Poster: Towards Automated System-Level Energy-Efficiency Optimisation using Machine Learning

Benedict Herzog
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Stefan Reif
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Fabian Hügel
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Timo Hönig
Ruhr-Universität
Bochum

Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität
Erlangen-Nürnberg

ABSTRACT

Modern computing systems need to execute applications in an energy-efficient manner. To this end, operating systems, middleware, and run-time systems offer plenty of parameters that support fine-tuning their behaviour. However, their individual and combined impact on performance and power draw is so complex that this optimisation potential is often ignored in practice. This paper therefore discusses a cross-layer system design that uses machine learning internally to enable fine-tuning run-time systems to their current workload. Our approach includes all layers, from the hardware to the application, considering both performance and power draw.

CCS CONCEPTS
› Hardware → Power and energy; › Computing methodologies → Machine learning.

KEYWORDS

Energy Efficiency, System Configuration, Machine Learning

ACM Reference Format:

1 INTRODUCTION

Most modern computers are limited by their power supply or by thermal constraints. To support balancing the power draw and system performance, many system-level components offer parameters that allow fine-tuning their behaviour. However, the optimal configuration often depends on workload characteristics, and also on the detailed hardware behaviour. In addition, the precise effect of such configurations is often poorly documented and, if anyone, only experts know how to fine-tune such parameters to fulfill both performance and energy demand requirements [9, 10, 12]. To make matters more complicated, the detailed effects often depend on workload characteristics (such as CPU/memory/IO-boundness), and hardware details (e.g., memory performance).

This paper discusses an extensive approach to system-level self-reconfiguration for energy-efficient workload execution. This approach applies machine learning in various ways to automate fine-tuning system parameters. In particular, we outline how approaches based on machine learning can explore possible system configurations, monitor their impact on power draw and performance, generalise the observed behaviour into a trained model, and exploit these models for energy efficiency.

2 BACKGROUND AND RELATED WORK

Tuning of system parameters for various operational goals has been an active field of research, particularly, since adaptive hardware components are available [5]. The efficient use of hardware offerings demands for software measures to utilise available hardware features in the best manner for given workloads. The dynamic adaptation during run-time of hardware components (i.e., control and power management controls) eventually requires software means to successfully reach certain operation goals [1].

The trade-off between performance and energy-efficiency has been intensively studied and explored [3, 8, 9] as the control over system power management has been transferred from the hardware level towards the operating system (i.e., software level). Our approach further benefits by advances of the past decades, as additional parameters with more fine-grained direct (e.g., power caps [6]) or indirect (e.g., buffers of block devices) control are available and provide active control of measures that impact energy efficiency [2].

Applying machine learning to improve energy efficiency of computing systems has been subject to research in the context of adapting data-centres [4] and cloud computing [7]. Our work, in comparison, applies machine learning techniques at a much lower and more generic level of abstraction.

3 SYSTEM DESIGN

Our proposed system design comprises the following components that are visualised in Figure 1.

A profiler monitors the current workload and characterises it. Machine learning can help to identify the most important workload features, such as software and hardware performance counters, for observation. On most hardware, only a small number of...
A benchmark generator can generate useful workloads with which the system information database can initially be trained. Training the system information database makes application execution with non-optimal configurations practically unavoidable. This exploration approach creates a break-even point—wasting too much time and energy for initial training has to eventually pay off with improved energy efficiency. To this end, a special-purpose benchmark generator can help making the model training more efficient, since fewer programs need to be executed for initial system information gathering.

An information distribution service can share system information with other computing nodes. This is helpful to initialise the system information data set, and also to refine the information during operation. For example, data centers often have many computing nodes with similar hardware and software configuration. Therefore, a single node can initialise its system information, and further nodes can copy it.

4 OUTLOOK AND CONCLUSION

This paper has presented a extensive approach to apply machine learning at system level for automated reconfiguration to improve energy efficiency. The presented approach is flexible, as it supports numerous implementation variants and extension points. The overall goal is to balance the costs of the internal training and the whole-system benefit of improved energy efficiency.

ACKNOWLEDGMENTS

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 146371743 – TRR 89 "Invasive Computing", and under grant no. SCHR 603/15-2 ("eLARN") and 603/10-2 ("COKE2") and from the Bundesministerium für Bildung und Forschung (BMBF, Federal Ministry of Education and Research) in Germany for the project AI-NET-ANTILLAS 16KIS1315.

REFERENCES

Figure 1: Overview of our proposed system-level reconfiguration system to optimise energy efficiency.