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Abstract—The goal of the SLOTH family of operating system
kernels is to provide a unified priority space to the real-time
applications. By automated mapping of tasks to interrupts,
we eliminate rate-monotonic priority inversion and increase
execution determinism. In its standard implementation, however,
SLOTH has been criticized for being unsafe, since interrupt
service routines are executed in supervisor mode. SAFER SLOTH
mitigates this shortcoming—while keeping the favorable proper-
ties of SLOTH—and provides a safe and isolated execution envi-
ronment for application tasks. Adopting the SLOTH philosophy of
embracing and exploiting hardware particularities, its generative
approach automatically tailors the system to both the application
and the target architecture. We achieve efficient MPU-based
memory protection at reduced latency and low performance
overhead by leveraging code inlining and compiler optimizations.
In comparison to a commercial AUTOSAR OS, SAFER SLOTH
achieves speedups between 8x (worst case) and 23x (best case) on
kernel latencies while retaining the SLOTH advantages of strict
priority obedience, excellent determinism and small memory
footprints.

I. INTRODUCTION AND MOTIVATION

Software implementations for embedded systems are usually
judged based on their non-functional properties; besides
properties related to efficiency (e.g., memory footprint or
event latencies), real-time systems need to be executed in
a deterministic way, respecting control flow priorities. In the
automotive industry, embedded systems have lately been added
an additional non-functional requirement: memory safety. Since
in current automobiles several embedded devices by different
suppliers are consolidated on a single hardware platform to
reduce costs, the embedded operating system with a focus on
safety needs to isolate the application tasks from each other.
This way, malfunctions in one application do not necessarily
bring the whole system down and can be contained, which is
especially important in mission-critical systems.

The SLOTH embedded kernels, which implement the au-
tomotive OSEK OS interface [20], have proven to excel
at deterministic execution by preventing certain kinds of
priority inversion, and at efficiency-related non-functional
properties [13], [14]. By utilizing the interrupt subsystem of
the underlying hardware platform for kernel purposes and by
executing application tasks as interrupt handlers, their software
parts are really small. This conciseness is reflected in the code
size (in a minimal feature-complete configuration, the kernel
takes less than 200 LOC), resulting in good certifiability; in
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its small memory footprint, both code and data (less than 400
bytes of ROM and as few as 8 bytes in RAM); and in its low
latencies in processing interrupts and system services (14 clock
cycles for a task switch). Additionally, by executing tasks and
ISRs in the same priority space—the interrupt priority space—,
the execution of high priority tasks cannot be disturbed by
low priority ISRs, eliminating the effect of rate-monotonic
priority inversion [7] and increasing system predictability and
determinism.

Concerning its safety, however, SLOTH has been criticized for
executing application code in interrupt handler context, which
uses supervisor mode privileges of the hardware. Additionally,
AUTOSAR OS [1], the automotive successor standard to OSEK
OS, now prescribes isolation to be enforced by the kernel in
order to isolate applications from different suppliers running on
the same platform. With the SAFER SLOTH design as described
in this paper, we show that we can combine the determinism
and efficiency properties of a hardware-tailored, interrupt-based
kernel with the enforcement of application isolation. By using
hardware-based memory protection together with different
modes for privilege separation between the applications and the
kernel depending on architecture-specific particularities, SAFER
SLOTH is able to ensure system safety at minimal overheads.

A. Challenges

The main problem in the design of the SAFER SLOTH
system is to guarantee application isolation requirements
without sacrificing its deterministic and efficient hardware-
centric nature. This includes several conceptual and technical
challenges that we need to address:

1) Interrupts and ISRs are traditionally thought of as part of
the trusted computing base, which would make SLOTH
application tasks—implemented as ISRs internally—also
trusted. To ensure system safety, however, we need to be
able to isolate SLOTH tasks so that they cannot corrupt
other application tasks or the kernel upon malfunctioning.

2) Traditional operating systems enforce isolation by
hardware-supported privilege separation and system calls,
which are dispatched by a supervisor-mode trap handler in
the kernel. Part of SLOTH’s run-time efficiency, however,
is due to the fact that it inlines its system services into the
application code to allow extensive compiler optimizations
and dead-code elimination; these optimizations are not
possible when using traditional system call traps. Thus,
we need to find additional, resource-efficient ways to



implement privilege separation in SLOTH by utilizing
hardware properties.

3) The original and motivating property of SLOTH, preventing
rate-monotonic priority inversion by using a unified prior-
ity space for all control flows, has to be preserved in a safe
variant of the kernel. Only through constructive prevention
of this kind of priority inversion does SLOTH reach its
excellent determinism and therefore schedulability of real-
time application control flows—properties that are also of
utmost importance in safety-critical systems.

B. Contributions

The design of our SAFER SLOTH system addresses these
challenges; in this paper, we provide the following contribu-
tions:

• We present an analysis of memory and privilege isolation
requirements in embedded systems with the SLOTH
architecture in mind (see Section IV).

• For the SAFER SLOTH system, we develop a sophisticated
design that uses fine-grained application and system
configuration options together with a model of hardware
protection particularities to generate a memory-protected
and privilege-separated kernel–application binary that is
tailored to the application’s safety requirements and the
hardware properties (see Section V).

• Our reference implementation of SAFER SLOTH for the
Infineon TriCore platform achieves small and constant
overheads with 15 to 93 additional cycles per system
service invocation (see Section VII).

• The applicability to other platforms is discussed and
demonstrated by a port of the system to the ARM
Cortex-M3 (see Section VIII). By following the SLOTH
design principle of utilizing hardware peculiarities for
kernel purposes on both implementations, SAFER SLOTH
provides isolation while preserving a universal control flow
abstraction in a unified priority space (see Section VI).

II. SAFETY MODEL

The main focus of a real-time operating system is to
ensure that applications can fulfill their real-time requirements
through timely execution. In order to additionally guarantee
certain safety properties, the kernel has to introduce isolation
boundaries between applications. These boundaries can be
implemented by a memory protection unit (MPU) on the
hardware platform, which, in contrast to a full-blown memory
management unit (MMU), enforces access rights to physical
memory segments but does not provide virtual address spaces.

