
Exzess: Hardware-based RAM Encryption
against Physical Memory Disclosure

Alexander Würstlein, Michael Gernoth, Johannes Götzfried, and Tilo Müller

Department of Computer Science
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

{alexander.wuerstlein,michael.gernoth,
johannes.goetzfried,tilo.mueller}@cs.fau.de

Abstract. The main memory of today’s computers contains lots of
sensitive data, in particular from applications that have been used recently.
As data within RAM is stored in cleartext, it is exposed to attackers
with physical access to a system. In this paper we introduce Exzess, a
hardware-based mitigation against physical memory disclosure attacks
such as, for example, cold boot and DMA attacks. Our FPGA-based
prototype with accompanying software components demonstrates the
viability, security and performance of our novel approach for partial main
memory encryption via memory proxies. The memory proxy approach
will be compared to other existing mitigation techniques and possible
further uses beyond encryption will be discussed, as well. Exzess effectively
protects against physical attacks on main memory while being transparent
to applications and the operating system after initialization.

Keywords: memory encryption, memory disclosure, physical attacks

1 Introduction

When protecting servers, desktop computers and notebooks against physical
access, it is natural to draw on full disk encryption solutions. It is generally
overlooked, however, that main memory contains lots of sensitive data, as well,
from both the operating system and each process that was recently running.
Physical access attacks against RAM range from exploitable Firewire devices
that have direct memory access [1,2] to cold boot attacks which physically read
RAM modules by first cooling them down [7,5]. The property of memory which
allows cold boot attacks to work is referred to as the remanence effect [13,6].
RAM contents fade away gradually over time instead of being lost immediately
after power is cut. Both kinds of attacks enable an attacker to completely recover
arbitrary kernel and process memory. The fact that cryptographic keys in main
memory are unsafe has been known for two decades now. Nevertheless, almost all
vendors of software-based encryption solutions continue to store cryptographic
keys inside RAM. Other sensitive data, such as cached passwords, credit card
information and confidential emails are always stored in RAM in practice, too.

The problem is hardware-related in nature, but almost all current attempts
for a solution are software-based. Those solutions suffer from their limited scope

– often only full disk encryption – or their poor performance. If encrypting RAM
could be handled transparently in hardware, the problem of RAM extraction
would be turned into the problem of extracting information from a dedicated
piece of hardware that can be particularly protected.

Our Contribution

We created Exzess, a hardware-based device that is capable of transparently
encrypting and decrypting portions of memory. Exzess is a PCI Express (PCIe)
addon card which exploits direct memory access and acts as a transparent memory
proxy to any operating system while performing certain functionality such as
the encryption and decryption of data. During the development of Exzess, we
designed and developed the hardware design for an FPGA-based prototype, wrote
drivers and application software for Linux and performed evaluations regarding
correctness and performance. In detail our contributions are threefold:

– We designed and implemented an FPGA-based prototype that acts as a
transparent memory proxy to an operating system. A certain region of main
memory can be accessed indirectly via PCI-Express through Exzess, while
Exzess performs a given functionality on the data. We developed Exzess as a
prototype to prevent physical memory disclosure attacks such as cold boot
attacks by using an AES-128 IP core to encrypt all data that passes through
Exzess.

– To be able to use Exzess, we provide device drivers and application software for
Linux. Our host tools support the configuration of Exzess and our device driver
offers an intuitive interface for using Exzess in end-user applications. Once
configured, Exzess creates a number of special files and memory that should
be accessed through Exzess. Protected memory can simply be read from and
written to by usual system calls, i.e., access is semantically indistinguishable
from the access to allocated RAM.

– We evaluated the prototype implementation regarding basic functionality,
correctness and performance.

Although our prototype has primarily been developed against physical memory
disclosure attacks, the generic design of Exzess as a transparent memory proxy
allows for easy adoption to more application scenarios in future – such as error
checking, checking the consistency of operating system structures and hardware-
based malware detection, to name but a few.

