
Precious: Resource-Demand Estimation
for Embedded Neural Network Accelerators

Stefan Reif, Benedict Herzog, Judith Hemp, Timo Hönig, and Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

{reif,benedict.herzog,hemp,thoenig,wosch}@cs.fau.de

ABSTRACT
The recent advances of hardware-based accelerators for machine
learning—in particular neural networks—attracted the attention of
embedded-systems designers and engineers. Since embedded sys-
tems usually operate with strict resource constraints, knowledge
about the resource demand (i.e., time and power) for executing
machine-learning workloads is key. This paper presents Precious,
an approach, as well as a practical implementation, of a system that
estimates execution time and power draw of convolutional and
fully-connected neural networks that execute on a commercially-
available off-the-shelf embedded accelerator hardware for neural
networks (i.e., Google Coral Edge TPU).
ACM Reference Format:
Stefan Reif, Benedict Herzog, Judith Hemp, Timo Hönig, and Wolfgang
Schröder-Preikschat. 2020. Precious: Resource-Demand Estimation for Em-
bedded Neural Network Accelerators. In First International Workshop on
Benchmarking Machine Learning Workloads on Emerging Hardware, March
4, 2020, Austin, TX. ACM, New York, NY, USA, 9 pages.

1 INTRODUCTION
Hardware accelerators formachine learning (e.g., Intel Neural Com-
pute Stick [9], Google Coral [22]) are increasingly common on
a wide variety of different platforms. The hardware accelerators
satisfy the growing demand and interest for machine-learning ap-
proaches [1, 21]. The corresponding machine-learning workloads
implement application scenarios (e.g., the use of image classifica-
tion and speech recognition) that execute more efficiently using
the accelerator-specific integrated circuits.

However, as the platforms for such tasks (i.e., tablet computers,
smart phones, watches, and other wearable devices) often oper-
ate on strictly limited resources [8, 13–15] machine-learning work-
loads [2, 3] must be analysed with regards to their power and en-
ergy demand as they impact the battery life of the host systems.
The adaptation ofmachine-learningworkloads for new application
scenarios increases the pressure at system level (i.e., system soft-
ware [23], operating systems [24]) to integrate machine-learning
accelerators efficiently.Whenmachine-learningworkloads execute,
it is important to consider non-functional system properties such
as the battery life of the host system. This is especially relevant as
the use of hardware-based accelerators [9, 22] becomes a state-of-
the-art technique in computer science and finds broad adoption.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
First International Workshop on Benchmarking Machine Learning Workloads on Emerg-
ing Hardware, March 4, 2020, Austin, TX
© 2020 Copyright held by the owner/author(s).

Until now, estimating the energy demand of machine-learning
workloads is a field of research that is explored very little. Thus,
it remains an unresolved challenge to predict the total energy de-
mand for executing a machine-learning workload—for example,
the energy demand that is required to execute a specific neural
network with a given input.

A straight-forward way to determine the power and energy de-
mand for the execution of machine-learning workloads is to mea-
sure it, for example, with a power meter. However, such power
measurements depend on the availability of the final hardware (i.e.,
accelerator modules), measurement infrastructure (i.e., power me-
ters) that can be costly, and hyper-parameters that are fine-tuned
during an expensive—with respect to time and energy—training
process. Therefore, it is most desirable to estimate the energy de-
mand before all components of the final system are available. In par-
ticular, system developers must define neural-network parameters
prior to the resource-intensive training process. However, these
parameters influence non-functional system properties, such as la-
tencies and energy demand. Hence, a resource-demand model en-
ables developers to assess the influence of parameter choices and
revise bad choices before spending resources on the training pro-
cess, needlessly.

This paper tackles the challenge of analysing and estimating the
energy demand of machine-learning workloads. We analyse the
power and energy demand of a hardware accelerator for machine
learning (i.e., Google Coral [22]). Based on the conducted energy
measurements at the hardware level, we present and discuss the
concept and implementation of Precious, an approach for the es-
timation of the energy demand for machine-learning workloads.