With respect to the enforced access rights, SAFER SLOTH
aims to protect write accesses to data but not execute accesses
to code segments. We adopt this model of protecting the data
but not the code from the automotive industry; the AUTOSAR
OS standard [1] specifies this kind of isolation mechanism
to focus on safety, but not security. We do, however, extend
the protection semantics proposed in AUTOSAR OS by the
possibility for sharing data between domains—a drawback that
has been criticized by AUTOSAR OS users. Our model assigns

application data to an intermediate abstraction called protection
domains, which can then be configured to be allowed access
by one or more tasks and ISRs. This way, both task-private
data and shared data can be modeled by the application to be
isolated from other control flows.

III. BACKGROUND

A. Sloth Revisited

SAFER SLOTH extends the design and implementation of the
original SLOTH kernel, which is described in [13]. The main
design idea in the SLOTH kernel is to have user tasks run as
interrupt handlers internally—transparent to the application. By
using interrupt sources and interrupt priorities for application
tasks, the SLOTH kernel can rely on the interrupt subsystem
of the commodity hardware to do the fixed-priority scheduling
and dispatching for it, leaving the software part of the kernel
very small.

From an interface point of view, SLOTH implements the
OSEK OS API specification [20], the compatible predecessor of
AUTOSAR OS [1], both developed by the automotive industry.
OSEK (and, therefore, SLOTH as well) is a statically configured
system; its system calls are also called with statically known
parameters, such as task IDs by the application. In its BCC1
variant, which we use as a basis for the discussion of memory
protection in this paper, OSEK offers basic tasks, which run
to completion (i.e., they cannot block) and are scheduled
based on their statically configured priorities. The OSEK
system service to activate a task is implemented in SLOTH by
setting the request bit in the interrupt source corresponding to
the given task. Terminating the running task is implemented
by simply executing a return-from-interrupt instruction. Both
services trigger a priority arbitration of the interrupt subsystem,
which will then schedule and dispatch the task with the next-
highest priority automatically. A small task prologue at the
beginning of each interrupt handler is responsible for saving
the comprehensive context of the interrupted task, which will
be restored on task termination.

B. Hardware Requirements

SLOTH as well as SAFER SLOTH run on commodity off-the-
shelf microcontroller systems; however, the hardware-centric
nature of their designs poses certain requirements on the
implementation to be feasible:

1) Both SLOTH and SAFER SLOTH need the platform to
provide as many interrupt priorities and interrupt sources
as there are application tasks and ISRs in the system.

2) Both SLOTH and SAFER SLOTH need the platform to
provide means to trigger an interrupt manually from within
software—either through a special instruction or through
memory-mapped hardware registers.

3) SAFER SLOTH additionally requires a memory protection
unit (MPU) on the platform. Depending on the application
configuration (see Section V), the implementation requires
the platform to offer different privilege levels (typically
user and supervisor mode) and a sufficient number of
memory ranges with configurable access rights.



Many 32-bit microcontroller platforms fulfill those require-
ments, including the two target platforms we implemented
SAFER SLOTH on; the ARM Cortex-M3 offers up to 256
priority levels and an MPU with 2 privilege levels and 8
memory ranges; the Infineon TriCore TC1796, offers 256
priority levels with almost as many IRQ sources with memory-
mapped registers, plus an MPU with 3 privilege levels and 2
protection sets with 4 memory ranges each.

IV. MEMORY PROTECTION IN EMBEDDED SYSTEMS

From a functional perspective, our primary goal in SAFER
SLOTH is to isolate application tasks in terms of write access
to memory. In the area of embedded real-time systems, this is
commonly achieved by a memory protection unit (MPU) pro-
vided by the hardware platform. To enforce memory protection
boundaries, an MPU transparently compares the address of each
memory access to a configured set of ranges that are usually
stored in dedicated hardware registers. The memory ranges can
be organized in multiple sets of ranges to allow faster switching
between pre-programmed configurations. A memory range is
defined by a lower and upper bound and attributes that allow
or deny reading, writing, and executing code from or to the
enclosed memory region. Other approaches such as language-
based software safety do exist; in the automotive domain,
however, MPU-based protection as specified by AUTOSAR
OS is the state of the art (see discussion in Section VIII),
which is why SAFER SLOTH focuses on this type of memory
protection.

In order for the horizontal isolation between application
tasks enforced by the MPU to be effective, the isolated control
flows must be prohibited from manipulating the state of
the MPU itself; otherwise, there would be no actual safety.
The common, straightforward implementation of this vertical
isolation between the application and the kernel is to demote
application code to a lower privilege level at which the platform
guarantees that no reconfiguring or disabling of the MPU can
take place. Whenever the kernel, being the trusted computing
base, then needs to change the MPU configuration, some
mechanism—usually a trap used to dispatch the requested
system call—is used to temporarily equip it with the suitable
high privilege level.

In the SLOTH kernel, however, all control flows are imple-
mented as interrupt service routines, which usually implies
execution at the highest privilege level. On the one hand, it is
perfectly possible inside an ISR to switch to a lower privilege
level before executing the application code and then use a
traditional system call mechanism for kernel operations. On
the other hand, however, such a mechanism often comes with
a high overhead and, more importantly, interferes with a core
advantage of SLOTH, which is the inlining of system services
and the subsequent optimizations based on static knowledge in
the code. For this reason, we examine how we can exploit the
properties and particularities of the underlying hardware in such
a way that we can find alternatives to the traditional approach
of executing user code at lower privileges and using traps for

kernel operations, while still providing the same degree of
safety and also benefit from less run-time overhead.

V. SAFER SLOTH DESIGN

The SAFER SLOTH framework shown in Figure 1 follows
the design of the original SLOTH generation architecture, which
already achieves highly optimized code paths by static analysis.
Since the whole system is configured statically, the configura-
tion is used to tailor the memory protection mechanisms to the
application requirements and, most importantly, to a particular
hardware platform.