2 Background

In this section, we give background information about the technologies that our
work has been built on. Readers familiar with PCI Express (Sect. 2.1) and DMA
transfers (Sect. 2.2) may safely skip this section.

2.1 PCI Express

Structure of a PCI Express system PCIe forms a packet-switched, hierar-
chical, tree-shaped network as shown in figure 1. Inner nodes are called switches,
outer leaves are called endpoint devices. Examples of endpoint devices are plug-in
cards, such as a network interface card, or soldered-on chips on the mainboard
like an integrated graphics processor. The root node, called root complex, is
formed by the PCIe root switch and root port.

CPU

memory bus

RAM

root port
root

switch

root complex

endpoint

switch

...

endpoint

endpoint

...

Fig. 1. Architecture of a PCI Express system

The root port has the special role of being the interface between the PCIe
bus, the CPU and the main memory of the computer system. Device discovery,
configuration and other housekeeping tasks are performed through it. Accesses to
main memory, referred to as DMA transfers, from PCIe devices are processed by
the root port. In the other direction, accesses from the CPU to device memory
are also issued via the root port. In both cases, the root port acts as a gateway
between the CPU and RAM on one side and the PCIe devices on the other side.

Transaction Layer Protocol An important part of this work consists of
implementing the handling of Transaction Layer Packets (TLPs). The transaction
layer protocol describes the routable topmost layer of the PCIe protocol. This
means that a TLP will travel across a number of links from one sending endpoint
to one or more receiving endpoints. As the name suggests, a sequence of one or
more exchanged TLPs is used to implement logical transactions.

Generally all transactions are initiated by a request TLP from the party
subsequently called requester. The receiving party, called completer performs the
request specified and, if necessary, answers the request with a completion TLP.
Posted requests like memory write (MWr) require no completion while non-posted
requests like memory read (MRd) have to be answered by a completion with data
(CplD).

2.2 DMA Transfers and Device Memory

There are two possible memory domains as well as directions for memory access
between a PCIe endpoint, software running on the CPU and main memory:

1. Coming from and initiated by the software on the CPU, device memory can
be accessed. Device memory is a memory area assigned to a specific endpoint
for which that endpoint handles accesses. It is configured using the so-called
base address registers (BARs) where size, address and access semantics are
specified. Device memory accesses are accesses where the completer for a
memory transaction is an endpoint and the requester for that transaction
is the root port. The term BAR is a commonly used metonymy for device
memory.

2. Coming from and initiated by an endpoint, a computer’s main memory can be
accessed as well. These accesses happen without interrupting normal program
flow of the software running on the CPU. Such accesses, commonly known as
direct memory access (DMA), are memory transactions where the requester
is an endpoint and the completer is the root port. DMA memory areas are
made known to the device via device-specific means.

3 Design and Implementation

In this section we will first explain the threat model (Sect. 3.1) with respect to
which Exzess was desigend. Afterwards we justify our design choices (Sect. 3.2)
before giving an overview of the Exzess architecture (Sect. 3.3). Finally we
describe implementation details regarding the hardware design and the device
driver (Sect. 3.4).

3.1 Threat Model

For the design of Exzess, we consider our protectable asset to be portions of
RAM that are limited in size and that are flagged as such by the application or
operating system component to which these memory areas have been allocated.
The content of these memory areas is data that is considered more critical than
other, unprotected data. Examples of such data are cryptographic keys, user
passwords, credit card information, confidential emails and secret documents.
By protecting full-disk-encryption keys, the encrypted contents of a hard disk
can be considered an indirectly protected asset. The same principle applies to,
for example, encrypted data within TLS connections and their respective keys
stored within protected RAM on the communication endpoints.

We consider our attacker to be capable of physically accessing a machine
running Exzess. In particular, the attacker is able to extract RAM modules from
the system and read their contents, even after the system has been recently
switched off. The attacker, however, is unable to perform more sophisticated
attacks such as chip probing or fault injection as these attacks are by far more

costly and technically difficult. Thus, he is not able to read CPU registers, CPU
cache contents, and registers from the Exzess extension board.