The contributions of the paper are threefold. First, we present
and discuss an in-depth analysis for the energy demand ofmachine-
learning workloads. Second, we propose Precious, an approach
for the estimation of the energy demand ofmachine-learningwork-
loads with models based on linear and random forest regressors.
Third, we evaluate our current implementation of Precious and
discuss the differences between linear and random forest models.
In order to provide the necessary base data for our work, we con-
duct measurements for a large series of different machine-learning
workloads (i.e., deep artificial neural networks with different net-
work structure and input) and provide an in-depth discussion of
the resulting energy demand for the various different workloads.
We further present Precious, an approach for modelling and esti-
mating the energy demand of deep artificial neural networks at a
fine-granular level. Our experiments use the Google Coral Edge ac-
celerator [22], a commercially available off-the-shelf (COTS) neu-
ral network acceleration hardware module for which we conduct
energy measurements at the hardware level.



First International Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware, March 4, 2020, Austin, TX Reif et al.

NN Generation
Phase

NN Execution
Phase

Training
Phase

Application
Phase

NN Generator

NN
Database

config RNG
seed

NN Executor

TPU

Resource
Database

Model
Learning

Resource
Model

Application
NN

Resource
Predictor

Resource
Prediction

Figure 1: Precious comprises four phases for the estimation of execution time and power draw of neural networks.

The paper is structured as follows. Section 2 presents the Pre-
cious approach to estimate the resource demand of neural net-
works and our practical implementation. Section 3 evaluates the
system empirically. Section 4 and Section 5 discuss related work
and future work, respectively. Section 6 concludes this paper.

2 DESIGN AND IMPLEMENTATION
In this section we present the Precious approach for the resource
estimation of neural networks (NN). We outline design consider-
ations of Precious and discuss its current implementation which
uses a Google Coral Edge Tensor Processing Unit (TPU), a COTS
neural network accelerator for embedded systems that connects to
its host system via USB [22]. Precious organises the process of es-
timating the resource demand of neural networks in four distinct
phases (see Figure 1). First, Precious generates randomised neu-
ral networks. Second, it evaluates their resource demands. Third,
a machine-learning approach builds a model that maps network
properties (e.g., number of layers) to its resource demand. In the
fourth phase, applications can utilise this model to estimate the
resource demand of their networks.

2.1 Neural Network Generation
In the first phase, Precious uses the machine-learning framework
TensorFlow 2.0 with Keras [21] and Python 3.6 to generate ran-
domised neural networks. It currently supports two different net-
work types—convolutional (“conv2d”) and fully connected (“dense”)
networks [17]. As of now, the implementation supports “relu” as
activation function, and imposes restrictions on the dimensions of
convolutional networks. For each layer, the input dimension is the
same as the output dimension. Each generated network consists of
homogeneous layers of the same type and dimension (for convolu-
tional layers this implies the use of the “same” padding). Convolu-
tional layers always have a square-dimension input with a depth
of 3, and 3 filters with the dimension (3, 3). Our system varies the
number of layers (between 2 and 250) and the dimensions (between
100 and 1024), randomly. Furthermore, all network-internal param-
eters are initialised to random values. We do not apply a training
algorithm, as we use Precious to examine the resource demand of

Host PC

TPU

ADC & ShuntSampling Chip

USB

USB

U
S
B

U
S
B

I2
C

I2
C E E

E

E

Data
Energy

Figure 2:The energy-demandmeasurement setup intercepts
the power supply of the accelerator at its USB connection.

different network types and configurations and not the resource
demand for a specifically trained network.

To execute a neural network on the accelerator, it must be con-
verted to a suitable TensorFlow Lite (TFLite) model. This means,
for example, that all parameters must be in an 8-bit fixed-point
number format. The conversion to this format is either achieved
during training (i.e., “quantisation-aware training”) or afterwards
(i.e., “post-training quantisation”). Since Precious only pretends
that the generated neural networks are trained, it uses the latter
technique to translate the randomised parameters to 8-bit values.
Furthermore, this technique also allows to convert existing neural
networks that are already trained and execute them on the acceler-
ator. This network translation process is executed on the host sys-
tem using the Edge TPU compiler [18]. The compiler also reveals
hardware-related network features, such as its memory demand
on the accelerator.

2.2 Neural Network Execution
In the second phase, Precious measures the energy demand of
generated neural networks. Figure 2 visualises the structure of our



Precious First International Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware, March 4, 2020, Austin, TX

1

2

3

Figure 3: Picture of the energy-demand measurement setup
with 1⃝ theTPU, 2⃝ADCand shunt, and 3⃝ the sampling chip.

energy measurement setup, and Figure 3 shows a picture of the ac-
tual hardware setup. The host system submits neural networks to
the Coral Edge accelerator [22] for execution1. Thereby, the input
data for the execution is randomised and no batching is applied.
Precious intercepts the power supply of the accelerator at its USB
connection. It uses a shunt resistor together with a LTC2991 volt-
age and current monitoring sensor [5] which has a 14-bit ADC to
measure the power draw. Amicrocontroller (“sampling chip”) polls
the power measurement values, aggregates them, and eventually
communicates them to the host system.