A. Hardware Architecture Model

As SLOTH tries to exploit the features of the target hardware
in an efficient way, it is essential to customize the system to
the needs of the application as well as to the peculiarities of
the hardware. Different protection modes in SAFER SLOTH
have different requirements on the specific properties of the
hardware that also influence the applicability. This includes
the number of memory ranges and their organizational layout
in the MPU, support for different privilege levels, and whether
memory protection is active in all of these levels.

As shown in the analysis in Section IV, hardware support is
required to implement memory protection in order to isolate
tasks from each other. For the purpose of SAFER SLOTH, only
the memory protection attributes for data access are relevant, as
we focus on denying data write accesses outside the configured
protection domains to isolate tasks from each other according
to our safety model presented in Section II, which is adopted
from AUTOSAR.

For proper isolation in SAFER SLOTH, tasks need to have
a lower privilege level, as they should not be allowed to
execute privileged instructions, which could potentially re-
program or disable memory protection. Although this separation
of privileges is required to prohibit access to the MPU
configuration, in a statically configured system this can be
achieved by different means than hardware-enforced privilege
levels. If the instructions to re-program the MPU can be
unambiguously identified in the machine code, a static analysis
on the compiled binary can detect them outside of system
services. Therefore, if the MPU is active in supervisor mode,
the costly traps can be avoided, while ensuring execution of
privileged operations by the kernel only without additional
measures at run time.

Depending on the hardware, the MPU is usually configured
either by dedicated privileged instructions or through memory-
mapped registers. Dedicated instructions are easy to identify
in the machine code, while address calculations to memory-
mapped registers are harder to detect. We discuss further
implications of such a protection mode in Section VIII.

B. SAFER SLOTH Protection Modes

The original SLOTH implements an unsafe mode, without
horizontal isolation between tasks. For SAFER SLOTH, we
present two modes of MPU-based memory protection that
introduce different approaches for the isolation of tasks.



System Configuration:

Protection mode:
unsafe MPU MPU+traps

Application Configuration:

Tasks:

Task1

Task2

Task3

privlevel: 0

privlevel: 1

privlevel: 0

Dom1

Dom2

Dom3

var1

var4

var2

var3

Domains: Data:

Static Configuration

Validation

Generation

TriCore TC1796:

• MPU ranges: 4
• MPU range sets: 2
• privilege levels: 3

0 =̂ user mode
1 =̂ user mode with periphery access
2 =̂ supervisor mode

• MPU active in supervisor mode:�X
• post-validation available:�X

Hardware Model

Syntax: [<range idx>] = {<from>, <to>}

Task1 MPU Ranges:

[0]= {BEGIN_stack, %sp}
[1]= {BEGIN_Dom1, END_Dom1}

Task2 MPU Ranges:

[0]= {BEGIN_stack, %sp}
[1]= {BEGIN_Dom2, END_Dom2}
[2]= {BEGIN_Dom3, END_Dom3}

Task3 MPU Ranges:

[0]= {BEGIN_stack, %sp}
[1]= {BEGIN_Dom3, END_Dom3}

Task → MPU Ranges Map

...

var1

var2

var3

var4

Dom1

Dom2

Dom3

Stack
END_stack

BEGIN_stack

END_Dom1

BEGIN_Dom1

etc.

0x0

Memory Map

Binary

Post-Validation

Ê

Ë

Ì

Í

Fig. 1: SAFER SLOTH architecture: The application goes through several steps starting at the configuration, followed by the
validation and system generation, to the compiled binary. Depending on the mode, a post-validation step is required.

In the MPU+traps mode, the separation of privileges is
achieved by support of hardware privilege levels that enforce the
boundary between the privileged kernel and the unprivileged
tasks at run time. As all tasks are dispatched as interrupt
handlers, the privilege level will be lowered in a small prologue
in the interrupt service routine before the actual task function is
called. System call instructions trap into the kernel, where the
system services are executed at the highest hardware privilege
level.

Furthermore, we propose an MPU mode for SAFER SLOTH,
in which the whole system runs in a privileged mode including
the tasks provided by the application. In this mode the costly
switches between different privilege levels can be avoided,
while memory accesses conducted by the tasks are still isolated
within their defined boundaries.

C. Application Configuration

In order to support the different protection modes, the
system configuration Ê in Figure 1, specified by the application
developer, controls whether tasks run with memory protection
enabled at all and whether privileges are separated by running
tasks in an unprivileged user mode.

For memory protection in SAFER SLOTH, the application
configuration associates tasks to one or more protection
domains, which define the boundaries of data write accesses
allowed at run time later on. For this purpose, the application
programmer assigns each variable to a specific domain either
in the configuration or by adding annotations directly in the
source code:

int var1 DOMAIN(Dom1);
int var2 DOMAIN(Dom1);
int var3 DOMAIN(Dom2);
int var4 DOMAIN(Dom3);

In addition to what is specified by AUTOSAR, the domains
may be allocated to multiple tasks, which allows them to share
data using the contained variables. Depending on the underlying
hardware platform, the number of task–domain assignments is
limited by the number of MPU ranges provided. For instance,
if there are four MPU ranges available, each task may have
at most three domains assigned, as the fourth range is used
to protect the stack. Note that this does not limit the total
number of tasks, domains, or variables in a system, but only
constrains the complexity and fragmentation of data sharing
between tasks. In the example shown in Figure 1 at most three
MPU ranges are used at the same time, as seen in the range
map of Task2 shown at Ì.

Particularly if MPU+traps mode is selected in Ê, application
code is executed at a lower hardware privilege level than
the kernel. The second input box Ë in Figure 1 reflects
the hardware-specific properties, which includes the available
privilege levels that can be configured on a per-task basis.

D. Validation

The validation step in Figure 1 analyzes the applicability of
the chosen configuration for the target hardware platform as
specified in the hardware model.