We restrict ourselves to a physical attacker, i.e., software based attacks on
applications or the operating system are out of scope for this work. Furthermore,
we exclude the possibility of physically writing RAM from our attack model as
writing RAM by extracting memory modules usually results in a system crash
and is therefore not feasible in most scenarios. Observing bus transfers via direct
electrical taps or electromagnetic emanations are excluded from our attack model
as well.

3.2 Design Rationale

To mitigate physical memory disclosure we decided to encrypt a limited but
sufficiently large portion of a computer’s RAM. Any read access to the encrypted
portion of the RAM is decrypted transparently when loading the respective data
into the CPU’s caches or registers. No unencrypted copy of this data can be found
in physical main memory. Similarly, when writing CPU register or cache contents
back to an encrypted portion of the RAM, encryption will happen transparently
and without storing plaintext data in RAM. Userspace software and operating
system components wishing to encrypt parts of their respective memory address
space may allocate an appropriate address range through a special allocation
function.

We decided to encrypt a limited portion of overall RAM. Although a cold
boot attack exposes the complete contents of a computer’s RAM to the attacker,
not all data stored in RAM is equally sensitive as explained in section 3.1. By
only encrypting important portions of RAM, performance for the unencrypted
parts is unaffected, thereby alleviating the severe performance problems of full
memory encryption.

One consequence of encrypting selected portions of RAM is that userspace
applications have to be modified to make use of our encrypted memory allocations.
The modifications, however, only require limited effort: Cryptographic operations
employ libraries that are therefore an obvious place to introduce our changes.
Furthermore, many applications already identify the relevant parts of their
RAM allocations by marking them non-swappable. To make the modifications of
userspace applications as simple as possible we provide an easy to use library
that offers the Exzess functionality to programmers.

3.3 Exzess Architecture

In figure 2 a schematic overview of a memory access with Exzess is shown. Exzess
provides a readable and writeable memory window for the operating system.
No additional memory beyond the available main memory is needed for Exzess
to work. Instead, any read or write access to the memory window is redirected
to a previously configured memory region in RAM via direct memory access.
Exzess acts as proxy for those requests and encrypts or decrypts the data written

CPU

RAM DMA area

exzess
crypto

app

FPGA

normal memory access

1. access device (BAR) memory

2. & 5. request
address, plain-
/ciphertext

3. DMA access to RAM4. ciphertext

6. plaintext

Fig. 2. Schematic overview of Exzess.

to or read from the DMA area. Thus an encrypted memory area has the same
semantics as usual memory accesses except for the transparent encryption.

Encryption through a Memory Proxy Exzess presents a PCI device memory
area to the operating system which is a proxied cleartext view of a given memory
window. The memory window can be configured in size and location with the
help of our device driver. On each request encryption or decryption is performed
on-the-fly. The encrypted data is stored in a DMA memory area which is a
portion of regular main memory according to the previously configured memory
window.

3.4 Exzess Implementation

In this section we will present the implementation of Exzess. We first will explain
details of our hardware design and afterwards describe how the device driver is
able to interact with our memory proxy.

FPGA Hardware with PCI Express Interface Our prototype is imple-
mented on an Enterpoint Raggedstone 2 board [4]. The Xilinx Spartan6 FPGA
on this board includes a PCIe interface that is able to handle the physical layer
and configuration portions of the PCIe protocol. The VHDL code written for
our prototype handles the creation and sequencing of PCIe TLPs as well as
encryption. To be able to encrypt data passing through Exzess, an open source
AES core [12] has been utilized.

As shown in figure 3, the hardware is structured in a four-layered architecture:
Physical PCIe interface and configuration tasks are performed by the hard
IP core included on the FPGA. Above this lowermost layer, three layers were

PCI Express Bus

Xilinx PCI Express
Endpoint Block

exzess PCIe TLP generator

exzess PCIe application interface

application

FPGA

RX± TX±

TRN rx TRN tx CFG

MRd MWr CplD

WB outer WB inneraddress, data, r/w

send/receive TLP

send/receive DW, start/end

8b/10b encoded serial

Fig. 3. Block diagram of the software stack of Exzess.

implemented in VHDL: (1) a basic, reusable generator and decoder for PCIe
TLPs, (2) an abstraction layer providing memory access primitives over the
on-chip Whishbone bus as an abstraction to sending and receiving TLPs, and
(3) the actual application responsible for encrypting and decrypting memory
accesses.

