
Automated Selection of Energy-efficient
Operating System Configurations

Benedict Herzog
Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU)
benedict.herzog@cs.fau.de

Fabian Hügel
Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU)
fabian.huegel@fau.de

Stefan Reif
Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU)
reif@cs.fau.de

Timo Hönig
Ruhr-Universität
Bochum (RUB)

timo.hoenig@rub.de

Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU)
wosch@cs.fau.de

ABSTRACT
Edge computing systems need to use their available resources ef-
ficiently. Operating systems and run-time systems offer numer-
ous configuration parameters to fine-tune their behaviour, which
are adjustable to balance the execution time and energy demand
of applications. However, the number of parameters produces a
vast space of possible configurations and the exact consequences
on non-functional properties are often poorly documented. Thus,
identifying efficient configurations proves challenging.

This paper presents PolaR, an approach for the automated de-
termination of energy-efficient configurations, as well as an im-
plementation for Linux. PolaR combines application profiles and
system-level information to select efficient configurations dynami-
cally and does not require application changes. Configurations are
predicted by an oracle either based on linear models or neural net-
works. Our evaluation shows that PolaR improves the mean en-
ergy efficiency by 11.5 % for typical applications.

ACM Reference Format:
Benedict Herzog, Fabian Hügel, Stefan Reif, Timo Hönig, and Wolfgang
Schröder-Preikschat. 2021. Automated Selection of Energy-efficient Oper-
ating System Configurations. In The Twelfth ACM International Conference
on Future Energy Systems (e-Energy ’21), June 28-July 2, 2021, Virtual Event,
Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3447555.
3465327

1 INTRODUCTION
Edge computing sytems operate under resource constraints and
therefore require all components to operate as efficient as possi-
ble [34, 36]. To this end, modern operating system offer a plethora
of settings, such as valid operating frequency and buffer sizes, that
need to be fine-tuned for achieving individual operational goals
(i.e., performance improvements, low power draw). However, there

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8333-2/21/06…$15.00
https://doi.org/10.1145/3447555.3465327

2.0 2.5 3.0 3.5 4.0
Maximum CPU Frequency [GHz]

40
45
50
55
60
65
70

Ex
ec

ut
io

n
Ti

m
e

[s
]
1400
1500
1600
1700
1800
1900
2000
2100

En
er

gy
 D

em
an

d
[J

]

Sweet Spot

Linux Default

Execution Time
Energy Demand
Efficiency (ED²P)

Figure 1: Execution time, energy demand, and energy effi-
ciency (𝐸𝐷2𝑃) for compiling Linux on an Ubuntu system
with different CPU frequency maxima.

is no universally optimal configuration—instead, the run-time ef-
fects of configurations often depend on application-specific aspects.

In this paper, we concentrate on an extensive exploration of sys-
tem parameters of an operating system (i.e., Linux) and analyse
their individual impact on the energy efficiency of different ap-
plications. Linux provides a set of “reasonably” predefined system
configurations.Thus, Linux operates “well enough” on a large vari-
ety of different platforms, but rarely excels. Excellent run-time be-
haviour is only achieved in hand-tuned usage scenarios (e.g., high-
performance computing). As hand-tuning operating systemparam-
eters is a labour-intensive (and by its complexity often infeasible)
task [20] we further present PolaR, an approach using an oracle
that tunes operating system parameters to automatically improve
the energy efficiency for arbitrary applications. PolaR achieves an
energy efficiency improvement of 11.5 %without changes to appli-
cations.

This paper is structured as follows. First, we present a motivat-
ing example in Section 2. Section 3 describes the PolaR approach
for energy efficiency savings. The implementations are presented
in Section 4. Section 5 gives an evaluation of our implementations
and Section 6 discusses possible further directions. Related work is
discussed in Section 7 before we conclude the paper in Section 8.

https://doi.org/10.1145/3447555.3465327
https://doi.org/10.1145/3447555.3465327
https://doi.org/10.1145/3447555.3465327

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Benedict Herzog, Fabian Hügel, Stefan Reif, Timo Hönig, and Wolfgang Schröder-Preikschat

2 MOTIVATING EXAMPLE
Operating systems (OSs) like Linux offer a broad set of configura-
tion parameters1 through several interfaces (e.g., the sysfs file sys-
tem). In contrast to special-purpose operating systems, the default
behaviour is optimised to work sufficiently well in the majority of
environments and use cases. However, a well-working configura-
tion seldom constitutes the optimal configuration for a given use
case, which leaves the headroom for optimisations by tuning the
currently active configuration [38].