Additionally, to avoid compromising safety in MPU mode,
the use of privileged instructions reprogramming the MPU or
disabling memory protection altogether has to be limited to



system services only. As all tasks run with supervisor privileges
in this mode, the hardware itself does not restrict execution of
privileged instructions. Thus, additional measures need to be
deployed in the form of a post-validation step.

This post-validation step identifies and reports use of forbid-
den privileged instructions in the application code outside of the
inlined kernel system services after compilation of the binary.
The identification method for privileged instructions in the
compiled binary using an offline analysis is dependent on the
hardware architecture and instruction set. Later modifications
of the code must not be allowed by the hardware platform
by either an inherent design feature as loading the code from
ROM, or with memory protection preventing writes to the code
segment.

E. Generation and Compilation

After the inputs have been validated and the applicability of
the configuration has been checked, the generation step tailors
the system to the needs of the application and to the target
platform.

The assignment of domains to tasks is represented by
references to the lower and upper bound of each domain
for each task. Implicitly, one domain is always reserved for
accesses to the stack. Based on this mapping Ì in Figure 1, a
linker script is generated that is used to link the compiled code
to the final binary. The annotated variables from the source
code are grouped by their associated domains and placed into
the corresponding memory locations forming the addresses to
be used as lower and upper bounds of the domains, as shown
as an example in the memory map Í in Figure 1.

Furthermore, switches between the different protection do-
mains only take place at certain transitions. For the dispatching
of new tasks, the lower and upper bounds and access rights of
each memory protection domain of the dispatched task have to
be configured in the MPU. This code modifying the memory
protection registers will be generated to adhere to the overall
static configuration of the system. As it does not need to make
dynamic decisions, it will be generated once per task and will
reside completely in ROM.

VI. IMPLEMENTATION

We have implemented SAFER SLOTH on two platforms,
the Infineon TriCore TC1796—which is widely used in the
automotive industry—and the ARM Cortex-M3. We provide
evaluation results for both platforms in VII, but due to space
constraints, the presentation of implementation details in this
section is limited to the TriCore architecture.

The TC1796 offers three privilege levels, namely one
supervisor mode and two user modes, whereas the slightly
more privileged level User1 still allows access to the periphery
and the lowest level User0 does not. The chip also comes with
an MPU that can switch between two protection configurations
(referred to as sets) with range registers to specify data access
rights to four different memory ranges.

The hardware requirements for SAFER SLOTH established
in Section III-B are therefore satisfied. Furthermore, the MPU

operates without regarding the current privilege level, and thus
enforces its limits within supervisor mode as well. This is an
essential prerequisite for the implementation of MPU mode to
be possible on this platform.

A. Horizontal Isolation of Tasks

In all modes, the horizontal isolation is enforced by configur-
ing the MPU in such a way that write accesses of a particular
task are limited to the memory domains explicitly assigned to
it. This means that the range registers of the MPU that define
the permitted memory areas need to be updated whenever a
different task gets dispatched. As a consequence, the MPU
must also be deactivated whenever an application invokes some
kind of kernel operation that involves write access to kernel
state residing in memory.

For setting up task-specific MPU configurations when a
task is dispatched, both the task prologues and the termination
routines are extended to reconfigure the MPU. Since each
task prologue is specifically generated for a single task, the
appropriate range register values are statically known at compile
time. Here, the introduced overhead amounts to the instructions
required to load the MPU configuration, which corresponds
to the number of domains assigned to this particular task.
Equally, when terminating a task, the MPU configuration of
the previously preempted—now restored—task needs to be
restored as well. In contrast to the individual task prologue,
it is not statically known at this point which task this will
be. As a result, the code inserted into the termination routine
needs to perform a dynamic decision at run time by looking
up the MPU configuration belonging to the restored task ID
from ROM.

Furthermore, basic tasks are considered run-to-completion
in OSEK. SLOTH takes advantage of that fact by having tasks
share a single stack for the entire application. Due to this,
however, SAFER SLOTH can not simply consider a certain
stack region to be a static part of a task’s MPU configuration
in order to isolate tasks from stacks of other tasks. Instead, the
MPU range set up for granting a task access to its own stack—
therefore prohibiting access to foreign stacks—is determined
dynamically whenever a task is newly dispatched. This is
realized in the task prologue by updating the upper limit of the
MPU region to the current stack pointer, prohibiting access to
the stack frames of the preempted task. The lower limit remains
unchanged to keep each task unrestricted in its maximum stack
usage. Upon termination of a task, the previous upper limit is
restored to the stack region in the MPU configuration.

B. Vertical Isolation between Kernel and Tasks

MPU reconfiguration is also required for any system services
that involve writing to kernel memory. These are extended
with instructions that switch the MPU to the second set at the
beginning of the system service. This second set is initialized
once during startup and configured to allow access to the kernel
state. Correspondingly, code at the end of the system service
is inserted to switch back to the previous set and thereby
re-enabling the protection. Figure 2 shows a representation



Task1:
...
; inlined call to
; GetResource(Res1):
pushResourceStack(prio);
prio = getCurPrio();
if (Res1 > prio) {

setCurPrio(Res1);
}
...

unsafe Mode:

Task1:
...
; disable MPU
mfcr %d15,$psw
insert %d15,%d15,0,12,1
mtcr $psw,%d15
<acquire resource Res1>
; enable MPU
mfcr %d15,$psw
insert %d15,%d15,15,12,1
mtcr $psw,%d15
...

MPU Mode:

Task1:
...
syscall 2
...

trap_6: ; syscall trap
<syscall dispatcher>
ji ...

real_GetResource:
<acquire resource Res1>
rfe

MPU+traps Mode:

Task1:
...
syscall 0
<acquire resource Res1>
; load current pc
mfcr %d15,$pc
add %d15,2
; overwrite return address
mov.a %a11,%d15
rfe
...

; syscall trap
trap_6:
ji %a11

MPU+itraps Mode:

System service implementation

Supervisor mode

User mode

generates trap

jumps back

returns to

Fig. 2: Comparison of an example system service call in the four different protection modes of SAFER SLOTH.

of a compiled task named Task1 which contains a call to
the OSEK system service GetResource() for obtaining the
resource Res1:

TASK(Task1) {
...
GetResource(Res1);
...

