
This space is reserved for the EPiC Series header, do not use it

Worst-Case Analysis of Digital Control Loops

with Uncertain Input/Output Timing

Maximilian Gaukler and Peter Ulbrich

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
max.gaukler@fau.de, peter.ulbrich@fau.de

Abstract

Benchmark Proposal: The implementation of digital control systems in complex multi-
core or distributed real-time systems results in non-deterministic input/output timing.
Such timing deviations typically lead to degraded performance or even instability, which
in turn may jeopardize safety goals. We present the problem of proving worst-case guar-
antees for given input/output timing bounds as a benchmark for the verification of hybrid
dynamical systems.

1 Introduction

Digital control implements feedback control on a computing system. Its defining characteristic
is that reading sensor inputs and actuating the resulting control signal are performed at discrete
points in time. Therefore, a common design assumption is the simultaneous and strictly periodic
execution of these two steps. As automatic control is particularly sensitive to timing variations,
a real-time computing system is used in safety-critical applications to assure temporal properties
and thus a predictable quality of control.

However, while deterministic timing simplifies the design of the control system, its im-
plementation is becoming increasingly difficult from a real-time systems’ perspective. Recent
developments, such as distributed real-time systems, multicore platforms, and smart sensors,
come at the cost of increasing complexity and degrading predictability. Consequently, the syn-
chronous design approach to digital control becomes excessively expensive. A common solution
to this issue is to resort to input/output (IO) windows, that is timing bounds instead of de-
terministic time instants. In turn, we have to verify that the resulting timing variations do no
jeopardize the aspired safety and stability of the feedback control even in the worst case.

While stochastic simulations are a pragmatic and straightforward approach, they are gen-
erally incapable of proving worst-case properties, due to the infeasible number of possible ex-
ecution flows and timings. Instead, we opt for a sound approximation of worst-case behavior
by verification methods. To apply these methods, we model control loops with uncertain IO
timing as hybrid dynamical systems. In a single model, this formalism allows combining the
discrete-time aspects of a digital real-time control system with the continuous-time physics of
a plant. Our preliminary experiments with existing verification tools indicate that solving this
problem is feasible in some cases yet challenging in general.

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

In this paper, we present worst-case verification of digital control loops with uncertain IO
timing as a benchmark problem for the verification of hybrid automata. Therefore, we detail
the system model in section 2 and translate it to a hybrid system in section 3. Finally, formal
goals and multiple examples are introduced in section 4.

2 System Model

For a formal description of the problem, we adapt the timing model of [10], which was used for
stochastic average-case analysis, to the setting of worst-case stability verification. The main
differences are a generalisation to nonlinear systems and the removal of reference tracking.

Plant The physical system to be controlled is described as a time-invariant plant, for which

the following nonlinear equations and their linear special case, denoted by
lin
=, are given.

ẋp(t) = fp(xp(t), u(t), d(t))
lin
= Apxp(t) +Bpu(t) +Gpd(t), t > 0,

y(t) = gp(xp(t), d(t))
lin
= Cpxp(t) +Hpd(t). (1)

The plant has input u(t) =
[
u1(t) u2(t) . . . um(t)

]T ∈ Rm, state xp(t) ∈ Rnp and output

y(t) =
[
y1(t) . . . yp(t)

]T ∈ Rp. Ap, Bp et cetera are matrices of appropriate dimension. The
initial state xp(0) ∈ Xp,0 ⊂ Rnp is unknown but bounded. Disturbance and measurement noise
are modeled by a bounded, nondeterministic input d(t) ∈ D ⊂ Rndist . If they are not present,
this will later be denoted by ndist = 0, which means that the dependency on d(t) and the terms
Gpd(t) and Hpd(t) are omitted.

Controller The plant is controlled by the discrete-time controller

xd[k + 1] = fd(xd[k], y[k])
lin
= Adxd[k] +Bdy[k], xd ∈ Rnd ,

u[k] = gd(xd[k])
lin
= Cdxd[k], xd[0] = 0, k ∈ N0 (2)

with nominal period T . This formulation includes standard linear controllers, such as discretized
PID or observer-based state feedback. The given form has no feedthrough, which means that the
control signal u[k] only requires the previous measurement y[k−1]. This restriction is reasonable
for control systems in which timing is relevant, as it permits a computation time of slightly
below one control period, while with feedthrough any computation time would inevitably delay
the output. For simplicity and due to the goal of stability analysis, we only consider a constant
set point of y = 0.

IO timing model Nominally, the whole measurement vector y[k] is sampled at t = kT . From
this, the control signal u[k+ 1] is computed and then emitted at t = (k+ 1)T . The real timing
differs from this: The j-th control output component is delayed by ∆tu,j [k] (where negative
values represent a too early output), which can formally be stated as

uj(t) =

{
uj [k], kT + ∆tu,j [k] < t < (k + 1)T + ∆tu,j [k + 1] ∧ k ≥ 1

0, else.
(3)

2

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

Tb[k − 1] Tb[k]kT

t
∆t...[k]

dataflow
virtual dependency

Sample y[k − 1] Sample y[k] Sample y[k + 1]

Compute
u[k]

Compute
u[k + 1]

Actuate u[k] Actuate u[k+1]Actuate u[k−1]

Figure 1: Timing model for IO and computation with dataflow dependencies, the timing barrier
Tb[k] and its corresponding virtual dependencies.