PCI Express Communication The memory proxy is implemented by a dis-
tinctive sequence of TLPs. After a request, e.g., a read request (MRd) addressing
the BAR device memory, has arrived at the FPGA, a corresponding MRd for
the encrypted data in the DMA area will be generated by the FPGA. After this
second request has been answered by a CplD containing the encrypted data,
decryption will take place within the FPGA. The decrypted data is then used to
answer the initial MRd with a completion containing the decrypted data. As long
as no timeout violations for the initial request occur, i.e., the final completion
arrives in time, PCIe allows multiple larger or smaller requests between the initial
and final TLP to be sent.

Exzess Encryption Applications To be able to evaluate Exzess, especially
regarding performance, two different applications have been implemented: The
first one performs a simple “XOR encryption” with a configurable constant on all

data passing through Exzess while the second actual application performs AES
encryption on the data and thus effectively prevents physical memory disclosure.

For this prototype AES has been used in CTR mode of operation with the
concatenation of a nonce and the currently requested address as start value. The
key and the nonce can be set at configuration time, i.e., boot time, and are not
readable by software afterwards. In real world scenarios, both the nonce and the
key should be randomly generated on each boot.

Device Driver The Linux device driver for Exzess is responsible for initializing
the FPGA as well as for allocating and configuring the DMA and device memory
areas, e.g., the current memory window. After configuration, Linux automatically
exposes all device memory areas as special root-accessible files in the /sys

filesystem (sysfs). The allocated DMA area is exposed by the driver via a
character device /dev/exzess for debugging and verification purposes. Since it
only enables access to the encrypted data, this device file would be unnecessary
in a production environment.

Both the device memory areas and the DMA area can be accessed through
the usual POSIX read/write and mmap system calls using the aforementioned
files. For convenience, a library wrapping those calls with appropriate arguments
into secure malloc and secure free routines is provided.

4 Evaluation

In this section we evaluate Exzess regarding basic functionality and correctness
(Sect. 4.1) followed by performance (Sect. 4.2).

4.1 Correctness

Both applications, “XOR encryption” and AES encryption, were used to verify
that the application interface, the device driver and the hardware are working
together as expected: By inspecting both the contents of the encrypted DMA
area and the plaintext device memory window using XOR encryption a first hint
is given that the data is processed correctly by our memory proxy. To verify the
correctness of our actual application, the AES encryption, OpenSSL was used.
On the one hand, data has been encrypted by Exzess and decrypted by OpenSSL
and on the other hand, it has been encrypted by OpenSSL and decrypted by
Exzess. For both scenarios, a successful comparison of a large number of plain-
and ciphertext pairs leads to the conclusion that the Exzess works as intended.

Furthermore, the device memory area was mapped into a Linux userspace
application and known values were written to this area. By monitoring received
and generated PCIe TLPs on the FPGA and viewing the contents of the DMA
area, the correct functionality of the FPGA could be verified.

To examine the leakage of sensitive data, known patterns were written to the
protected device memory area. Afterwards full physical memory dumps have been
obtained via the /dev/mem special device. We searched for the previously written

known patterns within these images and could not find a single pattern within
one of the dumps. Note that obtaining a physical memory image via /dev/mem is
more strict then performing an actual cold boot attack, because the images do
not contain bit errors and therefore no patterns can be missed.

4.2 Performance

To measure the performance of the AES and XOR application, a benchmarking
application has been implemented which reads and writes device memory areas
100 times and calculates average measurements and error estimates. These
measurements are shown in figure 4 and table 1.