}

The unsafe listing in Figure 2 shows how this call is inlined in
the original SLOTH implementation with no memory protection
enabled.

MPU mode—Constructive Vertical Isolation. As illus-
trated by second-to-left in Figure 2, MPU mode inserts instruc-
tions for disabling and enabling the MPU around the actual
system service implementation. Note that this does not affect
the compiler’s ability to inline and optimize the entire function
in the application code.

In the case of the GetResource() call in this example,
disabling the MPU is mandatory because the system service
requires to write to the kernel state in memory. Due to the
design of SLOTH, however, this does not necessarily apply to
all kinds of system services. For example, the ActivateTask()
implementation on the TC1796 merely disables interrupts,
triggers the appropriate IRQ, executes a few no-operations
to ensure a completed interrupt arbitration, and then enables
interrupts. No memory access is involved; therefore, this system
service remains exactly the same as when memory protection
is disabled in the system configuration.

Since in MPU mode, the application tasks still execute
with full privileges, they are not prohibited from accidentally
disabling or reconfiguring the MPU on their own, which would
compromise the safety of the system. Fortunately, on the
TriCore platform, the instructions for manipulating the MPU
configuration consist of dedicated opcodes. This allows the
detection of unintended, safety-compromising instructions in
the application code within the post-validation step of the
system, which is further discussed in Section VIII.

C. Vertical Isolation by Hardware Privilege Levels

In contrast to MPU mode, the modes MPU+traps and
MPU+itraps enforce vertical isolation by executing application

tasks at a lower privilege level, at which disabling or reconfig-
uring the MPU is prohibited by the hardware. Since all control
flows in SLOTH start out being an interrupt service routine,
they normally run in the fully privileged supervisor mode. In
order to achieve the execution at a lower privilege level, the
task prologue—a small piece of code which is responsible for,
amongst others, saving the context of the preempted task—is
extended so that the supervisor privileges are explicitly dropped
before entering the actual application code of the task. On the
TriCore platform, this is implemented by resetting a single flag
to zero. Depending on the application configuration for this
task, the selected privilege level is either User0 or User1 for
the remaining execution of the task.

With tasks now running at a low privilege level, it is not
possible anymore for system services to be directly invoked
and disable the MPU as they do in MPU mode. Instead, at
the transition from the task into the kernel it is required to
elevate the privilege level to allow the system services to
execute privileged instructions. System services therefore need
to perform a privilege switch by generating a trap, for which we
present two alternative implementations. The first one matches
the traditional approach of using a trap handler that dispatches
the desired system call based on a parameter passed along with
the trap. As a second variant, we devised a new mechanism
called inline traps (or MPU+itraps mode), which implements
a system call trap that preserves the advantages of inlining
system services into the application code.

MPU+traps—Traditional System Calls. This mode em-
ploys a traditional scheme using a trap handler and a table
of system services for dispatching. On the TriCore platform,
the syscall instruction causes a dedicated trap handler to
be invoked, to which parameters can be passed in general
purpose registers. The trap handler is implicitly executed in
supervisor mode and, thus, the code of the real system service
can be executed at this privilege level. The execution sequence
of this implementation is shown in the MPU+traps mode in
Figure 2. Incidentally, when entering a trap handler, the MPU
automatically switches to the kernel domain set (and back
to the previous set when leaving), eliminating the need for
explicitly changing the set as in MPU mode.

By using a dispatch table for the different system calls,



the invocation of a system service is bound late to their
corresponding implementation. This inhibits the elimination
of dead code, which is a strong feature of the SLOTH system.
The resulting code paths in the system services are taken on
conditions only known at run time. Although some parameters
are statically known at compile time, optimizations by the
compiler are not possible in this mode.

MPU+itraps—Inline Traps. The disadvantages of using
a traditional system call interface led to the conception of
an alternative, which interleaves the trap mechanism with the
inlined code of the system service. Due to their shortness and
the statically known parameters, most system services benefit
greatly from code inlining made possible with this approach.
The resulting machine code and the execution sequence as
illustrated in the rightmost section of Figure 2 is as follows.

The user code begins the system call using the usual syscall
instruction, which transfers control to the trap handler. At
the entry of the trap handler, we instantly jump back to the
return address of the trap stored in the %a11 register. Note
that, unlike a return-from-exception instruction, this does not
leave the trap context but retains the supervisor privileges and
the kernel domain set as active in the MPU. At the return
address, the machine code following the syscall instruction
is simply the inlined implementation of the actual system
service. As the insertion of the syscall instruction and the
implied manipulation of the control flow is transparent to
the C compiler, it correctly assumes the same context in
terms of register contents for the inlined code, which is not
disturbed by the short detour through the trap handler. The
system service implementation can therefore fully benefit from
compiler optimizations such as the resolution of statically
known expressions and dead code elimination.

Since the execution of the system service takes place in the
call frame of the trap handler, it needs to be terminated with
an rfe return-from-exception instruction inserted at its end.
However, the return address recorded in %a11 still points to the
beginning of the sequence. For rfe to work as expected and
continue executing at the next instruction, the return address is
patched first by loading the current program counter (adjusted
by 2) into %a11. The rfe instruction then eventually performs
the exit from the trap handler context and resumes execution
at the next instruction of the application code.

This setup essentially transforms the syscall instruction
into an acquire-supervisor-privileges instruction. Due to the
syscall instruction being inserted as an asm volatile
statement, it effectively serves as a barrier between memory
access of the application code and the system service code,
preventing any reordering of unprivileged code into the
privileged execution of the system service. Nevertheless, to
ensure the system safety of this mode, additional post-validation
is necessary to rule out false use of the syscall instruction.
The implications of this mode are discussed in Section VIII.