Respectively, the sample yj [k] of the j-th sensor is acquired with a time offset ∆ty,j [k].

yj [k] =

{
yj(kT + ∆ty,j [k]), k ≥ 1

0, else.
(4)

The “0” case in eqs. (3) and (4) is only relevant for start-up and will be discussed later.

The timing of input, computation and output and its dataflow dependencies (double arrows)
are shown in fig. 1. As a “black-box” model, the timing of each input and output component
is unknown but bounded:

∆tu,j ≤ ∆tu,j [k] ≤ ∆tu,j , ∆ty,j ≤ ∆ty,j [k] ≤ ∆ty,j ∀j, k ≥ 1 (5)

Additional constraints, e. g., that a group of inputs is always sampled at the same time, may be
considered to make the model less pessimistic, but are not discussed here for the sake of clarity.

To avoid the need for extra buffers in the realization and corresponding buffer states in the
resulting model, neighboring cycles k and k + 1 are separated by a timing barrier Tb[k], which
no event may cross:

kT + ∆ty,j [k]
kT + ∆tu,j [k]

}
<Tb[k] <

{
(k + 1)T + ∆ty,j [k + 1]
(k + 1)T + ∆tu,j [k + 1]

∀j, k ≥ 1 (6)

This barrier coincides with the controller computation and can equivalently be described by a
task with zero execution time and four virtual dependencies as shown in fig. 1. To simplify the
subsequent model, we only consider Tb = (k + 1

2)T in the following, which means that each

control period k is centered at its nominal time kT and all delays are limited to |∆t...| < T
2 .

3

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

location
ODE

invariant

location2

ODE2

invariant2

label
guard

jump

Figure 2: Legend for hybrid automata used in this publication

Startup behavior Because time doesn’t start at t = −T/2, but at t = 0, the first half of
the cycle k = 0 is missing, and yj [0] would not be sampled if ∆ty,j [0] < 0. To avoid this
discontinuity, sampling y[0] and actuating u[0] are skipped, which is reflected in the “0” case
of eqs. (3) and (4). Because the startup behavior only affects a finite time interval at the start,
changing it is roughly equivalent to a change of the initial set. For the linear case, it is therefore
not relevant for infinite-time, e. g. asymptotic stability.

3 Hybrid Automata

The system model presented in the previous section can be equivalently formulated as the
interconnection of multiple hybrid automata, which is a precise and machine-readable formal
description suitable for automatic verification. A simplified summary of the semantics of hybrid
automata will be given in the following. We refer to [8] for an extended introduction and to
[11] for a strict formalization.

Semantics A hybrid automaton as shown in fig. 2 combines a discrete-event automaton with
a classical continuous-time, continuous-valued dynamical system. In each location (discrete-
valued state) of the discrete-event automaton, the state variables of the continuous system
evolve according to an ordinary differential equation (ODE) and are restricted to a set given
by an invariant condition. A transition to another location may be taken while the associated
guard condition is true (may-semantics) and must be taken before the invariant condition of
the current location is violated. At the transition, the continuous state changes instantaneously
as given by the jump transition, e. g., x′ = 2x states that x jumps to twice its previous value.
For synchronization of multiple automata, labels are used: If multiple transitions have the same
nonempty label, either all are executed at once or none of them.

Nondeterminism Because the timing is bounded but otherwise unknown, the system is non-
deterministic: Multiple trajectories are possible for a given disturbance and initial state. The
nondeterminism of may-semantics mentioned before is used to represent the nondeterminism
of IO timing. This would be significantly more difficult if must-semantics (urgent semantics)
were used instead, which defines that transitions must be taken as soon as possible.

3.1 Components

For a modular and comprehensible description, the system is modeled as the composition of
components that are defined in the following: Controller and clock, the physical plant and
multiple sample-and-hold (SH) elements.

4

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

0 T 2T

T
2

0

−T
2

t

τ

0

xd, unext

(a) Behavior.

always
τ̇ = 1, ẋd = 0
−T/2 ≤ τ ≤ T/2

startOfCycle
τ = T/2

τ ′ = −T/2,
x′d = fd(xd, yd)

(b) Hybrid Automaton.

controller
and clock

τ , startOfCycle

unext = gd(xd)yd

(c) Block diagram.

Figure 3: Specification of controller and clock

Controller and Clock As in depicted in fig. 3a, we define the periodic sawtooth clock signal

τ = ((t+ T/2) mod T)− T/2, (7)

which is the signed distance t − kT to the nearest nominal sampling point kT . This signal is
generated by the automaton from fig. 3b, which also includes the controller: τ continuously
increases (τ̇ = 1) until τ = T/2 is reached, which is the timing boundary t = (k+1/2)T betweeen
two control cycles. Then, τ is reset from T/2 to −T/2 and the new controller state is computed
from the recent measurement. This event is given a synchronization label startOfCycle, which
will later be used to force the reset of all sample-and-hold automata.

A block diagram representation is shown in fig. 3c. The input is the sampled measurement
yd. The outputs are the clock τ , the label startOfCycle, which corresponds to the falling edge
of τ , and the “next” (most recently computed) control signal unext = gd(xd).

