
Resource-Aware System Software for
Replicated Services

Tobias Distler

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Abstract
Replicated services such as distributed file systems, key-

values stores, or blockchains are essential parts of today’s

computing infrastructures and therefore typically designed

to withstand a wide spectrum of fault scenarios including

hardware crashes and software failures. To handle the com-

plexity associated with fault-tolerant replication, the systems

providing these services rely on replication system software,

that is special-purpose system software that implements a

replication protocol and, amongmany other things, is respon-

sible for ensuring consistency across replicas. Representing

the foundation of an entire dependable system, it is crucial

for replication system software to meet strict reliability and

efficiency requirements in order to not become a vulnerabil-

ity or performance bottleneck.

This habilitation treatise explores different approaches to

improve the efficiency of reliable replication system software

by making it resource aware. Specifically, this means that the

system software is supplied with detailed knowledge about

all available resources and enabled to use such information

to adapt its own architecture and configuration. In this con-

text, a major goal of the underlying research was to develop

techniques that are generic and neither depend on a specific

fault model nor a certain replication protocol.

In particular, this habilitation treatise makes research con-

tributions in three areas: (1) It presents a parallelization

scheme that allows replication system software to use pro-

cessing resources more effectively by adjusting its degree

of parallelism to the number of cores available on a replica

server. (2) It describes a generic approach for replication

system software to save energy during periods of low and

medium utilization by autonomously controlling its configu-

ration at multiple system layers in an adaptive and coordi-

nated manner. (3) It introduces a set of techniques that are

tailored to specific use cases and improve the performance

and resource efficiency of replication system software for

heterogeneous environments, services with large states, and

geo-replicated settings.

1 Introduction
Online services represent essential building blocks of to-

day’s computing infrastructures, either as part of applica-

tions directly facing the user (e.g., e-mail, online banking)

or integrated with secondary platforms at lower data-center

tiers (e.g., distributed file systems, blockchains). Being such

crucial components, it is important for these services to re-

main correct and available even when they are confronted

with a wide spectrum of fault scenarios including communi-

cation failures, hardware crashes, and arbitrary faults caused

by software bugs. In addition, highly critical services must

be prepared and able to deal with security-related issues and

offer resilience in the face of attacks and possible intrusions.

1.1 System Support for Replication-based Fault
Tolerance

As illustrated in Figure 1, a common approach to make

network-based services dependable is to replicate their server

side across multiple machines. That is, to prevent a sin-

gle point of failure multiple servers each host their own

instance (“replica”) of the service application. Clients can

remotely invoke an operation at the service by sending a

corresponding request to the server side and waiting for a re-

sponse carrying the operation’s result. To ensure consistency

in the absence as well as the presence of faults, all communi-

cation between clients and replicas, and also the interaction

within the group of replicas, is handled by a fault-tolerant

replication protocol. Among other things, the replication

protocol ensures that the service states of all correct replicas

remain consistent, for example by guaranteeing that replicas

perform all state modifications in the same order [147]. In

addition, a replication protocol typically provides means to

synchronize replica states via checkpoints, thereby enabling

faulty servers to catch up after they have been repaired.

Fault Models. The number of replicas required at the

server side usually depends on how many concurrent replica

failures a system is supposed to tolerate at any given time.

Furthermore, the size of the replica group is a result of the

degree of fault tolerance to be provided. In general, two

fault models are of particular interest in the context of this

treatise:

• Crash Fault Tolerance (CFT): Systems and protocols

designed for this fault model assume that clients and

replicas only fail by crashing and otherwise always be-

have according to specification. In particular, if a client

or replica sends a message to others in which it con-

firms the completion of a certain protocol task (e.g., the

execution of a request), the recipients of the message

can be sure that the sender indeed has performed the

task. Hence, in crash-tolerant systems clients and repli-



Replica

Service Application

Operating System

Replication Software

Execution Environment
Replication
System
Software

Client

Client Application

Operating System

Replication Software

Execution Environment

Replica

Replica

Replication
Protocol

Figure 1. Basic system architecture for replication-based fault tolerance

cas commonly trust each other and the messages they

exchange. In production, this fault model is often used

for replicated services at lower layers (e.g., key-value

stores [48, 128] or coordination services [35, 92]) which

do not directly interact with the outside world.