This setup allows Precious to create detailed power traces, as
shown in Figure 4. According to our measurements, the accelera-
tor’s idle power draw is between 280mWand 300mW. Even before
the actual inference begins, we observe significant fluctuations in
power demand that go hand in handwith the creation of the TFLite
interpreter object. This software object is necessary for the execu-
tion of the model [19] and switches the accelerator to a state of
increased power demand. During the first 2 seconds of the mea-
surement we observe power fluctuations ahead of the actual in-
ference execution (at around 3 seconds into the measurement) as
visualised in Figure 4.Thismeans that there exists a pre-processing
stage before the first execution of an inference.

The TPU executes inferences only during the middle part of the
curve (in Figure 4, beginning at around 3 seconds until ca. 6.5 sec-
onds). During the first inference, the neural network gets loaded
onto the TPU, so it lasts longer than all other inferences [20], and
therefore, its measurement results are excluded from further pro-
cessing.The subsequent inferences yieldmeasurement results from
which Precious derives its power and time models. After the last

1Throughout this paper, a “neural network execution” is equivalent to computing an
inference with one input data set.

inference, the interpreter object is destroyed and the accelerator re-
turns to the idle state after some time. This post-processing stage
still has a slightly higher power draw compared to the TPU’s ini-
tial idle state. We assume that the pre- and post-processing stage
correspond to different USB transmission and power modes of the
Cortex-M0+microprocessor that operates on theGoogle Coral TPU.

In Figure 5, the measured values of several inferences of the
same convolutional networks were superimposed to visualise the
power course of an inference. The superimposed visualisation al-
lows a detailed analysis of the power draw over time, even though
a single inference executes within a few milliseconds. This is due
to the deterministic execution behaviour of the TPU [11].Themea-
surements show clear differences between dense and convolutional
networks. Convolutional networks have clearly repeating “hills”,
whereas dense networks start with a striking spike to end in slight
sine curves, as shown in Figure 6. For both network types, the ob-
served behaviour is repeatable.

For execution on the accelerator, a delegate of the TFLite in-
terpreter of the manufacturers is required, which is implemented
by the program library “libedgetpu.so”. For the embedded TPU of
our implementation [22], this library is available in different two
versions, a standard variant and a second variant which operates
with the maximum operating frequency [20]. Depending on the in-
stalled version, the power demand and execution time of the TPU
differs. We use the former (i.e., slower) variant for our implementa-
tion of Precious because the latter suffers from thermal problems.
For each network, inferences are repeatedly carried out for at least
one minute, while measuring execution time and power demand.
Then, Precious computes the average power draw and the average
execution time for each generated neural network.

2.3 Model Training
To estimate the power draw and execution time for the inference
of neural networks, Precious uses linear [26] and random forest
regressors [27] from scikit-learn. Both arewell-established stochas-
tic modelling techniques.

The training data set consists of 1016 dense neural network and
415 convolutional neural networks. We take 80 % of the generated
neural networks for training, the other 20 % constitute the evalua-
tion set used in Section 3. For each neural network in the training
set, we collect statically known features as follows and measure
their power draw and execution times.

The following properties were provided as input to the learned
model: number of layers, number of network parameters, memory
demand (host and on-chip, separately), and the number ofmultiply-
accumulate (MAC) operations. Each parameter is easily determined
before executing the neural network on the embedded TPU. The
number of layers is an inherent property of the underlying net-
work, whereas the number of network parameters results from the
number of neurons and filter size for convolutional networks.With
this information, the number of MAC operations is calculated. The
outputs of the models are the measured power draw and execu-
tion time. Precious uses scikit-learn to fit linear regressors and
random forest regressors to these data sets, one model for convo-
lutional networks and another model for dense networks, respec-
tively.The optimal hyper parameters for the random forest models



First International Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware, March 4, 2020, Austin, TX Reif et al.