Generic sample-and-hold (SH) The transitions between discrete-time controller and con-
tinuous-time plant can be modeled by SH elements as shown in figs. 4a and 4b. The output
b is updated to the value of the input a once per period, within ∆t ≤ τ ≤ ∆t, and held
constant inbetween (ḃ = 0). In accordance with the timing model, the parameters ∆t and ∆t
are restricted to −T/2 < ∆t ≤ ∆t < T/2.

This description is implemented by the automaton in fig. 4c, which uses may-semantics to
model that sampling may happen while ∆t ≤ τ ≤ ∆t and must happen before τ > ∆t. The
startOfCycle synchronization label, which occurs at the transition from τ = T/2 to τ = −T/2,
is used to reset the automaton at the beginning of each cycle.

Plant The plant is described the equations given in section 2:

ẋp = f(xp, u, d), y = gp(xp, d), d ∈ D. (8)

5

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

SH(∆t,∆t)
a

τ , startOfCycle

b

(a) Block diagram.

0 (T + ∆t) T (T + ∆t) 2T
t

a(t)

b(t), earliest

b(t)

b(t), latest

(b) Behavior.

wait
ḃ = 0
τ ≤ ∆t

done
ḃ = 0

∆t ≤ τ ≤ ∆t

b′ = a

startOfCycle

(c) Hybrid automaton.

Figure 4: Specification of sample-and-hold (SH) element

3.2 Interconnection

The closed loop is modeled by connecting controller and plant with one sample-and-hold block
per input and output component as shown in fig. 5. All timing-dependent components share
the common clock τ and the corresponding startOfCycle synchronization label.

In this block diagram, controller and plant are interconnected with unext = gd(xd) and
y = gp(xp, d). Such interconnection variables, which are not needed as state variables, may
introduce additional computational effort in analysis. Therefore, a different but equivalent
implementation was used for the experiments described later: The states xd and xp were used
as interconnection and the computation of gp(...) and gd(...) was moved into the SH components.

3.3 Initialization and Startup

The controller is initialized at xd = 0, τ = 0, and all SH automata start in location “done” with
state b = 0. The plant state is bounded by xp(0) ∈ Xp,0. The SH automata are initialized at
location “done” to match to the specified behavior of skipping the cycle k = 0.

Alternative startup behavior A different startup behavior could be modeled by starting
at τ = −T/2 and “wait”, which would be equal to starting at t = T/2 with the first regular
cycle k = 1. It is not generally possible to initialize τ = 0 and still use “wait” as initial location,
because the invariant τ ≤ ∆t would be violated at start if ∆t < 0.

4 Benchmark Setup

For safety-critical real-time control, it is desirable to automatically validate the system’s cor-
rectness, for example, that a quadcopter does not crash. In the following, we translate this
vision into a formal problem with goals that can be checked using tools for the verification of
hybrid systems. To facilitate evaluation and comparison, we provide a metric and parameters
for example systems as well as first experimental results.

6

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

τ , startOfCycle

controller
and clock

...

SH(∆tu,1,∆tu,1)

SH(∆tu,m,∆tu,m)

plant
...

SH(∆ty,1,∆ty,1)

SH(∆ty,p,∆ty,p)

unext,1

unext,m

u1

um

y1

yp

yd,1

yd,p

Figure 5: Block diagram of closed control loop

Given A digital control loop with uncertain but bounded input/output timing and distur-
bance as modeled in section 2, equivalent to the hybrid system described in section 3.

Goal 1: Stability proof Prove practical stability of the control loop, which we define as
that for bounded initial state, the infinite-time reachable set

S :=
{[
xTp(t) xTd(t) uT(t) yT(t)

]T ∣∣∣ t ≥ 0, dynamics of section 3, with uncertainties

xp(0) ∈ Xp,0, ∆t...[k] ∈
[
∆t...; ∆t...

]
, d(ξ) ∈ D ∀ξ

}
(9)

is bounded. For a quadcopter, this means that there is a proven, possibly large, bound on
the worst-case position error. For any linear controller and plant, this implies marginal or
exponential stability, if the internal timing τ is not considered a state.

Practical stability can be shown with set-valued reachability analysis by finding a bounded
upper approximation S̄ ⊇ S of the reachable set.

Goal 1b: Exponential decay Prove global uniform exponential stability of the controlled
plant: For zero disturbance (ndist = 0 or D = {0}), find constants C, λ > 0 such that

‖xp(t)‖2 ≤ Ce−λt ‖xp(0)‖2 ∀t ≥ 0, ∀xp(0). (10)

While practical stability only ensures that the state is bounded, exponential stability is desirable
because it guarantees a certain rate of decay for the initial error.

Goal 2: Tight bounds If the system is stable, compute useful bounds on the states
xp, xd, u, y: For a quadcopter, the analysis must prove that worst-case position error is less
than a few centimeters, not kilometers. In general, this guaranteed and therefore outer bound
S̄ ⊇ S obtained from analysis should be not much larger than an inner approximation S ⊆ S
from a large number of random simulations. As a metric for usefulness, we introduce the
bloating factor K, the worst ratio of the component-wise bounds of analysis and simulation:

K := max
j

max
x∈S̄

∣∣eTj x∣∣
max
x∈S

∣∣eTj x∣∣ , where ej denotes the j-th unity vector. (11)

An equivalent definition is illustrated in fig. 6:

�(S̄)
!
⊆ K �(S) with minimal K, (12)

7

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

x2

x1
Simulation S

�(S̄)

�(S) Analysis S̄

a b

K =
b

a

Figure 6: Illustration of the metric K, which compares the interval bounds of simulation and
pessimistic analysis.

where �(·) denotes the enclosing symmetric multidimensional interval (symmetric box).
An ideal verification tool can achieve K = 1 in short computation time. K � 1 corresponds

to a large undesirable gray area between analysis and simulation, in which the existence of
trajectories can neither be confirmed nor denied.