• Byzantine Fault Tolerance (BFT): This fault model

assumes that clients and replicas may fail in arbitrary

ways [107]. Specifically, this includes the possibility

that a client or replica continues to participate in the

replication protocol after becoming faulty, potentially

distributing messages that do not properly reflect its

actual state. Since no assumptions are made regarding

the origins of a fault, the fault model also addresses

scenarios in which a malicious adversary has success-

fully managed to take over a client or replica and now

tries to use it to deliberately cause disarray in the

system; in the worst case, corrupted clients or repli-

cas might even collude with each other in order to

reach their goal. As a consequence, clients and repli-

cas in Byzantine fault-tolerant systems do not trust

each other, which makes this fault model a good fit for

user-facing replicated services, systems whose repli-

cas are hosted by different independent organizations,

or services with strong fault-tolerance requirements

(e.g., blockchains [86, 149, 158], firewalls [31, 83], or

SCADA systems [17, 127]).

Providing resilience against a wider spectrum of failures,

BFT systems in general are more complex than CFT systems.

For example, to tolerate up to 𝑓 simultaneous replica faults,

without further assumptions a BFT system must comprise

at least 3𝑓 + 1 replicas [134], whereas in CFT systems 2𝑓 +
1 replicas are sufficient for the same fault-tolerance threshold.

Apart from the number of replicas involved, BFT systems

also have a higher complexity with regard to replication

protocols [37, 172], which typically require additional phases

of message exchange between replicas compared with CFT

protocols [98, 129].

Replication System Software. Independent of the spe-
cific fault model, a common approach to handle the complex-

ity associated with building replicated systems is to separate

the service application from the replication protocol and

implement all application-independent functionality inside

the replication system software. In this treatise, replication

system software is used as an umbrella term referring to

all software at either clients or replicas that is not part of

the service to be replicated. Specifically, the term combines

(1) the replication software implementing the CFT/BFT repli-

cation protocol (e.g., BFT-SMaRt [30]), (2) if available, the

execution environment in which the replication software

runs (e.g., the Java virtual machine), as well as (3) a server’s

underlying operating system.

To fulfill its diverse set of responsibilities, the replication

system software itself needs to manage and utilize a signifi-

cant amount of resources. Primarily, this includes processor

cycles for the authentication of messages (e.g., the computa-

tion and verification of signatures), memory for the manage-

ment of data structures required by the replication protocol,

disk space for the storage of checkpoints, and network con-

nections for the interaction within the replica group as well

as between clients and replicas. Ideally, the system software

uses the available resources as effectively and efficiently as

possible in order to not become a performance bottleneck

itself and to leave most resources to the application.

1.2 Contributions
Amain goal of my research in recent years has been (and still

is) to improve the performance and efficiency of replicated

systems by increasing the resource awareness of replication

system software. Among other things, resource awareness

in this context can for example mean to enable replication

system software to flexibly adjust the degree of parallelism

in the implementation to the number of cores available on a

server. Furthermore, it can also mean to provide knowledge

on the performance and energy-consumption characteris-

tics of different system-parameter configurations in order

to allow the system software to autonomously select a suit-

able configuration for the current conditions. Overall, this

treatise reports on contributions and research results in the

following three areas:

Effective and Efficient Use of Multi-Cores. In an effort

to improve the scalability of replication system software, the

treatise presents consensus-oriented parallelization, a tech-

nique that allows replication system software to sustain high



throughput levels by exploiting the processing power avail-

able on multi-core server hardware. The approach has been

integrated with a variety of replication protocols and laid

the foundation for the first BFT system that is able to handle

more than one million client requests per second [23].

