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ABSTRACT
Modern computing systems need to execute applications in an energy-
efficient manner. To this end, operating systems, middleware, and
run-time systems offer plenty of parameters that support fine-tuning
their behaviour. However, their individual and combined impact
on performance and power draw is so complex that this optimi-
sation potential is often ignored in practice. This paper therefore
discusses a cross-layer system design that uses machine learning
internally to enable fine-tuning run-time systems to their current
workload. Our approach includes all layers, from the hardware to
the application, considering both performance and power draw.

CCS CONCEPTS
• Hardware → Power and energy; • Computing methodolo-
gies →Machine learning.
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1 INTRODUCTION
Most modern computers are limited by their power supply or by
thermal constraints. To support balancing the power draw and sys-
tem performance, many system-level components offer parame-
ters that allow fine-tuning their behaviour. However, the optimal
configuration often depends on workload characteristics, and also
on the detailed hardware behaviour. In addition, the precise effect
of such configurations are often poorly documented and, if anyone,
only experts know how to fine-tune such parameters to fulfill both
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performance and energy demand requirements [9, 10, 12]. Tomake
matters more complicated, the detailed effects often depend on
workload characteristics (such as CPU/memory/IO-boundedness),
and hardware details (e.g., memory performance).

This paper discusses an extensive approach to system-level self-
reconfiguration for energy-efficient workload execution. This ap-
proach applies machine learning in various ways to automate fine-
tuning systemparameters. In particular, we outline how approaches
based on machine learning can explore possible system configura-
tions, monitor their impact on power draw and performance, gen-
eralise the observed behaviour into a trained model, and exploit
these models for energy efficiency.

2 BACKGROUND AND RELATEDWORK
Tuning of systemparameters for various operational goals has been
an active field of research, particularly, since adaptive hardware
components are available [5]. The efficient use of hardware offer-
ings demands for software measures to utilise available hardware
features in the bestmanner for givenworkloads.The dynamic adap-
tation during run-time of hardware components (i.e., control and
power management controls) eventually requires software means
to successfully reach certain operation goals [1].

The trade-off between performance and energy-efficiency has
been intensively studied and explored [3, 8, 9] as the control over
system power management has been transferred from the hard-
ware level towards the operating system (i.e., software level). Our
approach further benefits by advances of the past decades, as addi-
tional parameterswithmore fine-grained direct (e.g., power caps [6])
or indirect (e.g., buffers of block devices) control are available and
provide active control ofmeasures that impact energy efficiency [2].

Applyingmachine learning to improve energy efficiency of com-
puting systems has been subject to research in the context of adapt-
ing data-centres [4] and cloud computing [7]. Our work, in com-
parison, applies machine learning techniques at a much lower and
more generic level of abstraction.

3 SYSTEM DESIGN
Our proposed system design comprises the following components
that are visualised in Figure 1.

A profiler monitors the current workload and characterises it.
Machine learning can help to identify the most important work-
load features, such as software and hardware performance coun-
ters, for observation. On most hardware, only a small number of

https://doi.org/10.1145/3447555.3466566
https://doi.org/10.1145/3447555.3466566
https://doi.org/10.1145/3447555.3466566


e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy Herzog et al.

Profile

Sys. Info.

Profiler

Oracle

Supervisor

Bench. gen.

Dist. Service

Application

Operating
System

Hardware

Executes

Executes

Figure 1: Overview of our proposed system-level reconfigu-
ration system to optimise energy efficiency.

hardware performance counters can be activated simultaneously.
It is therefore crucial to identify those that provide the most use-
ful information. In addition, operating systems like Linux support
software event counters that provide insight on system-level ac-
tivity, but for example, no information on the workload’s memory
boundedness. Furthermore, extensive profiling causes overheads
that counteract our system’s goal of executing programs efficiently.

A system-information database aggregates all information on
the available parameters and their influence on power draw and
performance. In practice, this relation is very complex. One way
to implement such a “dataset” is to train a deep neural network
to model the relation of workload characteristics, configuration
options, interdependencies between parameters, and the resulting
power/performance characteristics. In the literature, this technique
has shown huge success in modelling complex relations [11]. How-
ever, deep neural networks require large datasets and tremendous
resources for training. In consequence, other learning techniques
(such as simple linear models) may be more efficient, if they need
less effort for training.

An configuration oracle combines the current workload profile
with the system information database and thus identifies the best
system configuration. Since the configuration space (that is, the
combination of all possible values of all configuration parameters)
is huge and practically impossible to explore, the goal of the oracle
is not the identification of the single most efficient system config-
uration. Instead, it is supposed to consistently identify configura-
tions that are more efficient than the default configuration.

A supervisor can monitor the oracle, and decide whether to ex-
plore further system configurations, or to exploit the gathered knowl-
edge. Reinforcement learning appears to be a prime candidate for
this task. Besides model refinement at run-time, updates to the
model can be mandatory if the system hardware changes (e.g., a
disk replacement) or every time a software update is applied. To
detect whether the oracle works as intended, the supervisor needs
access to energy measurement devices during operation. It can ei-
ther use interfaces provided by the CPU (such as Intel RAPL), or
wall-power measurements, or both. The former only monitor the
processor but omit peripheral devices, and the latter capture the
entire system but need dedicated and costly hardware.

A benchmark generator can generate useful workloadswithwhich
the system information database can initially be trained. Train-
ing the system information database makes application execution
with non-optimal configurations practically unavoidable. This ex-
ploration approach creates a break-even point—wasting too much
time and energy for initial training has to eventually pay off with
improved energy efficiency. To this end, a special-purpose bench-
mark generator can help making the model training more efficient,
since fewer programs need to be executed for initial system infor-
mation gathering.

An information distribution service can share system informa-
tion with other computing nodes. This is helpful to initialise the
system information data set, and also to refine the information
during operation. For example, data centers often have many com-
puting nodes with similar hardware and software configuration.
Therefore, a single node can initialise its system information, and
further nodes can copy it.

4 OUTLOOK AND CONCLUSION
This paper has presented a extensive approach to apply machine
learning at system level for automated reconfiguration to improve
energy efficiency.The presented approach is flexible, as it supports
numerous implementation variants and extension points.The over-
all goal is to balance the costs of the internal training and the
whole-system benefit of improved energy efficiency.
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