Goal 2b: Extreme examples Efficiently finding extreme simulation traces to show minimal
K is a problem on its own. Ideally, a verification tool should provide concrete examples of the
worst case to show that its result is not unnecessarily pessimistic.

4.1 Approximate Continuous-Time Variant

For comparison, we provide a purely continuous variant of the problem: Assuming perfect
timing and a negligibly small period T , the discrete-time difference quotient of the controller
state xd is approximated by a continuous-time differential equation. With t = kT , this yields

ẋd(t) ≈ xd[k + 1]− xd[k]

T
=
fd(xd[k], y[k])− xd[k]

T

lin
=
Ad − I
T

xd(t) +
Bd

T
y(t). (13)

The new closed loop does not require states for measurement and actuation and is given by[
ẋp(t)
ẋd(t)

]
lin
=

[
Ap BpCd

T−1BdCp T−1 (Ad − I)

] [
ẋp(t)
ẋd(t)

]
+

[
Gp

T−1BdHp

]
d(t). (14)

We remark that the stability of this system is neither sufficient nor necessary for the stability of
the original, discrete-time system. However, modeling the difference between (14) and the orig-
inal system as bounded disturbance could yield a continuous-time abstraction (continuization)
of the original controller, similar to [5].

4.2 Examples and Experiments

Appendix B provides data for several examples ranging from a minimal, one-dimensional system
to the simplified model of three-axis angular rate control of a quadcopter. Experiments with
a number of tools based on set-valued reachability analysis were carried out and showed that
stability could only be verified for the most trivial examples, whereas all other examples led to
errors or did not finish within a generous timeout. A detailed description of the experiments
can be found in appendix C. Model files and open-source code for reproducing the experiments
and generating new examples are referenced in appendix A.

8

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

5 Summary and Outlook

Uncertain input/output timing adversely affects the performance of digital control loops but
is virtually unavoidable in complex real-time systems. To still prove safety we are required to
prove worst-case behavior, such as the maximum position error of a quadcopter, in the presence
of timing uncertainty. To address this challenge, we present a series of benchmark problems
for the verification of hybrid automata, which are a formalism that captures both the discrete-
time and continuous-time aspects of real-time control systems. However, first experiments with
set-based reachability tools suggest that verification is only possible for simple examples.

Set-based reachability analysis typically performs overapproximations at discrete transitions
to keep computational effort acceptable. This suggests that it is best suited for systems with few
discrete transitions and stable continuous dynamics; the opposite of this is the case for digital
control loops. Our experiment substantiates this hypothesis, raising the question of whether
we are faced with a fundamental problem or if a tailored verification approach or modified
algorithms can solve the issues.

While numerous techniques for the verification of discrete-time controllers exist, to the best
of our knowledge, none of them supports timing uncertainties as presented in our model, which
addresses real-time systems with multiple sensors and actuators. Therefore, future work will
entail an extension of existing techniques. One candidate is continuization [5], a method for
approximating discrete-time controllers as continuous-time controllers with disturbance, which
are more suitable for reachability analysis. Further candidates are LMI-based methods for linear
control systems as discussed in [12].

References

[1] Matthias Althoff. An introduction to CORA 2015. In Goran Frehse and Matthias Althoff, editors,
ARCH14-15. 1st and 2nd International Workshop on Applied veRification for Continuous and
Hybrid Systems, volume 34 of EPiC Series in Computing, pages 120–151. EasyChair, 2015.

[2] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. HYST. In Proceedings of the 18th
International Conference on Hybrid Systems Computation and Control - HSCC '15. ACM Press,
2015.

[3] Stanley Bak and Marco Caccamo. Computing reachability for nonlinear systems with HyCreate.
16th International Conference on Hybrid Systems: Computation and Control Poster Session, 2013.

[4] Stanley Bak and Parasara Sridhar Duggirala. HyLAA: A tool for computing simulation-equivalent
reachability for linear systems. In Proceedings of the 20th International Conference on Hybrid
Systems: Computation and Control, HSCC ’17, pages 173–178, New York, NY, USA, 2017. ACM.

[5] Stanley Bak and Taylor T. Johnson. Periodically-scheduled controller analysis using hybrid systems
reachability and continuization. In 2015 IEEE Real-Time Systems Symposium. IEEE, 2015.

[6] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-linear
hybrid systems. In International Conference on Computer Aided Verification, pages 258–263.
Springer, 2013.

[7] A. E. C. Da Cunha. Benchmark: Quadrotor attitude control. In Goran Frehse and Matthias
Althoff, editors, ARCH14-15. 1st and 2nd International Workshop on Applied veRification for
Continuous and Hybrid Systems, volume 34 of EPiC Series in Computing, pages 57–72. EasyChair,
2015.

