4 EVALUATION
The evaluation setup considers a typical edge-computing use case
where an embedded node periodically samples a sensor, pre-processes
the data, and transmits it to an edge-located node. In this scenario,
the embedded node is strictly power-constrained.
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4.1 Evaluation setup
The setup consists of three network nodes— sender, receiver, and
controller—connected via Ethernet. The controller has administra-
tive tasks, and the sender and receiver transmit a fixed number of
packets for each experiment. We only measure the energy demand
of the sender node to evaluate its ability to adapt to the system
pace4. The energy measurements are conducted with a LTC2991
power monitor platform connected to a microcontroller for periodic
sampling. Both the sender and the receiver nodes are Raspberry Pi
3B+, running Raspbian 10, with a patched Linux kernel to enable
fine-grained DVFS settings.

We synchronise clocks before the experiment using NTP, but
disable clock synchronisation during the experiment to avoid er-
ratic clock jumps. Both the sender node and the receiver node run
dedicated benchmarking applications. On the receiver node, the ap-
plication issues sleep calls for a configurable delay, which resembles
load-induced delays. On the sender node, a dummy function of con-
figurable length is executed, which resembles data pre-processing
computations. The reason behind the two different load types is
that the experiment evaluates the energy efficiency of the sender
node—the receiver-side load is independent of the processor fre-
quency and thus repeatable, whereas the sender-side load scales
realistically with the processor frequency. We specifically measure
the execution time of the sender-side workload at all available pro-
cessor frequencies, which allows us to choose scenario parameters
where we know the bottleneck. This knowledge, however, is not
supplied explicitly to the system—instead, PRRT has to detect the
timing at run-time and provide it to X-Leep.

Several DVFS strategies are compared in the evaluation. First,
the Linux ondemand governor adapts the processor frequency to
its utilisation. This strategy does slow down the sender in the case
where it runs too fast. The reason is cross-layer pacing that forces
the sender to wait if it produces data items too quickly. However,
this strategy is unaware of application-level and network-level
timing requirements. Second, each fixed frequency in the range of
0.6 GHz to 1.4 GHz is evaluated. Third, X-Leep adapts the processor
frequency based on information provided by the network protocol,
as described in Section 3.

For each scenario, the sender transmits 10 000 packets, which is
enough to detect network and receiver paces, and to adapt accord-
ingly. In particular during the start-up phase, packet loss is expected
if the sender operates too fast, as it is not aware of receiver-side
timings yet. Therefore, this relatively large number of packets re-
duces the unavoidable noise caused by the experiment warm-up
phase. After completing an evaluation, the controller node collects
all node-local measurement data for further processing.

Several different scenarios are evaluated. These scenarios rep-
resent a variety of possible system bottleneck types. The detailed
configurations are outlined in Table 1.

s* Sender node is the bottleneck. This is achieved by a large
sender-side delay and a small receiver-side delay. The sender
should run at full speed to achieve optimal system through-
put and minimal inter-packet times.

4The receiver node is implicitly paced as it cannot process data faster than provided
by the sender node.

Table 1: Summary of evaluation scenario configurations
with sender-side (s*), receiver-side (r*), mixed (m*), and vary-
ing (v*) system bottlenecks.

Name Sender cpu load Receiver delay

s1 400 1000
s2 700 2000
r1 700 7000
r{2–6} {500,600,700,800,900} 10 000
m1 300 1000
m{2–4} {400,500,600} 2000
m{5–7} {700,800,900} 5000
m{8–9} {800,900} 7000
v{1–3} {700,800,900} 5000→ 10 000
v{4–6} {700,800,900} 10 000→ 5000

r* Receiver node is the bottleneck. This is achieved by a large
receiver-side delay and a small sender-sided delay. The sender
should run at minimum speed because the receiver cannot
process packets fast enough.

m* Receiver node is the bottleneck. To achieve this, the sender
delay is slightly lower than the receiver-side delay, which
means that the two pacesmatch if the sender operates slightly
slower. The sender should run at neither minimum nor max-
imum speed, but somewhere in-between, so that both nodes
operate with the same pace.

v* Receiver timing varies in the middle of the experiment, caus-
ing the bottleneck to change. This is achieved by changing
the receiver-side delay during the experiment. The sender
should initially adapt to the receiver pace, then later re-adapt
when the receiver delay changes. In these scenarios, none of
the fixed frequency configurations is optimal.