XOR sequential XOR random AES sequential AES random
0

5

10

15

20

25

30

17.2 17.2

8.6 8.6

26.7

13.8

1.1 1.1 1.1 1.1
1.7 1.7

th
ro

u
g
h
p
u
t
[MB s

]

write measured write theor. max.

read measured read theor. max.

Fig. 4. Benchmark results for both applications, XOR and AES in read and write mode.
The measured values are averaged over 100 iterations.

As expected, the measured values are lower than the calculated theoretical
maximum values which are derived from transaction runtimes. The performance
for read transactions, when comparing the XOR and AES applications, is equal
within the precision of measurement. Performance values for write transactions
are lower in the case of AES and the XOR application has roughly twice the write
throughput of the AES application. This is also consistent with the predicted
behaviour.

Random accesses have essentially the same performance as sequential accesses,
at least for writes. In the case of reads, the performance is approximately 1 % lower
for random reads than for sequential reads, both in the XOR and AES application.
The difference is small but much larger than 5σ and therefore significant. While

application access pattern access direction theoretical maximum measured[
kB
s

] [
kB
s

]
XOR sequential write 26667 17223 ± 7

XOR sequential read 1739 1085 ± 1

XOR random write 17221 ± 6

XOR random read 1078 ± 1

AES sequential write 13793 8621 ± 3

AES sequential read 1739 1086 ± 1

AES random write 8620 ± 3

AES random read 1077 ± 1

Table 1. Benchmark results for both applications in read and write mode.

we have no definitive explanation, readahead behaviour is probably the most likely
cause for this difference. Of course there are possibilities to improve performance
and some of them will be discussed in section 6.2.

5 Related Work

Theoretical approaches for full memory encryption [3] are described but practical
implementations to encrypt, for example, swap space [11,10] are also available.
Furthermore, a solution for use in embedded hardware [8] exists. All these solu-
tions, however, are implemented in software and suffer from serious performance
drawbacks while Exzess is a fast hardware solution that protects sensitive data
on the users choice. For embedded hardware there exists work on hardware-based
full memory encryption [9] as well, yet for the most critical and vulnerable species
of personal computers no solution seems to be available.

6 Discussion

In this section, we will list current limitations (Sect. 6.1) of Exzess and give an
outlook over future research directions (Sect. 6.2).

6.1 Limitations

The BAR memory area is generally limited in size by the hardware since all BAR
memory areas of all PCI and PCIe devices in a system need to fit into the PCI
address space which is a hardware-dependent fixed subset of the 32 bit address
space, usually a few hundred megabytes in size. A switch to 64 bit addresses on
the PCIe interface could diminish this limitation. This would also allow for DMA
areas larger than what is addressable by 32 bit addresses.

The current interface to access BAR memory areas from a userspace program
is not very convenient as root access privileges are necessary and the whole
memory area can be accessed. To handle accesses for a normal user and to ensure
the usual page-granular memory mapping and protection, an operating system

interface to map these pages from the BAR memory area into process address
spaces is necessary.

6.2 Future Work

An increase in performance to levels similar to normal RAM accesses could be
achieved with some enhancements. Currently, the configuration of the BAR and
DMA area forbids caching. This means that reads of previously accessed data
are as slow as if accessed for the first time. With caching enabled, each access
after the first one would access the cache, speeding up operations significantly.
Additionally, read accesses are usually performed in cache-line-sized portions and
following data would then be subject to read-ahead, possibly gaining even more
speed.

PCIe TLPs not only contain the memory address subject to a read or write
request but also the bus address of the requester to return data or error messages
to. By only allowing requests from known-good bus addresses, i.e. the root
complex where requests from the CPU originate, and rejecting all requests from
other, possibly malicious PCIe devices, attacks from those devices could be
mitigated as well.

The modular design of Exzess as a transparent memory proxy allows the
development of a lot of different applications far beyond encrypting data to prevent
physical memory disclosure and guarantee confidentiality. Possible applications
include data integrity and authenticity by using, for example, an AEAD cipher
mode. This is possible because both memory areas and the respective requests
do not have to be equal in size. Furthermore, completely different application
scenarios such as error checking, checking the consistency of operating system
structures or hardware-based malware detection could be adopted.

