
Poster: AI Waste Prevention: Time and Power Estimation
for Edge Tensor Processing Units

Stefan Reif
Friedrich-Alexander-Unversität

Erlangen-Nürnberg

Benedict Herzog
Friedrich-Alexander-Unversität

Erlangen-Nürnberg

Judith Hemp
Friedrich-Alexander-Unversität

Erlangen-Nürnberg

Wolfgang Schröder-Preikschat
Friedrich-Alexander-Unversität

Erlangen-Nürnberg

Timo Hönig
Ruhr-Universität

Bochum

ABSTRACT
Artificial Intelligence (AI) has changed our daily lives. The evolu-
tion from centralised cloud-hosted services towards embedded and
mobile devices has shifted the focus fromquality-related aspects to-
wards the resource demand of machine learning. Its pervasiveness
demands for “green” AI—both the development and the operation
of AI models still include significant resource investments in terms
of processing time and power demand. In order to prevent such AI
Waste, this paper presents Precious, an approach, as well as practi-
cal implementation, that estimates execution time and power draw
of neural networks (NNs) that execute on a commercially-available
off-the-shelf accelerator hardware (i.e., Google Coral Edge TPU).
The evaluation of our implementations shows that Precious accu-
rately estimates time and power demand.

CCS CONCEPTS
• Hardware → Power and energy; • Computer systems orga-
nization → Embedded systems.
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1 INTRODUCTION
Machine learning has historically been associated with high re-
source demand. Due to their tremendous success, machine-learning
applications have entered the domain of embedded systems, such
as cars and smartphones [3, 9]. To enable machine learning in
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embedded devices, applications have to adhere to their limited re-
sources [6, 8] in addition to providing a good quality of service (e.g.,
model prediction accuracy).The need for embeddedmachine learn-
ing has led to the development of special-purpose accelerator hard-
ware for neural networks, such as the Coral Edge TPU [2, 5].These
hardware accelerators satisfy the growing demand and interest for
machine-learning approaches [1, 4] and promise to execute the
corresponding machine-learning workloads more efficiently than
general-purpose hardware. For green AI [8], developers of deep
learning applications need information on the resource demand,
considering both hardware and software (i.e., the neural network).
This poster, in particular, determines how predictable the resource
demand of NN accelerator hardware is. To this end, we train var-
ious models that map statically analysable NN properties to the
measured resource demand.

2 DESIGN AND IMPLEMENTATION
Our approach, Precious [7], comprises four phases. First, the NN
generation phase creates random neural networks (NNs) that are
either fully connected (i.e., dense), or contain convolutional layers,
exclusively. Second, the NN execution phase executes all NNs on
the TPU (i.e., it runs inferences) while measuring power draw and
execution time. Third, the training phase creates models that map
NN properties (as determined by a static analysis) to their resource
demand (i.e., power draw and execution time). In the final applica-
tion phase, application developers can apply the trained models to
estimate the resource demand of their NNs.

In this poster, we extend Precious by a variety of models for
power and execution time estimations.We evaluate the complexity
of accurate resource estimation on embedded NN accelerators. Fur-
thermore, we put the accuracy into context by outlining remaining
limitations of resource predictability.

3 EVALUATION
Model Prediction Accuracy. We train three types of models: First,

dummy regressors (DR) only compute the mean (MEA) or median
(MED), ignoring all features. Second, linear models are trained using
linear (LR), huber (HR), and ransac (RR) regressors with linear (LR)
or ridge (R) as base regressors. Third, ensemble models are trained
using extra tree (ETR), random forest (RFR), decision tree (DTR), and
adaboost (ABR) regressors. Ensemble models are configurable by an
error metric, which can be the friedman mean squared error (FMSE),
the mean absolute error (MAE), or the mean squared error (MSE).
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b) Dense Networks (w/ off-chip memory demand)
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c) Convolutional Networks

Power Demand and Execution Time Prediction Quality

Figure 1: Linear and ensemble model evaluation of the pre-
diction quality for a) dense networks without and b) with
off-chip memory demand, and c) convolutional networks.
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Figure 2: Temperature and power demand increase for re-
peated execution of neural networks.

The prediction accuracy of all models is summarised in Figure 1.
We use themean absolute percentage error (MAPE) as error metric,
as it normalises the error to the measurement, and the individual
resource demand can vary (NN-to-NN) significantly.The graphic is
cut off at 15 % to maintain readability. For the power draw, the eval-
uation shows that most regressors achieve a similar performance—
including the dummy regressors. Regarding the execution time, the
ensemble models are generally most accurate, but for dense net-
works, linear models perform similar. However, some regressors
do not converge in our experiment (e.g., ABR). Considering that an
increase in regressor complexity results in a minor improvement
in prediction accuracy, we conclude that the resource demand of
TPUs is, in general, well-predictable.

Limitations to Predictability. The power draw of transistor-based
logic circuits depends on the temperature, which is influenced by
the ambient temperature and also self-induced heat. Both typically
vary over time for most embedded systems, and are not precisely
controllable. Consequently, the power draw of identical NNs varies
between executions. A model trained with only statically available
data cannot capture this variance. To obtain temperature traces, we
use a Bosch Sensortec BME280 temperature sensor, attached to the
casing of the TPU. Figure 2 shows the measured power and tem-
perature trace of the running TPU. The surface temperature starts
at ambient temperature (24.6 ◦C) and rises within 20 inferences
by 5.8 ◦C. Then, the temperatures stabilises at 30.4 ◦C. The power
draw shows the expected correlation with temperature, rises by
39.0mW, and stabilises at 1332.1mW,which is an increase of 2.9 %.

The execution time of the TPU depends on timings of the com-
munication with the host system via USB. To verify this depen-
dency between communication patterns and the execution time,
we monitor the USB traffic with tshark. The traffic capture show
that, between iterations, the host system communicates input and
output data with the TPU.This means that the effective neural net-
work execution time depends on the precise timings the USB bus,
which is affected by interferences of other attached devices.We did
not model the USB traffic in Precious because the communication
timing is not known statically, as it depends on cross-traffic, and
other embedded systems might use different buses and protocols.

4 CONCLUSION
This poster has presented an extended evaluation of Precious, a
system to estimate the resource demand of NNs on embedded ac-
celerator hardware, based on various regressors. Our evaluation
shows that the NN accelerator generally behaves well-predictable.
In many cases, estimations based on linear models are sufficiently
accurate, considering that the estimation error is similar to the vari-
ation caused by temperature fluctuations and USB traffic.
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