0 1 2 3 4 5 6 7 8 9 10
Execution Time [s]

500

1000

1500

2000

Po
w

er
 D

em
an

d 
[m

W
]

Pre-Processing Inferences Post-Processing

Model Execution Cycle (Convolutional Network)

Figure 4: Power curve of full model execution, including the pre-processing stage, six inference runs (dashed lines), and the
post-processing stage. The executed convolutional network consists of 101 layers and a dimension of (1019,1019,3).

0 100 200 300 400 500 600
Execution Time [ms]

1000

1100

1200

1300

1400

1500

Po
w

er
 D

em
an

d 
[m

W
]

Stacked Power-Demand Measurements (Convolutional Network)

Figure 5: Power demand during inference execution for the convolutional network as shown in Figure 4.The graphwas plotted
with stacked power measurements of 113 inference iterations.

0 25 50 75 100 125 150 175 200 225
Execution Time [ms]

1000

1050

1100

1150

1200

1250

Po
w

er
 D

em
an

d 
[m

W
]

Stacked Power-Demand Measurements (Dense Network)

Figure 6: Power demand during inference execution for a dense neural network consisting of 101 layers and a dimension of
1071. The graph was plotted with stacked power measurements of 32 inference iterations.

were determined using a randomised search [28] with the training
data set.

2.4 Model Application
In the fourth and final phase, applications apply the trained mod-
els to estimate the resource demand of their neural networks. The
intended use-case is that phases 1 to 3 are executed once, for exam-
ple by the hardware vendor, and the resulting model is distributed.

In contrast to cycle-accurate simulators, such measurement-based
resource-demandmodels can be published without the risk of leak-
ing intellectual property. Using these models, developers can de-
termine the resource demand of different network architectures—
without power measurement infrastructure and before training—
and restrict the training process to models that satisfy all resource
constraints.The following section evaluates the quality of resource-
demand estimation by Precious.



Precious First International Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware, March 4, 2020, Austin, TX

0 1 107 2 107 3 107 4 107 5 107 6 107 7 107 8 107 9 107 10 107 11 107 12 107

Multiply-Accumulate (MAC) Operations

1060

1080

1100

1120

1140

1160

Po
w

er
 D

em
an

d 
[m

W
]

Power Demand
Execution Time

0

50

100

150

200

250

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

Resource Demand (Dense Network)

0 1 108 2 108 3 108 4 108 5 108 6 108 7 108 8 108 9 108 10 108

Multiply-Accumulate (MAC) Operations

1200

1250

1300

1350

1400

Po
w

er
 D

em
an

d 
[m

W
]

Power Demand
Execution Time

0

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

Resource Demand (Convolutional Network)

Figure 7: Influence of the number of MAC operations on the execution time and power draw for all generated dense (top) and
convolutional (bottom) neural networks.

3 EVALUATION
As described in the previous section, one of the utilised input pa-
rameters for our resource-demand estimation models is the num-
ber of multiply-accumulate (MAC) operations. Figure 7 illustrates
the power demand and execution time for all generated dense and
convolutional networks. For both network types, the graphs show
a clear linear relation between the number of MAC operations and
the execution time. This is in line with the vendor’s statement that
these types of accelerators have a relatively deterministic run-time
behaviour [11] and the number of MAC operations is a suitable
metric to determine the execution time. The power demand also
correlates to the number of MAC operations, but saturates at some
point and no longer increases (dense networks) or increases only
slowly (convolutional networks). We assume that at this point all
hardware units are executing MAC operations and, thus, the TPU
runs with full load and therefore with its maximum power demand.

We use 80 % of the generated and measured neural networks for
the training of our resource-demand estimationmodels. Hence, the
remaining 20 % can be used to evaluate our models. The evaluation
set comprises 255 dense and 104 convolutional neural networks.
For each neural network in the evaluation set, we measure the
execution time and power draw, using the hardware setup as de-
scribed in Section 2. Subsequently, we compare the measurements
to the estimates given by the learned models, which have never
encountered these networks during their training process. In sum-
mary, we learned two different resource-demand estimation mod-
els, that is, one model based on a linear regressor and one model
based on random forest regressors. First, we present the results

for the linear regressor and subsequently compare them with the
results for the random forest regressors.