Figure 1 illustrates such a use case, that is, compiling the Linux
kernel on an unmodified Ubuntu system—illustrating heavy CPU,
memory, and IO usage. This example shows the CPU frequency
maximum, which is themaximum (boost) CPU frequency the Linux
governor is allowed to set (4.0GHz for our system). As expected,
higher maximum frequencies yield shorter execution times. The
energy demand, however, shows a more complex behaviour. Nei-
ther the lowest nor the highest maximum CPU frequency provides
the lowest energy demand, but 2.5GHz. The most energy-efficient
configuration, considering both energy demand and execution time
by means of the energy-delay-squared product metric (ED2P), is at
3.5GHz. The ED2P is an efficiency metric, which includes the per-
formance and energy demand of an application [8, 27]. The perfor-
mance is squared to counterbalance the quadratic influence of the
voltage on the energy demand.

In summary, traditional race-to-sleep (fastest execution, but high
power draw) and crawl-to-sleep (lowest power draw, but slow) se-
mantics [25, 26, 30] are not sufficient to choose the most energy-
efficient configuration option, but a more extensive approach that
considers workload characteristics is required. Furthermore, con-
figuration parameters influence each other. For example, a CPU
with deployed power cap may reduce its execution speed while ex-
ecuting the I/O scheduler, which influences the energy efficiency
of the I/O component. A system, which reasons about the most
energy-efficient configuration, thus needs to take into account all
application’s characteristics and all relevant components. The fol-
lowing section describes our PolaR2 approach for such a system.

3 APPROACH
Our PolaR approach, visualised in Figure 2, augments operating
systems with energy awareness. PolaR’s components are located
in the light-blue frame and comprise the following: First, a system
information data set combines information about the influence of
various application properties and system parameters on the en-
ergy efficiency. Second, a profiler gathers information about run-
ning applications and generates application profiles. Third, an ora-
cle combines the information from the system data set and the ap-
plication profile to select the most energy-efficient configuration
set for a given application at run-time.

Our approach faces the inherent challenge of system complex-
ity. All components have to account for interactions of a multitude
of configuration options.The parameters span amulti-dimensional

1This paper uses the following terminology: A “parameter” is an adjustable switch.
Each parameter offers several “configuration options” (i.e., its state space). A (system)
“configuration” selects a configuration option for each parameter.
2The name “PolaR” refers to the observation that extreme configuration options are
rarely efficient. Instead, the system has to find the optimal configuration in-between,
considering both performance and power draw.

Polar

Profile

Sys. Info.

Profiler

Oracle

Application

Operating System

P
ar

a
m

et
er

Config Option

Hardware

configure

Executes

Executes

Figure 2: PolaR adds energy awareness to operating systems
while considering application and system characteristics.
PolaR’s components are located in the light-blue frame.

Configuration Option
0
2
4
6
8

10
N

o.
 o

f A
pp

lic
at

io
ns Max. CPU Freq.

Turbo Boost
HW Policy

Number CPU Cores
CPU Power Cap
I/O Scheduler

Read Ahead
Baseline

Figure 3: Histogram of configuration parameters optimality.
The y-axis denotes how often selecting a specific configura-
tion option resulted in themost energy-efficient application
execution.

search space, which is too large for explicit enumeration. Only for
tiny embedded platforms is a complete analysis considered pos-
sible, but even on smartphones, the complexity of hardware and
software makes such approaches infeasible [10]. In consequence,
appropriate measures for generalisation are required, which leads
to an oracle that selects good configurations (in the sense that they
are better than a baseline, including the overheads of the oracle it-
self), rather than the optimal one [20]. In the following, we present
information about several oracle implementations that demonstrate
the practicality of our approach. Furthermore, we present details
about the gathered system information and the implementation of
the profiler.

4 IMPLEMENTATION
This section describes the implementation of components intro-
duced in the previous section. The implementation of PolaR is
built around the Linux operating system. However, the presented
approach can also be implemented for other configurable runtimes
and operating systems, and is not limited to Linux.

e-Energy’21 WEEE e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

Name Source Description

realtime syscall Wall-clock time
usertime syscall Time spent in user mode
kerneltime syscall Time spent in kernel mode
inblocks syscall Block input operations
outblocks syscall Block output operations
instructions perf Retired instructions
cycles perf Total CPU cycles
llc_accesses perf Last-level cache accesses
llc_misses perf Last-level cache misses

Table 1: Profiling data constituting an application profile.
The perf values are collected for both, user- and kernel-
mode, separately.

4.1 System Information
The system information data consists of three different types of
information, that is, the currently applied configuration, the exe-
cuted application’s profile, and the corresponding execution time
and energy demand. We gathered this information by conducting
time and energymeasurements for a rich set of applications (cf. Sec-
tion 4.2) and different configurations. This data allows the oracle
to reason about the effect of a configuration change on the energy
efficiency for each application individually.