[8] Goran Frehse. An introduction to hybrid automata, numerical simulation and reachability analysis.
In Formal Modeling and Verification of Cyber-Physical Systems, pages 50–81. Springer Fachmedien
Wiesbaden, 2015.

9

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

[9] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable verification
of hybrid systems. In International Conference on Computer Aided Verification, pages 379–395.
Springer Berlin Heidelberg, 2011.

[10] Maximilian Gaukler, Andreas Michalka, Peter Ulbrich, and Tobias Klaus. A new perspective on
quality evaluation for control systems with stochastic timing. In Proceedings of the 21st Interna-
tional Conference on Hybrid Systems: Computation and Control (part of CPS Week) - HSCC '18.
ACM Press, 2018.

[11] T.A. Henzinger. The theory of hybrid automata. In Proceedings 11th Annual IEEE Symposium
on Logic in Computer Science, pages 278–292. IEEE Comput. Soc. Press, July 1996.

[12] Laurentiu Hetel, Christophe Fiter, Hassan Omran, Alexandre Seuret, Emilia Fridman, Jean-Pierre
Richard, and Silviu Iulian Niculescu. Recent developments on the stability of systems with aperi-
odic sampling: An overview. Automatica, 76:309–335, February 2017.

A Source Code and Data Files

The source code and output data used in this publication is available online at https://doi.

org/10.5281/zenodo.2600139. Updated versions will be provided at https://github.com/

qronos-project/arch19-benchmark-iotiming.

B Example Data

In the following, example systems are presented. For reference, the systems are denoted by a
letter, followed by a number indicating the variant. To limit implementation complexity and
the number of variants, we restrict the examples to linear systems and only consider variants
without disturbance in the subsequent experiments.

Note: SpaceEx model files for this section can be found in code/template/output/, e. g.,
code/template/output/solved with spaceex/stable/A1 1.spaceex.xml for example A1.

B.1 One-dimensional Example (A1)

For an example of minimal dimensions n = nd = m = p = 1, a linear, weakly unstable plant
Ap = 0.05, Bp = 0.5, Cp = 1, without disturbance (ndist = 0) is controlled by the discrete-
time controller Ad = −0.01, Bd = −0.4, Cd = 1. The timing is uncertain (∆ty = −0.1,∆ty =

0.002,∆tu = −0.001,∆tu = 0.002) and the initial state is bounded within the interval Xp,0 =
[−1; 1]. It should be noted that even for this one-dimensional plant and controller, the resulting
hybrid system has 4 continuous state variables (xp, u, yd, xd).

The parameters of this system were heuristically chosen such that SpaceEx can verify stabil-
ity via an invariant set within seconds with optimized settings and within minutes with almost
arbitrary settings. Variants with increased and decreased difficulty are also provided:

A2 Negligible jitter: ∆tu,y = −∆tu,y = 0.0001

A3 Increased jitter: ∆tu = −0.4,∆tu = 0.1,∆tu = −0.1,∆tu = 0.4

A4 Extreme jitter: Variant A3 with ∆tu = 0.4

A5 Increased dimension: Variant A3 is duplicated, which means that all dynamics matrices
are diagonally repeated such as Ap,A5 = diag(Ap,A3, Ap,A3). This increases the dimension
by factor 2, making verification more difficult, but does not change stability.

10

https://doi.org/10.5281/zenodo.2600139
https://doi.org/10.5281/zenodo.2600139
https://github.com/qronos-project/arch19-benchmark-iotiming
https://github.com/qronos-project/arch19-benchmark-iotiming

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

A6 Disturbance (not included in experiments): To add disturbance and measurement noise,
the system may be changed to ndist = 2, Gp =

[
1 0

]
, Hp =

[
0 1

]
, D = [−1; 1]2.

B.2 Trivial Three-dimensional Example (B1)

For an example of higher order, a stable three-dimensional plant is combined with a controller
that has negligible influence on the plant dynamics:

Ap =

 −1 0.002 0.003
0.004 −5 0.006
0.007 0.008 −9

 , Bp =

 0.001 0.0011
0.0012 0.0013
0.0014 0.0015

 , Cp =
[
16 17 18

]
(15)

Ad =

[
0.019 0.02
0.021 0.022

]
, Bd =

[
0.023
0.024

]
, Cd =

[
0.025 0.026
0.027 0.028

]
(16)

T = 2, ∆tu = −∆tu =

[
0.2
0.4

]
, ∆ty = −∆ty = 0.6, Xp,0 = [−1; 1]3, ndist = 0 (17)

Variant B2: Disturbance (not included in experiments) To add input disturbance,

the system may be changed to ndist = 1, Gp =
[
1 0 0

]T
, Hp =

[
0 0
]T
, D = [−1; 1].

B.3 Quadcopter Examples (C, D)

The linearized dynamics of the angular rate control of a quadcopter, mostly based on [7],
are the basis for two models. Angular rate control is an important subsystem of quadcopter
stabilization, which ensures that the rate of rotation rφ, rθ, rψ around the x, y and z axis follows
the setpoint given by a higher-level control system. For simplicity, the latter is not considered
here and instead the setpoint is assumed to be zero. For a detailed system description and
physical model, we refer to [7] and the references provided there.