Figure 8 gives an overview of the estimation quality for convolu-
tional neural networks. The graphs show the power demand (top)
and execution time (bottom) as measured by our measurement
setup and as estimated by our linear model. The graphs show that
the estimates are close to the actual time and energymeasurements
over the whole range of considered neural networks. In particular,
the mean absolute errors are 11.50mW for the power demand and
4.25ms for the execution time. The same holds for the estimations
made for dense neural networks as illustrated in Figure 9.The only
exception is the power demand for networks with a small num-
ber of MAC operations, which increases non-linearly where the
linear model shows a linear increase and therefore introduces a
corresponding, albeit small estimation error. However, the mean
absolute errors are 6.77mW and 0.17ms for the power demand
and the execution time, respectively. Thus, the linear model yields
accurate results for the majority of networks.

In the next part of our evaluation, we repeat the estimations
with a model based on random forest regressors. Figure 10 sum-
marises the estimation quality based for the random forest model
for convolutional neural networks. The mean absolute errors are
9.64mWfor the power demand and 4.42ms for the execution time.
As these estimations for power demands are between 1231mW
and 1394mW we consider an absolute error of 9.64mW very low.
The same holds for the execution times, where the range is between
3ms and 366ms. For low values (around 3ms) the model also esti-
mates around 3ms and the error of 4.42ms primarily stems from



First International Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware, March 4, 2020, Austin, TX Reif et al.

0 1 108 2 108 3 108 4 108 5 108 6 108

Multiply-Accumulate (MAC) Operations

1250

1300

1350

1400

Po
w

er
 D

em
an

d 
[m

W
]

Estimations based on Linear Model (Convolutional Network)

Measurement
Estimation (Linear Model)

0 1 108 2 108 3 108 4 108 5 108 6 108

Multiply-Accumulate (MAC) Operations

0

100

200

300

400

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

Estimations based on Linear Model (Convolutional Network)

Measurement
Estimation (Linear Model)

Figure 8: Measurements and estimations of the power demand (top) and execution time (bottom) for a convolutional network
made by the linearmodel.The x-axis shows the corresponding number ofmultiply-accumulate (MAC) operations.The training
data set and evaluation data set consist of 415 and 104 neural networks, respectively.

0 1 107 2 107 3 107 4 107 5 107 6 107 7 107 8 107 9 107 10 107

Multiply-Accumulate (MAC) Operations

1060

1080

1100

1120

1140

1160

Po
w

er
 D

em
an

d 
[m

W
]

Estimations based on Linear Model (Dense Network)

Measurement
Estimation (Linear Model)

0 1 107 2 107 3 107 4 107 5 107 6 107 7 107 8 107 9 107 10 107

Multiply-Accumulate (MAC) Operations

0

50

100

150

200

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

Estimations based on Linear Model (Dense Network)

Measurement
Estimation (Linear Model)

Figure 9: Measurements and estimations of the power demand (top) and execution time (bottom) for a dense network made
by the linear model.The x-axis shows the corresponding number of multiply-accumulate (MAC) operations.The training data
set and evaluation data set consist of 1016 and 255 neural networks, respectively.



Precious First International Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware, March 4, 2020, Austin, TX

0 1 108 2 108 3 108 4 108 5 108 6 108

Multiply-Accumulate (MAC) Operations

1250

1300

1350

1400

Po
w

er
 D

em
an

d 
[m

W
]

Estimations based on Random Forest Model (Convolutional Network)

Measurement
Estimation (Random Forest)

0 1 108 2 108 3 108 4 108 5 108 6 108

Multiply-Accumulate (MAC) Operations

0

100

200

300

400

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

Estimations based on Random Forest Model (Convolutional Network)

Measurement
Estimation (Random Forest)

Figure 10: Measurements and estimations of the power demand (top) and execution time (bottom) for a convolutional network
made by the random forestmodel.The x-axis shows the corresponding number ofmultiply-accumulate (MAC) operations.The
training data set and evaluation data set consist of 415 and 104 neural networks, respectively.

0 1 107 2 107 3 107 4 107 5 107 6 107 7 107 8 107 9 107 10 107

Multiply-Accumulate (MAC) Operations

1060

1080

1100

1120

1140

1160

Po
w

er
 D

em
an

d 
[m

W
]

Estimations based on Random Forest Model (Dense Network)

Measurement
Estimation (Random Forest)

0 1 107 2 107 3 107 4 107 5 107 6 107 7 107 8 107 9 107 10 107

Multiply-Accumulate (MAC) Operations

0

50

100

150

200

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

Estimations based on Random Forest Model (Dense Network)

Measurement
Estimation (Random Forest)

Figure 11:Measurements and estimations of the power demand (top) and execution time (bottom) for a dense networkmade by
the random forestmodel.The x-axis shows the corresponding number ofmultiply-accumulate (MAC) operations.The training
data set and evaluation data set consist of 1016 and 255 neural networks, respectively.