Linux provides several interfaces for configuration changes dur-
ing run-time. We utilise the sysfs interface, which is the most
general and important configuration interface. The sysfs inter-
face provides a broad range of low-level configuration parameters
(e.g., enable/disable Turbo Boost or apply a RAPL power cap). Fig-
ure 3 shows all considered configuration parameters, which cover
the CPU, memory, and block I/O subsystem. Hence, our approach
is not limited to a single subsystem but can utilise the headroom of
different subsystems. In total, we consider seven parameters with
22 different configuration options. As different applications make
use of different subsystems, the respective energy efficiency sav-
ings lie in one subsystem or the other. In order to identify relevant
subsystems, the application profiles must represent the behaviour
of an application.

4.2 Application Profiles
For application profiles, we utilise software performance counters
obtained from the Linux kernel (i.e., getrusage() for I/O intensity
and clock_gettime() for time information) and hardware per-
formance counters (perf_event_open()) which, in summary, de-
scribe an application’s behaviour. Table 1 gives an overview of the
utilised performance counters and their source. All perf-related
values are collected separately for user- and kernel-mode.Thereby,
the time-related information allows a differentiation of applica-
tions with high system activity compared to applications without
much interaction with the operating system. The block input and
output operations enable reasoning about the usage intensity of
the block I/O subsystem. In addition, instructions, cycles, and last-
level cache statistics provide information about code- and data-
locality on the one side and CPU- and memory-intensity on the
other side. This leads to a total of 13 counters constituting an ap-
plication profile.

4.3 Oracle
The oracle’s task is to combine the system information and applica-
tion profiles to predict an energy-efficient configuration on a per-
application basis. We implemented two oracle types: (a) based on
linear models and (b) based on a neural network.

Linear Model. The input for the model is an application profile.
The output of the oracle predicts the most-efficient configuration
option. The main limitation of linear models in our case is their
inability to work with categorical data. Hence, we trained linear
models for each parameter with numeric value space (e.g., the max-
imum CPU frequency) and round to the next available configura-
tion option. In total, we implemented and trained linear models for
three configuration parameters, that is, the number of CPU cores,
the maximum CPU frequency, and the CPU power cap. For all lin-
ear models, we utilise the scikit-learn python framework [35].

Neural Network. Neural networks are capable of modelling com-
plex correlations for big search spaces [14, 21, 37]. This capability
makes it a suitable implementation candidate for an oracle. For the
implementation of our neural network, we rely on the TensorFlow
framework [39] and utilise feed-forward neural networks.

The application profile is directly used as input for the neural
network as it solely consists of numerical values. The output layer
of the neural network consists of one output value per configura-
tion option. As our configuration set consists of 22 configuration
options, the output layer consists of 22 outputs. The output layer
comprises a softmax layer, that is, each output value lies between
0 and 1 and represents the probability that the corresponding con-
figuration option is the most energy efficient option. The output
value with the highest probability constitutes the predicted config-
uration option.

In order to determine the network’s architecture, we conducted
a random search on the hyperparameters as proposed by Bergstra
et al. [5]. Thereby, we varied the number of layers (3-4), neurons
per layer (32-256), activation function (relu, sigmoid), optimiser
(adam, sgd, rmsprop), and dropout rate (0.1-0.5). Furthermore, we
used different numbers of epochs (100-1000). In total, 100 network
candidates were trained using the training set and the validation
set was used to decide the final network architecture. The finally
selected neural network consists of three feed-forward layers with
160 (relu), 256 (sigmoid), and 224 (relu) neurons, respectively.
During training, a dropout value of 0.36 was used. In total, 419
epochs of training using the adam optimiser were conducted.

5 EVALUATION
The evaluation of PolaR consists of three parts: (a) we analyse the
potential energy efficiency improvements, (b) we evaluate the pre-
diction quality of our oracles, and (c) we analyse the oracle over-
heads.

5.1 Evaluation Setup
Our evaluation setup consists of three identical desktop systems
hosting Intel Core i5-8400 CPUs with a base frequency of 2.8GHz
and a maximum frequency of 4.0GHz. The operating system is
Ubuntu 18.04 LTS (Linux v4.15). We conducted our energy demand
measurementswithMicrochipMCP39F511N powermonitor boards.

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Benedict Herzog, Fabian Hügel, Stefan Reif, Timo Hönig, and Wolfgang Schröder-Preikschat

Training Set Validation Set Evaluation Set

NAS Parallel Benchmarks 21 NAS Parallel Benchmarks 3 Git Compilation 2
Flexible I/O Tester 7 Compress, Encrypt, SHA256 2 Mandelbrot Image, FFmpeg 3
Linux Kernel Compilation 2 Linux Kernel Compilation 1 SQLite Insert 1
Small File Handling 1 Prime Number Generator 2 xz Compression 2

Stockfish Chess Engine 2 Gaussian Mixture Model 2
Total Applications: 31 Total Applications: 10 Total Applications: 10

Table 2: Overview of the application sets used for training, validation, and evaluation.The application selection is designed to
cover both: subsystem-specific and general applications.