Single-axis angular rate control (C) If only the rotation φ around the x-axis is considered,
the mechanical dynamics of the angular rate rφ are

Jφṙφ(t) = Tφ(t) (18)

with rotational inertia Jφ. The input is the time-varying torque Tφ(t) controlled by the motors
and the output is the angular rate rφ(t) measured by a gyroscope.

The original, continuous-time controller

Tφ(t) = −Kp,φrφ(t)−KI,φ

∫ t

0

rφ(ξ)dξ (19)

given in [7] is discretized in a simplified way as

Tφ[k] = −KP,φrφ[k − 1]−KI,φ

k−1∑
0

rφ[k]. (20)

To match the timing model, Tφ[k] has no feedthrough, i. e., it does not depend on the current
measurement rφ[k].

11

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

Three-axis angular rate control (D) If all three axes of rotation are considered, the
linearized dynamics are three independent integrators

Jφṙφ(t) = Tφ(t), (21)

Jθ ṙθ(t) = Tθ(t), (22)

Jψ ṙψ(t) = Tψ(t). (23)

The torques Tφ,θ,ψ and the vertical thrust Fz are controlled by the forces u1,2,3,4 of four pro-
pellers, which are defined as inputs to the system because rotor dynamics are neglected:

Tφ(t)
Tθ(t)
Tψ(t)
Fz(t)

 =

0 −l 0 l
−l 0 l 0
γ −γ γ −γ
1 1 1 1

︸ ︷︷ ︸

M

u1(t)
u2(t)
u3(t)
u4(t)

︸ ︷︷ ︸
u(t)

. (24)

This equation depends on the distance l between center and rotor and the ratio γ of torque to
rotor thrust. Because altitude control is not considered here, we set Fz = 0 and obtain

u(t) = M−1

Tφ(t)
Tθ(t)
Tψ(t)

0

 , (25)

where Tφ,θ,ψ(t) is each computed by a PI controller in the structure of eq. (20), but with
axis-dependent controller parameters.

It should be noted that for perfect timing, the system can be split into three decoupled
subsystems, whereas if the components of u(t) are not updated synchronously, the control
torque of one axis slightly affects other axes.

While the presented model is highly simplified, our experiments in verifying it were not suc-
cessful. As soon as it has been successfully verified, more realistic variants should be considered,
e. g., by adding disturbance, nonlinearities, rotor dynamics and position control.

Parameters The original publication [7] states the following parameters: Jφ = 9.036·10−6,
Jθ = 9.127·10−6, Jψ = 1.937·10−5, KP,φ = 2.557·10−4,KP,θ = 2.581·10−4, KP,ψ = 5.478·10−4,
KI,φ = 3.614·10−3, KI,θ = 3.651·10−3, KI,ψ = 7.747·10−3.

We assume l = 0.1 and γ = 0.01, which are not given in [7] and therefore chosen within
the order of magnitude observed in other quadcopter models. The controller period is chosen
as T = 0.01, which is a compromise between a response similar to the original continuous-time
controller and low processor utilization. The initial response of the original and the discretized
controller are compared in fig. 7.

The dynamics matrices for example C are

Ap = 0, Bp = 1.107·105, Cp = 1, (26)

Ad =

[
1 0
0 0

]
, Bd =

[
1·10−2

1

]
, Cd =

[
−3.614·10−3 −2.556·10−4

]
, (27)

12

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

Figure 7: Initial response rφ(t) of original and discretized controller for example C for an initial
state rφ(0) = 1 and perfect timing.
(Simulink simulation: code/template/example C simulation of nominal case.slx)

and for example D are

Ap =

0 0 0
0 0 0
0 0 0

 , Bp =

 0 −1.107·104 0 1.107·104

−1.096·104 0 1.096·104 0
5.163·102 −5.163·102 5.163·102 −5.163·102

 , (28)

Cp =

1 0 0
0 1 0
0 0 1

 , Ad =

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 , Bd =

1·10−2 0 0

1 0 0
0 1·10−2 0
0 1 0
0 0 1·10−2

0 0 1

 , (29)

Cd =

0 0 1.825·10−2 1.291·10−3 −1.937·10−1 −1.370·10−2

1.807·10−2 1.279·10−3 0 0 1.937·10−1 1.370·10−2

0 0 −1.825·10−2 −1.291·10−3 −1.937·10−1 −1.370·10−2

−1.807·10−2 −1.279·10−3 −2.533·10−18 −1.791·10−19 1.937·10−1 1.370·10−2

 . (30)

We assume no disturbance (ndist = 0) and an initial state within Xp,0 = [−1; 1]np . Two timing
variants are provided:

C1, D1 Perfect timing: ∆tu,y = ∆tu,y = 0

C2, D2 The timing may vary by ±0.01T : ∆tu,y = −∆tu,y = 0.01T
[
1 1 . . .

]T
.