First International Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware, March 4, 2020, Austin, TX Reif et al.

estimations for greater execution times. Hence, the estimations are
relatively accurate for the complete range of values.

The results for dense neural networks are shown in Figure 11.
Again, the results are relatively accurate.Themean absolute errors
are 5.58mW for the power draw and 0.73ms for the execution
time. These errors occur for values, which range from 1054mW
to 1161mW for the power demand and around 0.3ms to 204ms
for the execution time. Furthermore, the random forest model pre-
cisely models the non-linear increase in power demand for dense
neural networkswith a small amount ofMACoperations.Thus, the
estimation accuracy of the random forest model is similar for most
neural networks compared to the linear model and overcomes the
limitations of the linear model for small neural networks.

In summary, the estimations for dense networks are more accu-
rate, compared to convolutional networks. The slightly increased
training and configuration costs for the random forest model en-
able more accurate results. However, all estimations are close to
the measured results for both models, and the variety between net-
works is much larger than the difference between measurements
and estimations. Hence, our models allow developers an easy and
accurate estimation of the resource demand and relieve them from
time and energy measurements.

4 RELATEDWORK
Previous work has thoroughly examined the power and perfor-
mance characteristics of CPUs, GPUs, and TPUs [11, 16, 30] in data
centres. Our work, in contrast, focuses on neural network execu-
tion on embedded platforms. In comparison to regular and large-
scale systems, embedded platforms have amuch lower power draw,
and thus very different power-to-performance characteristics. Fur-
thermore, the main focus for embedded systems is on response
time rather than throughput [25].

Li et al. [16] compare the resource demand of training frame-
works for convolutional neural networks on CPUs and GPUs.They
further provide information on the effects of performance-tuning
parameters, such as dynamic voltage and frequency scaling and
hyper-threading, on the energy efficiency of the training processes.
Our work presented in this paper, in comparison, targets hardware
accelerators on embedded platforms.

Jouppi et al. [11] describe the architecture of a TPU deployed in
data centres. They compare the performance and power demand
to CPUs and GPUs, showing that the TPU outperforms both hard-
ware alternatives.They also discuss that the executionmodel of the
TPU is more deterministic, compared to CPUs and GPUs. The con-
sequence is that the resource demand (in particular, power draw
and response times) is much more predictable. Our measurements,
in particular Figure 5 and 6, confirm the repeatable behaviour. How-
ever, access to the TPU presented in this paper is only available via
cloud services.

Based on a cycle-accurate simulator, Gupta et al. [6] build a “la-
tency predictor” for the Google Coral Edge TPU [22]. This latency
predictor is then used together with the model accuracy to itera-
tively refine neural networks, until it achieves the desired predic-
tion quality in the available response time budget. They further re-
port that the TPU operates more power-efficiently when themodel
fits the on-chip memory, which is the case for the neural networks

we have generated. Similarly, Kaufman et al. [12] model the execu-
tion time of tensor computations with a feed-forward neural net-
work. In comparison, we demonstrate that even simple machine
learning techniques, such as linear models, can estimate the re-
source demand for embedded accelerators adequately.

Sieh et al. [29] create execution-time and energy-demand mod-
els for an embedded microcontroller. Similar to our approach, they
generate input programs automatically, measure the resource de-
mand, and derive models. They formulate and solve an integer lin-
ear program (ILP) which yields the per-instruction costs of the ex-
amined hardware. Hönig et al. [7] use deep neural networks for
energy models that also account for inter-instruction effects, for
example, related to caches. TPUs, in comparison, avoid such inter-
instruction effects [11]. Instead, tensor processing units aim at pro-
viding predictable execution times by exploiting data parallelism in
hardware [4, 10]. Thus, high overall performance is achieved with
amuchmore deterministic executionmodel, compared to CPUs. In
consequence, the resource demand prediction of a neural network
accelerator can work with simpler models.

5 FUTUREWORK
Future work will extend the resource demand models to support
various additional neural networks architectures. In particular, mo-
re layer types (e.g., “deconv”), models with mixed layer types, ac-
tivation functions other than “relu”, and further features will be
modelled. We plan to support more flexible convolutional layers
with different input, output, and filter sizes. These extensions al-
low us to evaluate the resource demand of real-world applications.