The MCP39F511N measures whole-system power as drawn from
the wall socket, with a sampling rate of 400Hz and a measuring
error below 0.1 % [29]. We use the energy-delay-squared product
(ED2P)metric, which combines execution time and energy demand,
to analyse the energy efficiency [8]. The ED2P is especially suited
to analyse systems with applied DVFS [8, 27].

We execute one (discarded) warm-up round and five iterations
for each application and use the respective mean of these itera-
tions for the energy demands and application profiles. Between it-
erations, we flush caches and I/O buffers to ensure identical initial
conditions. Table 2 summarises the applications used for training,
validation, and evaluation.

5.2 Potential Energy Efficiency Improvements
Prerequisite to evaluate our approach is to analyse the potential
energy efficiency improvements. For our application sets an ideal
oracle, always selecting the optimal configuration option, can im-
prove the energy efficiency by 13.3 % for the evaluation set (13.5 %
validation set, 22.9 % training set). The most efficient option varies
per application. The histogram in Figure 3 illustrates that each pa-
rameter is useful for some applications, and no single configura-
tion is consistently optimal across workloads. Each bar denotes
one configuration option and bars sharing the same color belong
to the same parameter. Configuration options, which were never
optimal, are omitted in the histogram. Thus, 13 out of 22 configu-
ration options are at least once optimal.

However, changing the configuration not only has the poten-
tial to improve energy efficiency. In the evaluation set, 47 % of the
tested configuration options degrade the energy efficiency. Fur-
thermore, the geometricmean of these potential degradations (39 %)
is much higher than potential improvements (9 %). This is in line
with the expectation that a general-purpose operating system like
Ubuntu is reasonably well optimised for generic workloads. Con-
sequently, oracles must choose their predictions very carefully.

5.3 Oracle Predictions
Figure 4 compares the achieved energy efficiency for all three lin-
ear models and the neural network for the evaluation set. Notably,
all models have a positive impact on the energy efficiency despite
the potential for degradations analysed in the previous section.
Hence, all implementations improve the energy efficiency of our
system under test. However, the neural network achieves the high-
est improvements, which is why it is analysed in more depth in the
following section.

maxfreq cores powercap neural network
Oracle Implementation

0

5

10

15

ED
²P

 Im
pr

ov
em

en
t

[%
]

3.4%

7.9% 8.6%
11.5%

Figure 4: ED2P savings for the evaluation set per oracle im-
plementation. Although all implementations have a posi-
tive impact, the neural network yields the greatest savings.

5.4 Neural Network Predictions
Figure 5 shows the energy efficiency results for all applications ex-
ecuted with the configuration as predicted by the neural network,
partitioned into training, validation, and evaluation set. The blue
(training), yellow (validation), and green (evaluation) bars show
improvements and the red bars a degradation in energy efficiency.
For each application, the maximum potential energy efficiency im-
provement is shown as a light-grey bar (i.e., the potential improve-
ment when selecting the optimal configuration option).

For the training set, the oracle rarely predicts a configuration
with degraded energy efficiency. In fact, only for three out of 31
applications, the energy efficiency is marginally reduced compared
to the baseline. For the rest of the applications, the oracle predicts
a configuration with improved energy efficiency. For both, the val-
idation and evaluation set, the energy efficiency is improved in all
cases.The geometric mean of the energy efficiency for the training
set is improved by 8.9 %, for the validation set by 11.7 %, and for the
evaluation set by 11.5 % compared to the baseline. Especially for
the validation and evaluation set, this exploits a significant amount
of themaximumpossible improvement of 13.5 % and 13.3 %, respec-
tively. These results show that considerable improvements in the
energy efficiency are buried in the configuration of our operating
systems, which can be exploited automatically without changes to
applications.

5.5 Oracle Evaluation
Both oracle types not only differ in prediction performance, but
also in execution time and energy demand for training and pre-
diction itself. This section analyses these costs for both types. Fur-
thermore, the section gives an estimation of the break-even point,

e-Energy’21 WEEE e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

ftb fi6 frz sp
1

lu
1

m
g1 is1 ep
1 is3 cg
3

ep
3

ep
6

bt
6 ft1 cg
1 fi1 bt
3 ft3 fd
1

sp
3 ft6 fd
6

kc
6 fje kc
1

cg
6

m
g3 lu
6

m
g6 sp
6

cr
e

Application

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

is
ed

 E
D

²P

Training

ED²P Degradation
ED²P Improvement
Potential Improvement

sf
1

sf
6

bt
1

ps
1

sh
a

ce
n

ps
6 is6 lu
3

k1
2

Application

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Validation

ED²P Degrad.
ED²P Improv.
Pot. Improv.

xz
6

m
b1 vp
9

xz
1

gm
1

m
b6

gm
6

gc
6

gc
1 sq
l

Application

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Evaluation

ED²P Degrad.
ED²P Improv.
Pot. Improv.