4.2 Timeliness Evaluation
The general strategy of X-Leep is to slow down until the point
where all available time of the packet processing period is utilised.
Figure 2 summarises the processor-time utilisation for all evaluated
scenarios. Since the scenarios cover a large variety of different
timings, we normalise all measurement values. The results show
that X-Leep slows down more aggressively than ondemand, but the
sender-side processing finishes in time (i.e., the value is below 0)
in most scenarios. Running at maximum speed (i.e., 1.4 GHz fixed)
causes poor utilisation in most scenarios, except for s* where the
sender is the bottleneck.

Figure 3 compares the deadline misses of all strategies. In gen-
eral, running at the slowest processor frequency (i.e., 0.6 GHz fixed)
results in many deadline misses, except for the r* scenarios where
the receiver is the bottleneck despite slowing down the sender to
its minimum speed. For X-Leep, the number of deadline misses is
slightly lower, compared to the ondemand governor, which adapts
the processor frequency to the utilisation but is unaware of appli-
cation timing requirements.
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Figure 2: Amount of time used for sender-side computations, normalised to the period. Goal: stay close to but below 0.
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Figure 3: Increase in deadline violations, normalised to the execution at 1.4GHz fixed.

4.3 Energy Efficiency Evaluation
A suitable metric to evaluate the power efficiency compares the
utility of the system to its cost. We therefore define the power
efficiency as the quotient of the packet rate and the power draw
(i.e., higher is better).

Efficiency =
packet rate
power draw

=
# Packets
Energy

Figure 4 compares the energy efficiency of all evaluated strate-
gies, normalised to the execution at 1.4 GHz fixed. First, the figure
shows that 1.4 GHz is the most efficient fixed frequency in some
scenarios, but also the least efficient one in some other scenarios.
This finding strengthens our point that dynamic frequency adap-
tion is crucial for energy efficiency in highly adaptive networking
systems. Both the ondemand governor and X-Leep are often close to
the optimal fixed frequency, indicating that both strategies tend to
converge to near-optimal frequencies. In comparison, the X-Leep
strategy is more efficient than ondemand. In the v* scenarios where
the bottleneck changes during the experiment, X-Leep is also more
power-efficient than the best fixed frequency.

4.4 Analysis
In summary, X-Leep is able to utilise network-related information
to improve the energy efficiency of edge nodes. It is, in summary,
more energy-efficient than existing solutions while also adhering to
whole-system timing requirements. As expected, fixed-frequency
strategies in general fail to adapt to varying network properties.

5 RELATEDWORK
Dynamic voltage and frequency scaling (DVFS) techniques have
been previously used to optimise the energy efficiency of soft real-
time systems. Simunic et al. [23] adapt to varying execution times
of a multimedia-processing embedded system and thereby optimise
the energy demand. Their approach yields significant improve-
ments, but requires an application-specific stochastic model. In
contrast, X-Leep is not limited to a specific application, but poses a
more generic approach for different applications.

More recently, Martins et al. [14] propose a system for multiple
workloads and CPU cores. Their system exploits available slack
time by changing the execution speed. However, they require ap-
plications to report available slack times to their system and thus
require changes to applications. Furthermore, they rely on simula-
tions instead of actual energy measurements.

Rausch et al. [19] propose an energy-aware cluster architecture
for edge computing. They use an energy-aware cluster manage-
ment software to balance between application responsiveness and
energy demand of an edge-located computing cluster, depending
on the client-induced load. PRRT with X-Leep, in contrast, uses the
bottleneck information to identify the optimal processing speed.

There has also been research for hard real-time systems by Pillai
et al. [18]. They rely on a previously determined worst-case execu-
tion time (WCET) and adapt the execution speed to meet thisWCET.
However, this approach requires a statically observable WCET and
is not able to cope with dynamic changes to the WCET.
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Figure 4: Power efficiency comparison, normalised to the execution at 1.4GHz fixed.

In the networking domain, there are related approaches that aim
for energy-efficient communication at the edge. Aves [5] consid-
ers this a deployment problem, i.e. answering where the different
parts of a networked sense-process-act system should be executed—
thereby optimising energy demand. Other solutions for data centre
networks use power-saving features of network devices and apply
traffic engineering to find appropriate transmission schedules and
routes that minimise energy demand [24]. As X-Leep works at the
end-hosts, both approaches represent orthogonal solutions to ours
in a way that either potentially benefit from the other.

6 CONCLUSION
This paper has shown that X-Leep utilises network-provided infor-
mation to slow down individual edge nodes, in order to improve
energy efficiency. The evaluation demonstrates that PRRT adapts
to all bottleneck scenarios, thereby enabling X-Leep to improve the
energy efficiency. While the approach presented in this paper uses
a relatively simple heuristics to select frequencies, future work will
apply more elaborate energy models for additional energy savings.
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