B.4 Timer Example (E)

For debugging and visualization, the following example can be used. The plant is a timer with
output y(t) = xp,1(t) = t, regardless of the input. Therefore, it is obviously unstable. The
controller is u[k+ 1] = y[k]. Because u has no effect on y, this results in u[k+ 1] = kT + ∆ty[k].
This means that xp,1 is the time axis and the value of both u and y[k] is the time t at which

13

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

the measurement was sampled. The parameters are given in the following:

Ap =

[
0 1
0 0

]
, Bp =

[
0
0

]
, Cp =

[
1 0

]
, Xp,0 =

{[
0
1

]}
, ndist = 0 (31)

Ad = 0, Bd = 1, Cd = 1 (32)

T = 1, ∆tu = −0.4, ∆tu = 0.1, ∆ty = −0.2, ∆ty = 0.3 (33)

C Experiments

First, a selection of tools is evaluated in appendix C.1. All examples presented in this publication
are then evaluated with the selected candidates, SpaceEx and Pysim, in appendix C.2.

Computation times were measured on a 3.6 GHz Intel Core i7-4790 CPU, running on Ubuntu
18.04 with a memory limit of 14 GB. For model files, tool settings and output see appendix A.

C.1 Selection of Tools

We restricted our experiments to SpaceEx [9] and a small number of open-source set-valued
reachability tools for which a conversion from SpaceEx exists. The SpaceEx tool was used
as a starting point because it directly supports the modeling scheme used in section 3. The
one-dimensional example A1 from appendix B.1 was created in the format of SpaceEx. For
use with other tools, it was converted using Hyst [2]. As most other tools don’t support the
interconnection of multiple automata, this conversion also includes computing the synchronous
product to yield a single equivalent automaton.

Note: Code and data for this section can be found in code/dummy/.

SpaceEx With manually optimized settings, which can be found in code/dummy/a1.cfg,
SpaceEx 0.9.8f successfully finds the fixpoint for the reachable set shown in fig. 8 after few
seconds. As mentioned earlier, the parameters of example A1 were specifically chosen such
that verification with SpaceEx is possible, so this result is by design. Further experiments with
SpaceEx can be found in the next section.

Flowstar By design, the Flowstar [6] tool only supports bounded-time reachability computa-
tion. As a workaround, convergence of the desired infinite-time reachable set was approximated
by comparing the reachable set for finite time horizons from 5 to 100. The time step setting
was varied from 10−1 to 10−4, where the latter already requires one hour of computation time
for a time horizon of 10.

We were unable to obtain useful results with Flowstar 2.0.01, even for negligible timing
uncertainties as in example A2: For a time horizon of 10, the resulting set was already five
times bigger than the infinite-time result of SpaceEx, and for larger time horizons Flowstar did
not finish within a run-time limit of two hours. However, it cannot be completely ruled out
that this is due to an unfortunate choice of parameters.

1A newer version 2.1.0 is available, but not yet supported by Hyst.

14

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

Figure 8: Reachable set (y over τ) computed by SpaceEx for example A1

HyCreate According to its website2, the HyCreate [3] tool has been discontinued and is not
recommended for more than three continuous states for longer time horizons. Nevertheless, a
short experiment was carried out. After correcting syntax errors in Hyst’s output, HyCreate
2.81 returned a reachable set that only covers τ > 0, which means that the periodic reset
transition τ ′ = −T/2 is never taken. A similar result was shown by HyCreate’s integrated
simulation engine. After weakening the guard condition τ = T/2 to τ ≥ 0.9T/2, the region
−T/2 < τ < 0 is reached by simulations, but still not contained in the computed reachable set
(see fig. 9), which suggests an error in HyCreate or Hyst. The corresponding files can be found
in code/dummy/hycreate2/.

Hylaa As of January 2019, the stable version of Hylaa [4] (55a72f8, “master” branch) does
not yet support resets, which means the state must not change at a transition. Therefore Hylaa
is not suitable for our model. While the current development version (“hybrid” branch) seems
to support transitions, it could not be used because it is not yet supported by Hyst. However,
it is a promising candidate for future experiments.

CORA Due to a misunderstanding, we assumed that CORA [1] does not support the may-
semantics used by our model and therefore excluded it from our experiments. We will, however,
include it in future experiments provided online.

Pysim The Pysim simulator supplied with Hyst uses must-semantics, as can be seen from its
source code. However, as Pysim only simulates, this only means that it will constantly use the
earliest possible timing, which is technically correct but not representative of the set of possible
trajectories.

2http://stanleybak.com/projects/hycreate/hycreate.html

15

http://stanleybak.com/projects/hycreate/hycreate.html

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

Figure 9: Erroneous reachable set (y over τ) returned by HyCreate: The simulation (lines) goes
outside the computed reachable set (shaded area), which does not reach τ < 0. The model file
can be found at code/dummy/hycreate2/test2-converted-fixed.hyc2.

To simulate a pseudo-random selection of trajectories without requiring extensive modifi-
cations to Pysim, a modified version of the model was created, in which the guard condition
∆t ≤ τ ≤ ∆t in may-semantics was changed to τ ≥ ∆t+ r(∆t−∆t) in must-semantics, where
r ∈ [0; 1] is a pseudo-random number updated at the beginning of each cycle. To fit the existing
framework of Pysim and Hyst without extensive modifications, this was approximated by

r′ = 0.5 + 0.5 cos(1234r), (34)

which is a prototypical, weak pseudo-random number generator, whose seed value is the initial
state of r. Each SH subcomponent has a separate random state, and the initial values are
varied to obtain different trajectories.

Additionally, because the equality guard condition τ = T/2 is not correctly simulated due
to numerical issues, it was changed to τ ≥ T/2, which is equivalent in must-semantics.