VII. EVALUATION

For evaluating SAFER SLOTH, we want to assess both the
impact it has in terms of additional overhead in comparison to

the original, unprotected SLOTH kernel and also compare these
observations to the effects that enabling memory protection
in a traditionally designed system has on their respective
performance. In this section, we first focus on the reference
implementation of SAFER SLOTH for the Infineon TriCore
TC1796 and will then provide a brief presentation of the
measurement results obtained on the ARM Cortex-M3.

A. Evaluation Setup

We carried out measurements on a TC1796 clocked at
50 Mhz, using a hardware trace unit by Lauterbach, which
allows to analyze the precise number of cycles spent between
two given lines of code. This way, we measured benchmarks
repeatedly at least 1,000 times and we could observe that the
deviations from the average have been negligible in all cases.
The final results were calculated by averaging all measured
intervals within the sample.

We devised a small, platform-independent example appli-
cation to be used as a test and measure environment; it
consists of three tasks and two shared resources. The user
code performs a sequence of interactions between tasks so that
all system services and transitions relevant to SAFER SLOTH
take place and can be measured. In cases where a system service
possibly—depending on the preemption circumstances—entails
the dispatching of another task, both scenarios were measured
separately. If a dispatch is included in the test case, the trace
unit was set up to measure up to the first instruction of the user
code belonging to the dispatched task. For new activations—as
distinguished from resuming a preempted task—, this means
that the entire prologue of the new task is part of the measured
interval.

B. Quantitative Evaluation of Overhead Composition

Table I(a) provides a comprehensive overview of the mea-
surement results obtained for SAFER SLOTH on the TC1796.
For each of the seven test cases, the first column lists the
baseline overhead for the original SLOTH kernel configured
in unsafe mode. The following three columns contain the
additional overhead that is introduced by enabling protection
by each of the three modes, one at a time.

Comparing the delta values of the various system services
separately in each column reveals that the impact varies
strongly with the system service. Qualitatively, these differences
persist throughout the different protection modes; for instance,
ChainTask() exhibits the highest delta in all modes. This can
be attributed to the different actions introduced in each test
case for controlling the MPU. As an example of low overhead,
the ActivateTask() call without dispatch is not affected at
all in MPU mode, since no additional measure was inserted
here (see Section VI-A). In contrast, the 80 additional cycles
for ChainTask() with dispatch in MPU mode reflect the fact
that this test case covers both the restoration of the previous
task’s range set in the MPU and the MPU reconfiguration
that takes place in the prologue of the newly dispatched
task. This measurement is also consistent with the results
for the other three dispatching calls, which each yield half the



Protection Mode

a) SAFER SLOTH unsafe MPU MPU+traps MPU+itraps

ActivateTask() without dispatch 36 +0 +28 +15

ActivateTask() with dispatch 57 +39 +72 +54
TerminateTask() with dispatch 14 +41 +65 +57

ChainTask() with dispatch 64 +80 +108 +93

GetResource() 14 +6 +22 +15

ReleaseResource() without dispatch 9 +6 +24 +18
ReleaseResource() with dispatch 30 +41 +64 +60

b) Commercial AUTOSAR OS unsafe MPU+traps

ActivateTask() without dispatch 459 +39

ActivateTask() with dispatch 768 +273

TerminateTask() with dispatch 536 +192

ChainTask() with dispatch 856 +273
GetResource() 393 +40
ReleaseResource() without dispatch 342 +0
ReleaseResource() with dispatch 740 +235

TABLE I: SAFER SLOTH (a) and commercial AUTOSAR OS (b) measurements on the Infineon TriCore TC1796: The first
column provides the baseline of the regular SLOTH in unsafe mode (in number of cycles; all bars drawn to the same scale).
The other three columns contain the delta values indicating the additional overhead introduced by each protection mode. For
the commercial OS, only an equivalent of MPU+traps mode is available.

amount of additional cycles. The test cases GetResource()
and ReleaseResource() without dispatch also stand out for
adding only 6 cycles in MPU mode, which correspond to the
comparatively cheap disabling and re-enabling of the MPU.

The results for the MPU+itraps mode show that our inline
traps mechanism yields a consistent improvement over the
traditional trap implementation in the MPU+traps mode.

C. Comparison to Commercial AUTOSAR OS

We also measured a widely used commercial AUTOSAR
OS implementation1 for the Infineon TriCore to compare it
to SAFER SLOTH. This system is an implementation of the
AUTOSAR OS standard, which specifies a safety model that
is similar to the one we use in SAFER SLOTH. We used the
same application and measurement setup as in SAFER SLOTH.

Table I(b) lists the measurement results, contrasting a system
configuration with disabled memory protection against one
with enabled memory protection. For simple comparison, the
increases in overhead are depicted with bars at the same scale
as in Table I(a). For all but one test case, both the baseline
costs and their increase when enabling protection surpasses
what we achieve in SAFER SLOTH. The only exception—with
zero additional cost—is the ReleaseResource() call without
dispatch. Since we do not have access to the system’s source
code, it is difficult to speculate about the cause for this. It
is remarkable, though, that already the unsafe variant of the
commercial system entails a significantly higher run time of
system services than any of the SAFER SLOTH variants.

1tresosECU by Elektrobit Automotive, used by VW and BMW in their
standard cores, amongst others.

D. Evaluation on the ARM Cortex-M3

Additionally to the measurements carried out on the TC1796,
we also performed measurements on the ARM Cortex-M3.
Unfortunately, no commercial AUTOSAR OS implementation
for this platform was available to us, therefore limiting this
evaluation to a comparison of the unsafe mode to the three
different protection modes of SAFER SLOTH on the ARM
Cortex-M3. The measurements were obtained using the same
test application as for the TriCore platform, except that an
internal clock cycle counter was used instead of a hardware
trace unit. As you can see in Table II, the overhead dealt for
reconfiguring the MPU turns out to be significantly higher than
on the TC1796; it amounts to around 130 cycles. However,
the MPU+itraps protection mode achieves favorable overheads
compared to MPU+traps throughout all test cases. Overall, the
results exhibit a high similarity to the TC1796 evaluation in,
for instance, the zero overhead for ActivateTask() in MPU
mode and the low costs of disabling the MPU in the resource
services.