Oracle based on Neural Network

Figure 5: Energy efficiency in terms of ED2P normalised to the baseline for all applications for the configuration chosen by
our oracle based on the neural network. The left side shows the training set, the graph in the middle the validation set, and
the right side shows the evaluation set. Additionally, the potential energy efficiency improvements are illustrated.

when predictions save more energy than spent on training and
prediction overheads. All measurements are executed on the same
setup as described in Section 5.1.

Training Overhead. Training the neural network needs 3.4 s and
110 J (52 J for the CPU measured with RAPL). The hyperparame-
ter optimisation (i.e., testing 100 neural networks) needs a total
of 96.6 s and 6229.8 J. However, the hyperparameter optimisation
only needs to be conducted once and the result can be reused for
later trainings.

The training time for one linear model is 0.26 s and the energy
demand 8.4 J (RAPL: 4.24 J). As expected, this is much lower than
training the neural network. The training of the other linear mod-
els shows a similar execution time and energy demand behaviour.

Prediction Overhead. Although the overhead for hyperparame-
ter optimisation and training a neural network is higher compared
to a linear model, neural networks can be efficiently executed. The
execution time for the neural network is too short for measure-
mentswith themeasurement device described in Section 5.1, which
is the reason why we use the RAPL interface to determine the en-
ergy demand for executing the neural network once. One prediction—
executed on the CPU—needs 36ms and 0.56 J.

The execution time for the linear model is below 1ms and we
can neither use the energy device nor RAPL to reliably determine
the energy demand, because the execution time is too short.

Break-even Analysis. The results for the break-even analysis de-
pend significantly on the application and its potential energy effi-
ciency improving. For a fair analysis, we use the single-threaded
kernel compilation (kc1) as a common real-world application. As
depicted in Figure 5, the kc1 application shows average behaviour
in terms of potential and achieved energy-efficiency improvements.
Thus, it reflects neither a best-case nor a worst-case scenario but
is an example of a typical application.

We assume that costs for training and hyperparameter optimi-
sation occur once and prediction costs occur once per execution
of the application. This reflects that the oracle is trained once and
predicts a configuration every time executing an application. We
use the energy-demand measurements from the measurement de-
vice where possible and RAPL measurements plus a static system

power otherwise. For predictions of the linear model we linearly
scale the energy demand of the neural network to 1ms, which is
an upper bound of the execution time for the linear model.

With these assumptions, the kc1 application must be executed
19 times until the savings of the improved configuration exceed
the hyperparameter optimisation and training costs using the neu-
ral network. If the hyperparameter optimisation is excluded and
only the training of the neural network is considered, the oracle
saves more energy with the first execution of the application. The
linear model likewise saves more energy than spent with the first
execution of the application. However, for the linear model there
exist applications where no or less energy efficiency savings are
possible due to the restricted configuration space.

These results show that the configuration savings compensate
the training costs in short amounts of time—in particular in edge
scenarios where tasks are executed repeatedly. The benefit of im-
proved energy efficiency quickly outweighs the costs of PolaR re-
lated to the training and application of the model. Furthermore, we
expect that training and execution costs for neural networks will
reduce in the future due to hardware acceleration in modern CPUs
and dedicated hardware like Tensor Processing Units [23]. Hence,
our approach not only achieves energy efficiency savings without
application changes, but does so in a sustainable way.

6 FUTUREWORK
Although our approach and implementation show good results,
PolaR offers room for future improvement.

Configuration Interdependencies. Our current implementations
consider all parameters, but eventually select only one parameter
to optimise. It is possible that a combined change of several pa-
rameters yield better improvements. However, an early analysis
showed no significant potential efficiency improvements, but si-
multaneously a significantly more complex prediction problem.

Hardware Dependency. Our approach and implementation is not
limited to a specific hardware platform. The trained models, how-
ever, are specific to the hardware platforms contained in the train-
ing set. To support a new hardware platform corresponding train-
ing data must be included and the models must be (re-)trained.

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Benedict Herzog, Fabian Hügel, Stefan Reif, Timo Hönig, and Wolfgang Schröder-Preikschat

On-line Learning. Our approach uses pre-trained models that
have to be created before running applications. Future work can
learn or adapt the model on-line which renders the dedicated train-
ing phase unnecessary. Training the model on-line further enables
the system to automatically adapt to software updates and hard-
ware upgrades.