In combination with those integrity checks, the Exzess threat model could
be extended to include certain software-based attacks. When moving beyond
the current FPGA prototype, e.g., towards an ASIC, certain limitations in the
attacker model pertaining to the relative vulnerability of the FPGA could be
replaced by those of a sufficiently hardened ASIC.

7 Conclusion

In this paper we presented Exzess, a hardware-based solution against physical
memory disclosure attacks such as cold boot attacks. The design and implemen-
tation of Exzess as a transparent memory proxy with on-the-fly AES encryption
for all data passing through allows applications and operating systems to trans-
parently access sensitive data within main memory without leaving the data at
risk. We have shown that Exzess successfully mitigates physical attacks on main
memory while maintaining the overall performance of a computer system where
other approaches either fall short or are very limited regarding the data they are
able to protect.

Acknowledgment This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Centre
“Invasive Computing” (SFB/TR 89).

References

1. Becher, M., Dornseif, M., Klein, C.N.: FireWire - All Your Memory Are Belong To Us.
In: Proceedings of the Annual CanSecWest Applied Security Conference. Laboratory
for Dependable Distributed Systems, RWTH Aachen University, Vancouver, British
Columbia, Canada (2005)

2. Carrier, B.D., Grand, J.: A Hardware-Based Memory Acquisition Procedure for
Digital Investigations. Digital Investigation 1(1), 50–60 (Feb 2004)

3. Duc, G., Keryell, R.: Cryptopage: An efficient secure architecture with memory
encryption, integrity and information leakage protection. In: 22nd Annual Computer
Security Applications Conference ACSAC 2006), 11-15 December 2006, Miami
Beach, Florida, USA. pp. 483–492 (2006)

4. Enterpoint Ltd.: Raggedstone 2 - Xilinx Spartan 6 FPGA Development Board, Man-
ufacturer Website. http://www.enterpoint.co.uk/products/spartan-6-development-
boards/raggedstone-2/

5. Gruhn, M., Müller, T.: On the practicability of cold boot attacks. In: 2013 Interna-
tional Conference on Availability, Reliability and Security, ARES 2013, Regensburg,
Germany, September 2-6, 2013. pp. 390–397 (2013)

6. Gutmann, P.: Data remanence in semiconductor devices. In: 10th USENIX Security
Symposium, August 13-17, 2001, Washington, D.C., USA (2001)

7. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold
Boot Attacks on Encryptions Keys. In: Proceedings of the 17th USENIX Security
Symposium. Princeton University, USENIX Association, San Jose, CA (Aug 2008)

8. Henson, M., Taylor, S.: Beyond full disk encryption: Protection on security-enhanced
commodity processors. In: Applied Cryptography and Network Security - 11th Inter-
national Conference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings.
pp. 307–321 (2013)

9. Kurdziel, M., Lukowiak, M., Sanfilippo, M.: Minimizing performance overhead in
memory encryption. Journal of Cryptographic Engineering 3(2), 129–138 (2013),
http://dx.doi.org/10.1007/s13389-013-0047-5

10. Peterson, P.: Cryptkeeper: Improving security with encrypted RAM. In: Technologies
for Homeland Security (HST), 2010 IEEE. pp. 120–126 (Nov 2010)

11. Provos, N.: Encrypting virtual memory. In: 9th USENIX Security Symposium,
Denver, Colorado, USA, August 14-17, 2000 (2000)

12. Satyanarayana, H.: AES128 Crypto Core in VHDL, licensed under LGPL.
http://opencores.org/project,aes crypto core (2004)

13. Skorobogatov, S.P.: Data remanence in flash memory devices. In: Cryptographic
Hardware and Embedded Systems - CHES 2005, 7th International Workshop,
Edinburgh, UK, August 29 - September 1, 2005, Proceedings. pp. 339–353 (2005)

http://dx.doi.org/10.1007/s13389-013-0047-5

	Exzess: Hardware-based RAM Encryption against Physical Memory Disclosure