VIII. DISCUSSION

With SAFER SLOTH, the interrupt-driven SLOTH kernels
now also provide efficient means for memory isolation. In the
following, we discuss some particularities of our design and
how the general SLOTH philosophy—to embrace and exploit
hardware particularities instead of blindly abstracting from
them—fits to the requirements of memory isolation in safety-
critical real-time systems.

A. Effect on Real-Time Characteristics

First and foremost: As its predecessors, SAFER SLOTH
provides excellent predictability and priority obedience, and all



Protection Mode

unsafe MPU MPU MPU
SAFER SLOTH +traps +itraps

ActivateTask() w/o dispatch 7 +0 +71 +34
ActivateTask() w/ dispatch 39 +118 +207 +180
TerminateTask() w/ dispatch 27 +148 +174 +162
ChainTask() w/ dispatch 57 +254 +333 +309
GetResource() 19 +20 +80 +35
ReleaseResource() w/o dispatch 20 +21 +70 +35
ReleaseResource() w/ dispatch 49 +126 +207 +180

TABLE II: SAFER SLOTH measurement results on the ARM
Cortex-M3 in number of cycles.

issues of rate-monotonic priority inversion [7] are prevented
by construction. However, depending on the chosen protection
level, the latencies for system services go up, caused by the run-
time overhead for privilege switches and MPU reconfigurations.
Even though the relative overhead is high (up to a factor of four
for unsafe versus MPU+traps mode), the absolute overhead
with a maximum of 93 clock cycles on TriCore is remarkably
low and, furthermore, constant and computable at compile time.
By its interrupt-driven design, SAFER SLOTH in MPU+traps
mode is still five to nine times faster than the commercial
AUTOSAR OS in unsafe mode and eight to twelve time faster
than the commercial AUTOSAR OS in MPU+traps mode.

B. Unprivileged Interrupt Handlers

In personal discussions at previous RTSS conferences
where we presented our work on SLOTH, the most frequently
expressed concern was the fact that by modeling all tasks as
interrupt handlers they implicitly run with kernel privileges—
hence, strong isolation does not appear to be feasible with our
approach.

From the technical point of view, we considered this concern
as somewhat surprising: Also with a software-based scheduler,
a thread would initially start in kernel mode—it is up to the
kernel to ensure that the thread executes some kernel code to
lower its privilege level before leaving the kernel. In SAFER
SLOTH this works in a very similar manner: The interrupt
handler does not map directly to the task function, but to a
small prologue, which is generated for each task and which
sets up the task-specific privileges before invoking the actual
task function.

From the conceptual point of view, however, we assume
that the frequent expression of this concern underlines that
tasks and interrupts are still perceived as two fundamentally
different abstractions—which is not true: At its core, the
only difference between interrupts and tasks is their activation
by hardware versus software. With current microcontrollers,
all further differences (prioritization, privileges, latencies,
blocking/non-blocking execution, and so on) are just a matter of
system-software design! SLOTH has always featured a unique
control-flow abstraction that is independent from the kind
of activation [13] and blocking semantics [14]; with SAFER
SLOTH this now also holds for memory isolation and privilege
separation.

C. How Safe is Safe?

As pointed out in Section II, the major motivation for
memory isolation and privilege separation in embedded control
systems is safety, not security: In the automotive industry, for
instance, the OEMs co-locate control applications provided
by different suppliers on a single microcontroller. These
applications are generally considered trustworthy—but not bug
free. Hence, memory isolation is applied as a means to isolate
the effects of potential bugs and, eventually, the liability issues
that may be caused by them.

Aside from the "traditional" unsafe and MPU+traps modes,
SAFER SLOTH in its MPU+itraps and MPU modes provides
intermediate modes that delegate parts of the enforcement
of privilege separation from run-time checks to compile
time checks and constructive software development measures.
The feasibility, benefits, and resulting safety of these modes,
however, depend to a high degree on the architecture and the
application—the SLOTH philosophy is to automatically tailor
the kernel to both.

In the MPU+itraps mode, for instance, all system services
get inlined into the application code—embraced by the explicit
raising and lowering of the privilege level to supervisor mode,
which on the TriCore is technically implemented with the
syscall and rfe instructions and a "jump-back" trap handler
(see Section VI). To guarantee safety with this setup, one has
to make sure that the application code cannot accidentally raise
its privilege level (i.e., invoke syscall outside of a system
service). As (a) we can assume immutable code (see Section II)
and (b) syscall on TriCore and svc on ARM are dedicated
opcodes, it is straightforward to check the application’s binary
against the direct invocation of the corresponding opcode in
the post-validation step at compile time (see Section V). This
still leaves the (much smaller) potential danger of an accidental
indirect invocation via an erroneous indirect jump that may
be caused by (c) an accidentally overwritten return address
or (d) an invalid function pointer. Again, this depends on the
architecture and application: On the TriCore, for instance, the
call stack is managed in protected memory and separately from
the data stack so that (c) is impossible; on the Cortex-M3 as
well as on many other platforms, the compiler can be instructed
to insert code for extra return address validation, rendering (c)
virtually impossible. The use of function pointers in application
code is uncommon in embedded control applications—and
even explicitly forbidden by many safety-related development
standards, such as MISRA-C. Thus, in many cases, (d) can be
ruled out by construction.

In the even more efficient MPU mode, all application
code runs in supervisor mode. System services get inlined—
embraced by the explicit reconfiguration of the MPU. This
requires, additionally to the above, an architecture where (e) the
MPU is not implicitly disabled in supervisor mode and (f) it
is possible to check at compile time that the application code
cannot accidentally access the MPU control registers. On the
TriCore, (e) is given and the MPU registers are accessible by
dedicated opcodes only, so for (f), the same line of argument



applies as for the syscall instruction above. The same holds
for other (potentially harmful) privileged instructions, such
as disable or sleep. On the ARM Cortex-M3, (e) is given
as well. Regarding (f), however, MPU registers are memory-
mapped, so post-validation will be much more difficult—
although not infeasible, considering the recent advances in
applying model checking techniques to prove properties of low-
level system software [2]. Other memory-mapped hardware
registers, for instance for programming a DMA-capable device,
do also imply a danger, but can often be protected by the MPU
itself.