Furthermore, Figure 4 shows the lifetime of the neural network
on the embedded accelerator and indicates that the model execu-
tion cycle also comprises a pre- and a post-processing stage where
the power draw is increased even though no inference is running.
For embedded applications, modelling these stages can be impor-
tant as well. Especially for applications with only few inferences,
the transmission and pre- and post-processing stage constitutes
a significant amount of the energy demand. Thus, the pre- and
post-processing stages must be considered for a holistic resource-
demand analysis.

Another important aspect to include in future models is the tem-
perature. Since power draw and temperature influence each other,
the accurate modelling of thermal effects is difficult. This is par-
ticularly important for the alternative support library version that
enables a higher clock speed of the TPU (cf. Section 2.2), and thus
causes increased temperatures. Besides the increased power draw,
an accurate temperature estimation may also be important for the
thermal design of real-world devices that include hardware accel-
erators for the execution of machine-learning workloads.

Figures 5 and 6 demonstrate that even the detailed power-over-
time behaviour is repeatable amongst neural network executions.
In consequence, precise modelling of this power curve could result
in more accurate energy models. One interesting extension would
be the inclusion of cycle-accurate simulation models built by accel-
erator vendors. We expect more accurate results compared to the
current input features of Precious. However, to the best of our
knowledge, there is no cycle-accurate simulation model publicly
available for the TPU used in this work.



Precious First International Workshop on Benchmarking Machine Learning Workloads on Emerging Hardware, March 4, 2020, Austin, TX

6 CONCLUSION
This paper has presented Precious, a system to estimate the re-
source demand of deep neural networks on embedded accelerator
hardware.The resource demand estimation is based on actual mea-
surements of power draw and execution time, using real hardware.
From thesemeasurements, Precious learns resource-demandmod-
els, using linear and random forest regressors. The resulting mod-
els show only small estimation errors, which means that the run-
time behaviour of neural networks on dedicated hardware is well-
predictable.

ACKNOWLEDGEMENT
Thisworkwas supported by theDeutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – project number 146371743
– TRR 89 “Invasive Computing”, under grant no. SCHR 603/13-1
(“PAX”), and under grant no. SCHR 603/15-2 (“eLARN”).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, MartinWicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI’16). USENIX, 265–283.

[2] Arash Ashari, Shirish Tatikonda, Matthias Boehm, Berthold Reinwald, Keith
Campbell, John Keenleyside, and P. Sadayappan. 2015. On Optimizing Machine
Learning Workloads via Kernel Fusion. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’15). ACM
Press, 173–182.

[3] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian
Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. 2019. Analy-
sis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Bench-
mark. SIGOPS Operating Systems Review 53, 1 (July 2019), 14–25.

[4] Jeff Dean, David Patterson, and Cliff Young. 2018. A New Golden Age in Com-
puter Architecture: Empowering the Machine-Learning Revolution. IEEE Micro
38, 2 (March 2018), 21–29.

[5] Analog Devices. 2020. LTC2991. https://www.analog.com/en/products/ltc2991.
html. Acc. 2020-02-20.

[6] Suyog Gupta and Mingxing Tan. 2019. EfficientNet-EdgeTPU: Creating
Accelerator-Optimized Neural Networks with AutoML. https://ai.googleblog.
com/2019/08/efficientnet-edgetpu-creating.html. Acc. 2020-02-20.

[7] TimoHönig, Benedict Herzog, andWolfgang Schröder-Preikschat. 2019. Energy-
Demand Estimation of Embedded Devices Using Deep Artificial Neural Net-
works. In Proceedings of the 34th Symposium on Applied Computing (SAC’19).
ACM Press, 617–624.

[8] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hart-
ley, and Luc Van Gool. 2018. AI Benchmark: Running Deep Neural Networks on
Android Smartphones. In Proceedings of the Perceptual Image Restoration andMa-
nipulationWorkshop and Challenge (PIRM’18). Springer International Publishing,
288–314.

[9] Intel Inc. 2020. Intel Neural Compute Stick 2. https://software.intel.com/en-
us/neural-compute-stick. Acc. 2020-02-20.

[10] Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. 2018. Motiva-
tion for and Evaluation of the First Tensor Processing Unit. IEEE Micro 38, 3
(May 2018), 10–19.

[11] Norman Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra

Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
goryThorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, RichardWal-
ter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA’17). ACM Press, 1–12.