Energy-AwareAdaptation to VaryingWorkloads. Since
replicated services in practice are not continuously oper-

ated at the highest performance level, the treatise proposes

energy-aware reconfigurations as a means for replicas to save

energy (without impeding quality of service) during periods

of reduced workloads. The reconfigurations are performed

at runtime and their effectiveness stems from the fact that

the replication system software coordinates the adaptation

across multiple system layers, including the hardware.

Techniques Tailored to Specific Use Cases. As a result
of the wide range of use-case scenarios for replicated ser-

vices, replication system software is not only confronted

with general goals such as high performance and low en-

ergy consumption (see above), but also needs to address

application-specific resource demands. To this end, the trea-

tise presents (1) a solution to deploy replicated systems in

environments with heterogeneous servers, (2) an efficient mech-

anism to create consistent checkpoints of replicas with large
states, and (3) a cloud-based replication system software for
geo-replicated services that exploits the special properties of

today’s public-cloud infrastructures to minimize end-to-end

latency.

1.3 Papers of this Treatise
This document is a cumulative habilitation treatise and in-

cludes the following 10 peer-reviewed publications, which

represent the main contributions of my research on resource-

aware system software for replicated and distributed services.

For reprints of these papers please refer to Appendix B. My

full publication list is available in Appendix A.

System Software for Replicated Services

CSUR ’21 Byzantine Fault-Tolerant State-Machine
Replication from a Systems Perspective
Tobias Distler [53]

Effective and Efficient Use of Multi-Cores

Middleware ’15 Consensus-Oriented Parallelization: How
to Earn Your First Million
Johannes Behl, Tobias Distler, and Rüdi-
ger Kapitza [23]

DSN ’17 Agora: A Dependable High-Performance
Coordination Service for Multi-Cores
Rainer Schiekofer, Johannes Behl, and To-
bias Distler [146]

PaPoC ’19 In Search of a Scalable Raft-based Repli-
cation Architecture
Christian Deyerl and Tobias Distler [49]

Energy-Aware Adaptation to Varying Workloads

ARM ’15 Towards Energy-Proportional State-Ma-
chine Replication
Christopher Eibel and Tobias Distler[62]

IC2E ’18 Empya: Saving Energy in the Face of Vary-
ing Workloads
Christopher Eibel, Thao-Nguyen Do, Ro-
bert Meißner, and Tobias Distler [64]

DAIS ’18 Strome: Energy-Aware Data-Stream Pro-
cessing
Christopher Eibel, Christian Gulden,
Wolfgang Schröder-Preikschat, and To-
bias Distler [65]

Techniques Tailored to Specific Use Cases

Computing ’19 Scalable Byzantine Fault-tolerant State-
Machine Replication on Heterogeneous
Servers
Michael Eischer and Tobias Distler [72]

SRDS ’19 Deterministic Fuzzy Checkpoints
Michael Eischer, Markus Büttner, and To-
bias Distler [68]

Middleware ’20 Resilient Cloud-based Replication with
Low Latency
Michael Eischer and Tobias Distler [73]

A note on the order of authors: The first author (in most

cases a doctoral or master student) did most of the actual im-

plementation and experimental work, in close collaboration

with me as the responsible scientific project lead. As such, I

am listed as last author on most of the publications above.

For the Middleware ’15 paper, Rüdiger Kapitza (TU Braun-

schweig) and I both acted as scientific project lead at our

respective institutions.

1.4 Structure of this Treatise
The remainder of this document is structured as follows:

Chapter 2 provides background on replication system soft-

ware thereby highlighting typical responsibilities, dis-

cussing implementation challenges, and describing

common building blocks. Furthermore, the chapter

also reviews existing works from the general field of

replicated services that had an impact on the depend-

ability and performance of replication system soft-

ware.

Chapter 3 presents the concept of consensus-oriented par-

allelization as a means to improve the scalability and

parallelizability of replication system software. Specifi-

cally, the approach enables a replica to more effectively

utilize multiple cores and to minimize synchronization

overhead.



Chapter 4 proposes an approach that enables the replica-

tion system software to reduce the energy consump-

tion of a replicated service during periods of low and

medium workloads. The technique relies on the dy-

namic reconfiguration of resource parameters (e.g., the

number of active cores on a replica server) at multiple

system levels, including the hardware.