In addition to such platform-specific limitations of the MPU
and MPU+itraps modes, they also imply a safety trade-off if
the fault model includes transient faults or potentially malicious
applications. Since both modes rely on validated properties of
the user code, they are susceptible to, for instance, bit flips
in address registers or even the program counter, possibly
leading to destructive behavior in the user code regardless of
its validation. In case post-validation is deemed too difficult
on a particular platform, or the user’s fault model rules out
relying on validated code, the more conservative MPU+traps
mode therefore might be the preferred choice despite higher
costs in terms of latency and memory footprint.

D. Hardware Limitations

As outlined in Section V, an application configuration is
not entirely unrestricted with regards to the degree of data
sharing between tasks. Since MPUs commonly only provide a
finite number of configurable memory ranges, the underlying
hardware imposes an upper limit to the number of domains
assigned to each task in a SAFER SLOTH application. Other
than requiring the system designer to work around this issue by,
for instance, merging domains where it is feasible, a possible
remedy could be to offer a kind of virtualization layer between
tasks and domains. This layer could allow tasks with many
assigned domains to switch between subsets of these domains—
each subset small enough to fit into a set of MPU ranges—
whenever necessary. This would, of course, deal additional
overhead for reconfiguring the MPU during the execution of
tasks that have many domains assigned.

E. Applicability and Tailorability

The SAFER SLOTH design proves to be well portable to
different hardware platforms, whereas the degree of safety that
can be offered to the application depends on external factors
such as the specific properties of the underlying hardware.
The optimal choice of the protection mode in a SAFER
SLOTH configuration depends on both the requirements of
the application and the target platform at hand. Instead of
hiding hardware peculiarities behind layers of abstraction, our
generative approach allows to tailor the system specifically to
meet the application’s demands in terms of costs and safety
guarantees by embracing and exploiting the particularities of
the concrete architecture. In doing so, SAFER SLOTH achieves
memory safety at significantly lower costs than traditional
designs.

F. Related Work

In earlier work on the CiAO operating system [18], we
have already suggested a "semi-trusted" isolation mode that
corresponds to the MPU mode of SAFER SLOTH. CiAO, however,
employs a traditional scheduler and is subject to issues of rate-
monotonic priority inversion. Furthermore, it does not provide
the MPU+itraps mode of SAFER SLOTH.

The clever exploitation of particularities of memory protec-
tion hardware for the efficient implementation of isolation and
virtualization has a long tradition in the domain of general-
purpose operating systems. A cornerstone was Multics [6] with
its single level store by means of which the clear distinction
between "external" (e.g., files) and "internal" memory of
processes was discarded. Based on its concept of inline traps
to support the implementation of system calls, SAFER SLOTH
is similar with respect to its handling of user and kernel space.
This concept differs from the VDSO (virtual dynamic shared
object) technique of Linux 2.6 to accelerate switching between
user and kernel mode of operation of a process. VDSO makes
use of the fast system call facility (sysenter/sysexit) as
introduced with the Pentium II processor [15]. In contrast to
SAFER SLOTH, which thoroughly benefits from static program
analysis at configuration time to optimize (1) parameter passing
and (2) system call dispatching, and despite of the fast system
call facility, Linux still has to take the conventional line through
a system call dispatch table in the kernel. SAFER SLOTH
shares properties with single-address-space operating systems
(SASOS), such as the Mach-based Opal [3] or the L4-based
Mungi [12]. However, SASOS are currently fixed to general-
purpose operation modes and far too complex for special-
purpose systems both in functional and non-functional terms.
Commodity operating systems today tend to abstract from
these differences for the sake of portability. In contrast, the
SAFER SLOTH approach is to not hide such architecture-specific
features, but to employ generators and static checkers to map
the more generic abstractions (protection domains and privilege
separation) to them.

A lot of related work exists with respect to constructive
(language/compiler-based) memory protection: In software-
based fault isolation (SFI) [21], the binary code is patched
at compile time to interpret (and check) potentially critical
instructions at run time. The original motivation behind SFI
was—similar to our work—not to replace hardware-based
memory protection, but to reduce its overhead (here, on DEC
Alpha). In recent years, SFI has re-gained attention, but now
with a focus on platforms that are not equipped with an MPU,
especially 8-bit sensor nodes. Examples include XFI [9], the
t-kernel [10], TinyOS [5], or SOS/Harbor [11], [16]. These
SFI approaches induce a (significant) extra run-time overhead
and impair predictability, which partly can be mitigated by
customized hardware [17] or by developing all application
code in type-safe dialects/subsets of C [19], [8], [4]. The
MPU+traps and MPU modes of SAFER SLOTH differ from them
by (a) only delegating privilege separation to constructive
means, which is (b) motivated by (architecture-dependent)



run-time efficiency and predictability gains on (c) commodity
microcontroller systems.

IX. CONCLUSION

The SLOTH embedded kernels have proven to excel at
deterministic execution by preventing certain kinds of priority
inversion and at efficiency-related non-functional properties.
However, SLOTH has also been criticized for executing
application code in interrupt handler context, which uses
supervisor mode privileges of the hardware. With the SAFER
SLOTH design described in this paper, we have shown that
we can combine a hardware-tailored, interrupt-based kernel
with the enforcement of application isolation. With its inline
traps and MPU only modes for privilege separation between
the applications and the kernel, SAFER SLOTH continues the
SLOTH philosophy of exploiting and embracing particularities
of commodity hardware instead of abstracting from them.
SAFER SLOTH is able to ensure memory safety at minimal
overheads. In comparison to a leading commercial AUTOSAR
OS implementation, SAFER SLOTH provides, depending on
the protection mode, a speedup of 8x (worst case) up to
23x (best case) on kernel latencies, while still providing
excellent determinism, strict priority obedience, and small
memory footprints.
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