Application Concurrency. Our current implementations act on
the assumption that only one application is running simultane-
ously (i.e., themodels use one application profile to predict configu-
ration changes).This is sufficient for scenarios with only onemajor
application running simultaneously, and otherworkload (e.g., back-
ground daemons) are negligible. For future work we plan to extend
our approach for multiple concurrently running applications.

7 RELATEDWORK
Tuning of systemparameters for various operational goals has been
an active field of research, particularly, since adaptive hardware
components [12] are available [9]. The efficient use of hardware
offerings strictly depends on software measures at operating sys-
tem level to utilise available hardware features in the best manner
for given applications. The dynamic adaptation during run-time of
hardware components eventually require software means to suc-
cessfully reach certain operation goals [1, 20, 32].

The trade-off between performance and energy-efficiency has
been intensively studied and explored [4, 7, 17, 18, 25, 26, 40] as the
control over operating voltage and power management has been
broadly transferred from the hardware and firmware level towards
the operating system.With this increased responsibility at OS level,
Benini et al. [3] proposed a feedback-based control scheme for
system-level dynamic power management.Theworkmonitors sys-
tem activities to adapt the configuration of sleep delays accord-
ingly. Our work, in contrast, considers bank shots (i.e., also con-
figuration parameters unrelated to power management) to control
the system in a desirable manner (i.e., improve energy efficiency).
Our approach further benefits by advances of the past decades, as
additional parameterswithmore fine-grained control (e.g., DVFS [25,
26], RAPL [11]) are available and provide active control of mea-
sures (e.g., buffers of block device) that indirectly impact energy
efficiency [2].

Operating system designers acknowledged the importance of
energy as a resource just as important as time [31, 42]. With the
consideration of energy to be just another resource that is avail-
able to the operating system, operating system internals (i.e., lock-
ing mechanisms [15]) were adapted to factor in this new paradigm
to implement energy-aware operating systems [6, 33]. To take ad-
vantage of available parameters, several approaches toward self-
tuning of system parameters have been proposed [16, 22]. In con-
trast to previous approaches, our work is first to explore large so-
lution spaces.

Applyingmachine learning to improve energy efficiency of com-
puting systems has been subject to research in the context of adapt-
ing data-centres [6], cloud computing [13], and big data applica-
tions [19]. Our work successfully applies machine learning tech-
niques at a different, much lower level of abstraction. Hence, our

approach is orthogonal to this related research. As energy effi-
ciency is subject to the individual applications, our proposed so-
lution is designed to support legacy software and does not require
existing program code to be altered. This is necessary with related
approaches [24, 41].

Machine learning techniques have also been applied at hard-
ware level to guide microarchitectural optimisations [28]. Hard-
ware resources must fulfill a broad range of technical requirements
(e.g., DRAM timing requirements) and determining a good config-
uration involves much engineering power at design time. Further-
more, the hardware can adapt to the currently executed software
at runtime to further optimise its efficiency. For both approaches
machine learning can guide optimisations. However, the optimised
parameters are not (all) exposed to the operating system and hence
constitute an orthogonal set of optimisable parameters.

8 CONCLUSION
This paper has presented the PolaR approach for automated energy-
aware operating system reconfiguration for edge computing. It se-
lects energy-efficient configurations based on application profiles
and system-level information. Internally, it utilises either a neural
network or linear models as oracles to manage the complexity of
vast configuration spaces. The oracle implementations allow en-
ergy efficiency improvements of up to 11.5 %. PolaR accomplishes
these improvementswithout changes to applications and disadvan-
tages for users. Thus, PolaR helps to exploit the available energy
efficiency improvements buried in the configuration of operating
systems in general and Linux in particular.

AVAILABILITY
The source code for Polar is available at https://gitlab.cs.fau.de/i4/
pub/polar under an open-source license.

ACKNOWLEDGEMENT
This work was partially funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – project num-
ber 146371743 – TRR 89 “Invasive Computing”, and under grant
no. SCHR 603/15-2 (“eLARN”) and 603/10-2 (“COKE2”) and from
the Bundesministerium für Bildung und Forschung (BMBF, Federal
Ministry of Education and Research) in Germany for the project
AI-NET-ANTILLAS 16KIS1315.

https://gitlab.cs.fau.de/i4/pub/polar
https://gitlab.cs.fau.de/i4/pub/polar

e-Energy’21 WEEE e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

REFERENCES
[1] Luiz André Barroso and Urs Hölzle. 2007. The case for energy-proportional

computing. Computer 40, 12 (Dec. 2007).
[2] Frank Bellosa. 2000. The Benefits of Event-Driven Energy Accounting in Power-

Sensitive Systems. In Proceedings of the 2000 ACM SIGOPS European Workshop
„Beyond the PC: New Challenges for the Operating System” (EW ’00). ACM, 37–42.