Chapter 5 examines several ways of how replication sys-

tem software can be tailored to use-case scenarios with

specific characteristics and requirements. In particular,

this includes replicated services running on heteroge-

neous hardware, applications with large states, as well

as cloud-based geo-distributed systems whose replicas

are located at different geographic sites.

Chapter 6 summarizes the contributions of this treatise

and elaborates on how the different techniques can

be combined with each other. Moreover, the chapter

discusses additional application scenarios and outlines

open problems that may serve as a starting point for

future research on replication system software.

Appendix A provides a complete list of my (peer-reviewed

and non-refereed) research publications.

Appendix B contains reprints of the 10 peer-reviewed pa-

pers listed in Section 1.3, which together represent the

main part of this cumulative treatise.

2 System Software for Replicated Services
Since replication system software represents an essential

building block of fault-tolerant replicated services, it is also

themain object of research in the context of this treatise. This

chapter provides background on this type of special-purpose

system software by discussing common architectural com-

ponents as well as the tasks replication system software is

usually assigned with. In addition, based on an analysis of

previous works, the chapter formulates research challenges

in improving different aspects of replication system software.

2.1 Replication System Software
The purpose of replication system software is to provide

distributed applications with an interface they can use to

achieve fault tolerance through replication. Figure 2 shows

an example of such an interface that is common in replicated

systems relying on the principle of state-machine replica-

tion [147]. Essentially, the replication system software offers

clients the possibility to invoke operations at the server side

by performing remote procedure calls [126]. In contrast to re-

mote procedure calls in client–server architectures, however,

the replication system software ensures that the operation is

executed at all correct replicas, not just a single server. Fur-

thermore, the system software is responsible for eventually

providing the client with a result to its operation even if some

of the replicas have failed. To fulfill this requirement, the

system software executes a replication protocol that takes

Client Interface

/∗ Request processing ∗/
Result invoke(Operation op);

Replica Interface

/∗ Request processing ∗/
Result invoke(Operation op);

/∗ State transfer ∗/
State getState();
void setState(State st);

Figure 2. Example interfaces between application and repli-

cation system software

care of keeping the states of correct replicas consistent. Oc-

casionally, this task makes it necessary to exchange state

information between replicas, which is why the replication

system software’s interface typically also includes means

for state transfer (see Figure 2). Among other things, these

methods enable a new replica to join a running system.

Although the interface offered to the application in many

cases is comparably small, implementations of this interface

are usually rather complex. This is a direct consequence

of (1) the strong fault-tolerance guarantees the replication

system software provides and (2) the fact that the system soft-

ware itself is a layer that is distributed across multiple servers.

As shown in Figure 3, to handle the associated complexity

replication system software is commonly implemented as a

collection of several modules with dedicated responsibilities.

The following paragraphs discuss the four most important

modules in detail.

Client Library. This system-software component is lo-

cated at the client and handles all interaction with the repli-

cated server side. In particular, this task includes the creation

and transmission of requests as well as the collection of re-

sponses arriving from replicas. Since in BFT systems clients

do not trust individual replicas, client libraries there typically

also perform a result verification before delivering the result

to their local client application. The most common approach

to verify a result is to compare the responses obtained from

multiple replicas, since in the presence of at most 𝑓 faults

𝑓 + 1 matching responses from different replicas represent a

proof of correctness for the result [37]. In CFT systems, on

the other hand, if a replica provides a result to a request, the

result is assumed to be inherently correct (see Section 1.1).

Consequently, client libraries in these systems are usually

able to accept and deliver the first result they receive. Apart

from fulfilling basic duties such as communication and re-

sult verification, client libraries may also be assigned with

additional tasks [53, 135]. Some systems, for example, rely



Client Handling Agreement Execution Replica

Client Handling Agreement Execution Replica

Client Handling Agreement Execution Replica

...

Client Library

Client

Figure 3. Overview of replication system software modules

on clients to detect and/or resolve inconsistencies between

replicas [15, 99] or to supply replicas with performance sta-

tistics that are afterwards analyzed and used to improve

efficiency [70].