[12] Samuel Kaufman, Phitchaya Phothilimtha, and Mike Burrows. 2019. Learned
TPU Cost Model for XLA Tensor Programs. In Proceedings of the Workshop on
ML for Systems at NeurIPS 2019. 1–6.

[13] Nicolas Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev, Claudio For-
livesi, and Fahim Kawsar. 2017. Squeezing Deep Learning into Mobile and Em-
bedded Devices. IEEE Pervasive Computing 16, 3 (July 2017), 82–88.

[14] Nicholas Lane and Petko Georgiev. 2015. Can Deep Learning Revolutionize Mo-
bile Sensing?. In Proceedings of the 16th International Workshop on Mobile Com-
puting Systems and Applications (HotMobile’15). ACM Press, 117–122.

[15] Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin Hashemi, and Soheil Ghi-
asi. 2016. CNNdroid: GPU-Accelerated Execution of Trained Deep Convolu-
tional Neural Networks on Android. In Proceedings of the 24th ACM International
Conference on Multimedia (MM’16). ACM Press, 1201–1205.

[16] Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. 2016. Evaluating the En-
ergy Efficiency of Deep Convolutional Neural Networks on CPUs and GPUs. In
Proceedings of the International Conferences on Sustainable Computing and Com-
munications (SustainCom’16). IEEE, 477–484.

[17] Google LLC. 2020. Core Layers. https://keras.io/layers/core/. Acc. 2020-02-20.
[18] Google LLC. 2020. Edge TPU Compiler. https://coral.ai/docs/edgetpu/compiler/.

Acc. 2020-02-20.
[19] Google LLC. 2020. Get started with TensorFlow Lite. https://www.tensorflow.

org/lite/guide/get_started. Acc. 2020-02-20.
[20] Google LLC. 2020. Get started with the USB Accelerator. https://coral.ai/docs/

accelerator/get-started/. Acc. 2020-02-20.
[21] Google LLC. 2020. Tensorflow Keras. https://www.tensorflow.org/versions/r2.

0/api_docs/python/tf/keras. Acc. 2020-02-20.
[22] Google LLC. 2020. USB Accelerator. https://www.coral.ai/products/accelerator.

Acc. 2020-02-20.
[23] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-

man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, and et al.
2016. MLlib: Machine Learning in Apache Spark. Journal of Machine Learning
Researchs 17, 1 (Jan. 2016), 1235–1241.

[24] A. Negi and P. K. Kumar. 2005. Applying Machine Learning Techniques to Im-
prove Linux Process Scheduling. In Proceedings of the TENCON 2005 - 2005 IEEE
Region 10 Conference.

[25] NVIDIA. 2015. GPU-Based Deep Learning Inference: A Performance and Power
Analysis. Technical Report. NVIDIA Corp. 1–12 pages.

[26] scikit-learn developers. 2020. Linear Regressor. https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.LinearRegression.html. Acc. 2020-02-
20.

[27] scikit-learn developers. 2020. Random Forest Regressor. https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html. Acc.
2020-02-20.

[28] scikit-learn developers. 2020. Randomized Search CV. https://scikit-learn.org/
stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html.
Acc. 2020-02-20.

[29] Volkmar Sieh, Robert Burlacu, Timo Hönig, Heiko Janker, Phillip Raffeck, Pe-
ter Wägemann, and Wolfgang Schröder-Preikschat. 2017. An End-To-End
Toolchain: From Automated Cost Modeling to Static WCET and WCEC Analy-
sis. In Proceedings of the 20th International Symposium on Real-Time Distributed
Computing (ISORC’17). IEEE, 158–167.

[30] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and Pol-
icy Considerations for Deep Learning in NLP. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (ACL’19). 1–6.

https://www.analog.com/en/products/ltc2991.html
https://www.analog.com/en/products/ltc2991.html
https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/neural-compute-stick
https://keras.io/layers/core/
https://coral.ai/docs/edgetpu/compiler/
https://www.tensorflow.org/lite/guide/get_started
https://www.tensorflow.org/lite/guide/get_started
https://coral.ai/docs/accelerator/get-started/
https://coral.ai/docs/accelerator/get-started/
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras
https://www.coral.ai/products/accelerator
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 Neural Network Generation
	2.2 Neural Network Execution
	2.3 Model Training
	2.4 Model Application

	3 Evaluation
	4 Related work
	5 Future work
	6 Conclusion
	References