[3] Luca Benini, Alessandro Bogliolo, Stefano Cavallucci, and Bruno Riccó. 1998.
Monitoring system activity for OS-directed dynamic power management. In Pro-
ceedings of the 1998 International Symposium on Low Power Electronics and Design
(ISLPED ’98). ACM, 185–190.

[4] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. 2000. A survey of
design techniques for system-level dynamic power management. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 8, 3 (June 2000), 299–316.

[5] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, 1 (2012), 281–305.

[6] Josep Ll. Berral, Íñigo Goiri, Ramón Nou, Ferran Julià, Jordi Guitart, Ricard
Gavaldà, and Jordi Torres. 2010. Towards Energy-Aware Scheduling in Data Cen-
ters Using Machine Learning. In Proceedings of the 1st International Conference
on Energy-Efficient Computing and Networking (e-Energy ’10). ACM, 215–224.

[7] David Brooks and Margaret Martonosi. 2001. Dynamic thermal management
for high-performance microprocessors. In Proceedings of the 2001 Symposium on
High-Performance Computer Architecture (HPCA ’01). IEEE, 171–182.

[8] David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson, Prabhakar N.
Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor Zyuban, Manish
Gupta, and Peter W. Cook. 2000. Power-Aware Microarchitecture: Design and
Modeling Challenges for next-Generation Microprocessors. IEEE Micro 20, 6
(2000), 26–44.

[9] Thomas D Burd, Trevor A Pering, Anthony J Stratakos, and RobertW Brodersen.
2000. A dynamic voltage scaled microprocessor system. IEEE Journal of Solid-
State Circuits 35, 11 (November 2000), 1571–1580.

[10] Markus Buschhoff, Daniel Friesel, and Olaf Spinczyk. 2018. Energy Models in
the Loop. Procedia Computer Science 130, 1063–1068.

[11] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Christian
Le. 2010. RAPL: memory power estimation and capping. In Proceedings of the
2010 International Symposium on Low-Power Electronics and Design (ISLPED ’10).
IEEE, 189–194.

[12] Michael J DeLuca and Mario A Rivas. 1992. Computing system with selective
operating voltage and bus speed. U.S. Patent 5,086,501.

[13] M. Demirci. 2015. A Survey of Machine Learning Applications for Energy-
Efficient Resource Management in Cloud Computing Environments. In Proceed-
ings of the 2015 International Conference on Machine Learning and Applications
(ICMLA ’15). 1185–1190.

[14] Richard Evans and Jim Gao. Jul 20, 2016. DeepMind AI reduces
Google data centre cooling bill by 40%. Deepmind Blog (Jul 20, 2016).
deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/,
Acc. 2020-01-15.

[15] Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios Trigonakis. 2016.
Unlocking energy. In Proceedings of the 2016 Annual Technical Conference (ATC
’16). USENIX, 393–406.

[16] Krisztián Flautner and Trevor Mudge. 2002. Vertigo: automatic performance-
setting for Linux. ACM SIGOPS Operating Systems Review 36, SI (2002), 105–116.

[17] Matthew Garrett. 2007. Powering down. Queue 5, 7 (Nov. 2007), 16–21.
[18] Dirk Grunwald, Charles B Morrey III, Philip Levis, Michael Neufeld, and Keith I

Farkas. 2000. Policies for dynamic clock scheduling. In Proceedings of the 2000
Symposium onOperating Systems Design and Implementation (OSDI ’00). USENIX,
1–14.

[19] Álvaro Brandón Hernández, María S Perez, Smrati Gupta, and Victor Muntés-
Mulero. 2018. Using machine learning to optimize parallelism in big data appli-
cations. Future Generation Computer Systems 86 (2018), 1076–1092.

[20] Benedict Herzog, Stefan Reif, Fabian Hügel, Timo Hönig, and Wolfgang
Schröder-Preikschat. 2021. Poster: Towards Automated System-Level Energy-
Efficiency Optimisation usingMachine Learning. In 12th ACM International Con-
ference on Future Energy Systems (e-Energy’21). 1–2.

[21] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara
Sainath, and Brian Kingsbury. 2012. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine 29, 6 (2012), 82–97.

[22] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin Rinard. 2011. Dynamic knobs for responsive power-aware
computing. ACM SIGPLAN Notices 46, 3 (2011), 199–212.

[23] Norman Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick

Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
goryThorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, RichardWal-
ter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-datacenter perfor-
mance analysis of a tensor processing unit. In 44th Annual International Sympo-
sium on Computer Architecture (ISCA’17). 1–12.