C.2 Evaluation of Examples

Due to the results of the previous section, further experiments were restricted to SpaceEx for
verification and Pysim for randomized simulation. To handle vector-valued signals of vary-
ing dimension, which are not directly supported by the SpaceEx file format, the model and
configuration files for all examples from appendix B.1 ff. were generated from a template.

16

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

np nd m p timing SpaceEx tSE KSE LTI-stable
A1 1 1 1 1 varying (small) X 1 s 1.010 —
A2 1 1 1 1 varying (negligible) X 1 s 1.001 —
A3 1 1 1 1 varying (medium) X 2 s 1.059 —
A4 1 1 1 1 varying (large) × error (GLPK) — — —
A5 2 2 2 2 varying (like A3) × crash (GLPK) — — —
B1 3 2 2 1 varying X 16 s 1.097 —
C1 1 2 1 1 constant × timeout — — stable
C2 1 2 1 1 varying × crash — — —
D1 3 6 4 3 constant × diverging — — stable
D2 3 6 4 3 varying × crash — — —
E 2 1 1 1 varying — — — unstable

Table 1: Experimental results.
np, nd,m, p: dimensions of plant, controller, input and output.
timing: fixed or uncertain timing?
SpaceEx, tSE: result of SpaceEx and runtime (including computation of interval bounds). X: practically
stable, neglecting floating point inaccuracy. ×: failed to verify practical stability. timeout: runtime
exceeded two hours. diverging: reached K > 1000 without showing stability. crash: aborted due
to unhandled error such as memory access or assertion violation. error: exited with error message.
(GLPK: error is related to solving linear programs with the GLPK library)
KSE: Upper bound of K factor per eq. (11), comparing SpaceEx’ overapproximation and random
Pysim simulations. Only applicable if SpaceEx verifies stability.
LTI-stability: stability proof by analysis of the time-discretized nominal case (∆t = 0), which is a linear
time-invariant (LTI) system (—: not applicable for varying timing, except to show instability).

Note: Code and data for this section can be found in code/template/.
For each example, SpaceEx’ maximum number of iterations was adjusted such that either

it found a fixpoint, states corresponding to K > 1000 were reached or a run-time limit of
two hours was exhausted. If a fixpoint was found, this means that the system is practically
stable, assuming that floating point computation inaccuracy in SpaceEx is negligible. The
remaining settings were chosen as in the initial experiments, except for example B, which had
to be changed to directions=box (set overapproximation as multidimensional interval) for
successful verification. An exhaustive search for the best settings could not be performed in
the scope of this work, which means that the presented results may be suboptimal.

The results in table 1 highlight that SpaceEx could verify stability only for the most simple
examples (A1 – A3 and B) and fails otherwise.

The results point to three possible reasons for the encountered difficulties.
Firstly, increasing timing variation makes verification more difficult, as can be seen in ex-

amples A1 – A4: Example A2 with almost constant timing is verified with almost no bloating,
whereas increased timing in A3 leads to more bloating and runtime, and A4 with large timing
cannot be verified.

To illustrate the effect of increased timing uncertainty on verification, the reachable set
over global time t was computed by adding t as a state with ṫ = 1 and t(0) = 0. Figure 10
highlights that in simulations (left), example A1 (top) shows about the same rate of decay for
y(t) as example A3 (bottom), whereas the reachable set (right) decays significantly slower. This
matches the increased K-factor observed in table 1.

Secondly, increasing dimension increases the complexity of verification: While example A5
is simply a duplicated version of A3, verification no longer succeeds.

17

Digital Control Loops with Uncertain Input/Output Timing Gaukler and Ulbrich

Figure 10: Comparison of random simulations y(t) (left) and the reachable set for y over t
computed by SpaceEx (right) for examples A1 (top) and A3 (bottom). Colors in the simu-
lation refer to modes of the hybrid automaton. Input data for this figure can be found in
code/template/output/solved with spaceex/A{1,3}

Third, the dynamics of the nominal case (perfect timing), such as oscillating versus expo-
nentially decaying, may play an important role: Example C1 has perfect timing and less states
than B1, however, only B1 can be verified. While verification with SpaceEx fails for exam-
ples C1 and D1, which have constant timing ∆t... = 0, they can easily be proven stable by
time-discretization and eigenvalue analysis of the resulting linear time-invariant system.

However, these preliminary interpretations should be taken with a grain of salt, because
a number of examples failed with internal errors in SpaceEx, whose exact cause could not be
determined: Examples A4 and A5 fail with errors related to the solution of linear programs with
the GPLK library: A4 causes an error message GLP UNDEF, which suggests numerical issues, and
A5 causes an internal error in the GLPK library, for which preliminary research suggests that
it has been fixed in newer versions of this library. Examples C2 and D2 fail with segmentation
fault (memory access violation) for unknown reasons.

18

	Introduction
	System Model
	Hybrid Automata
	Components
	Interconnection
	Initialization and Startup

	Benchmark Setup
	Approximate Continuous-Time Variant
	Examples and Experiments

	Summary and Outlook
	Source Code and Data Files
	Example Data
	One-dimensional Example (A1)
	Trivial Three-dimensional Example (B1)
	Quadcopter Examples (C, D)
	Timer Example (E)

	Experiments
	Selection of Tools
	Evaluation of Examples