[24] Mahmut Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin, and Wu Ye.
2000. Influence of compiler optimizations on system power. In Proceedings of
the 2000 Design Automation Conference (DAC ’00). ACM, 304–307.

[25] Etienne Le Sueur and Gernot Heiser. 2010. Dynamic Voltage and Frequency Scal-
ing: The Laws of Diminishing Returns. In Proceedings of the 2010 International
Conference on Power Aware Computing and Systems (HotPower’10). USENIX As-
sociation, 1–8.

[26] Etienne Le Sueur and Gernot Heiser. 2011. Slow Down or Sleep, That is the
Question. In Proceedings of the USENIX Annual Technical Conference (ATC’11).
USENIX Association, 1–6.

[27] Alain Martin, Mika Nyström, and Paul Pénzes. 2002. ET2 : A Metric for Time and
Energy Efficiency of Computation. In Power Aware Computing, Robert Graybill
and Rami Melhem (Eds.). Springer US, 293–315.

[28] Jose F. Martinez and Engin Ipek. 2009. Dynamic Multicore Resource Manage-
ment: A Machine Learning Approach. IEEE Micro 29, 5 (2009), 8–17.

[29] Microchip. [n.d.]. Microchip MCP39F511 data sheet. URL:
https://microchip.com/wwwproducts/en/MCP39F511. Acc. 2020-01-12.

[30] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen, Ram Rajamony, and
Raj Rajkumar. 2002. Critical Power Slope: Understanding the Runtime Effects
of Frequency Scaling. In 16th International Conference on Supercomputing (ICS
2002). 35–44.

[31] Rolf Neugebauer and Derek McAuley. 2001. Energy is just another resource:
energy accounting and energy pricing in the Nemesis OS. In Proceedings of the
2001 Workshop on Hot Topics in Operating Systems (HotOS ’01). IEEE, 67–72.

[32] Padmanabhan Pillai and Kang G Shin. 2001. Real-time dynamic voltage scaling
for low-power embedded operating systems. In Proceedings of the 2001 Sympo-
sium on Operating Systems Principles (SOSP ’01). ACM, 89–102.

[33] Arjun Roy, StephenMRumble, Ryan Stutsman, Philip Levis, DavidMazières, and
Nickolai Zeldovich. 2011. Energymanagement inmobile deviceswith the Cinder
operating system. In Proceedings of the 2011 European Conference on Computer
Systems (EuroSys ’11). ACM, 139–152.

[34] Mahadev Satyanarayanan. 2017. The Emergence of Edge Computing. IEEE Com-
puter 50, 1 (Jan. 2017), 30–39.

[35] Scikit-learn. [n.d.]. Scikit-learn machine learning framework. https://scikit-
learn.org. Acc. 2020-01-12.

[36] Weisong Shi and Schahram Dustdar. 2016. The Promise of Edge Computing.
IEEE Computer 49, 5 (May 2016), 78–81.

[37] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the Game
of Go with Deep Neural Networks and Tree Search. Nature 529, 7587 (2016),
484–489. https://doi.org/10.1038/nature16961

[38] David Snowdon, Etienne Le Sueur, Stefan Petters, and Gernot Heiser. 2009.
Koala: A Platform for OS-level Power Management. In Proceedings of the 4th
European Conference on Computer Systems (EuroSys’09). ACM, 289–302.

[39] TensorFlow. [n.d.]. TensorFlow machine learning framework.
https://tensorflow.org. Acc. 2020-01-12.

[40] Andreas Weissel and Frank Bellosa. 2002. Process cruise control: event-driven
clock scaling for dynamic power management. In Proceedings of the 2002 Confer-
ence on Compilers, Architecture, and Synthesis for Embedded Systems (CASES ’02).
ACM, 238–246.

[41] Tomofumi Yuki and Sanjay Rajopadhye. 2013. Folklore confirmed: compiling for
speed = compiling for energy. In Proceedings of the 2013 Workshop on Languages
and Compilers for Parallel Computing. Springer, 169–184.

[42] Heng Zeng, Carla S Ellis, Alvin R Lebeck, and Amin Vahdat. 2002. ECOSystem:
managing energy as a first class operating system resource. In Proceedings of
the 2002 Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’02). ACM, 123–132.

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://www.microchip.com/wwwproducts/en/MCP39F511
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://doi.org/10.1038/nature16961
https://www.tensorflow.org/

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	4 Implementation
	4.1 System Information
	4.2 Application Profiles
	4.3 Oracle

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Potential Energy Efficiency Improvements
	5.3 Oracle Predictions
	5.4 Neural Network Predictions
	5.5 Oracle Evaluation

	6 Future Work
	7 Related Work
	8 Conclusion
	References