Client Handling. This module is the counter part of the

client library at the server side. Besides managing network

connections, in many systems the component is also respon-

sible for validating whether a client is indeed permitted to

access the service. If this check is successful the client’s re-

quest will be further processed, otherwise a replica simply

ignores the message. In most replicated systems, there is no

need for the client-handling modules of different replicas to

directly interact with each other, although there are excep-

tions. Some systems, for example, ask replicas to immediately

distribute client requests within the replica group after they

receive them [9, 44], thereby enabling more efficient agree-

ment protocols by decoupling request distribution from the

subsequent consensus process.

Agreement. This component implements the core of the

replication protocol: the agreement process guaranteeing

that the states of correct replicas in the system remain con-

sistent despite the presence of a number of potentially faulty

replicas. To fulfill this requirement, replicas do not process

incoming client requests directly once they receive them

over the network, because doing so might cause the states of

two correct replicas to diverge. For example, if there are two

state-modifying requests (one that newly creates a file at the

server side and another one that writes data to this file) and

these two requests arrive at different replicas in a different

order, then the replicas involved would not end up in the

same state. Specifically, those replicas that execute the create

request first would eventually have a copy of the file that

includes the data written by the second request, whereas

the replicas that try to process the write request first would

remain with an empty file.

To prevent scenarios such as the one outlined above, repli-

cas first reach consensus on how they are going to change

their state before actually making these state changes per-

sistent. More precisely, replicas run an agreement protocol

whose main purpose is to reliably assign unique sequence

numbers to state modifications. As further discussed in Sec-

tion 2.2, the specific representation of state modifications

in this totally ordered sequence may differ between replica-

tion protocols. While some replication protocols agree on

client requests before processing them [37, 98], other proto-

cols execute requests first and afterwards reach consensus

on the order in which to apply the corresponding state up-

dates [94, 149]. Either way, correct replicas in the system

remain consistent by adhering to the same agreed sequence

and thereby advancing their states in a coordinated manner.

From a researcher and developer perspective, the agree-

ment stage is one of the most challenging parts of replication

system software. Establishing a total order on state modifi-

cations, for example, requires multiple rounds of message

exchanges among replicas, often times with quadratic mes-

sage complexity [37, 98]. As a result, overall system through-

put and latency in many use-case scenarios are significantly

impacted by how efficient the replication system software

is able to perform consensus. Unfortunately, the sequential

nature of the agreement process makes it inherently difficult

to parallelize this system software component, causing this

problem to be a major research challenge (see Section 2.3).

Execution. This component of the replication system soft-

ware is responsible for the interaction with the local service-

application instance and consequently provides an interface

such as the one exemplified in Figure 2. As input, the execu-

tion stage uses the totally ordered sequence of requests/up-

dates generated by the agreement stage, and it ensures that

the application processes them in a consistent manner. If the

application produces a result, the execution stage relays the

result back to the client. Apart from request/update process-

ing, a second major task performed by the execution stage

is to create periodic checkpoints of the application state,

which mainly serve two purposes: (1) Checkpoints lay the

foundation for a state-transfer mechanism that allows new

replicas to catch up after having joined the system at runtime.

(2) Since a checkpoint resembles the effects a request/update

had on the state, the agreement stage can use the existence of

new checkpoint as opportunity to garbage collect consensus

information on old messages [37]. As further discussed in

Section 2.5, an efficient checkpointing mechanism provided

by the replication system software is especially crucial for

service applications with large states.



Client

Replica

Replica

Replica

Request Ordered Request Result

Agreement

Execution

Execution

Execution

(a) Active replication

Client

Leader

Replica

Replica

Request State Update Ordered State Update Result

Execution

Agreement

Update

Update

Update

(b) Passive replication

Figure 4. Comparison of replication-protocol architectures

2.2 Variety in Replication Protocols
Decades of research have led to a myriad of replication pro-

tocols with different characteristics. Consequently, it is par-

ticularly challenging to develop new techniques that both

improve replication system software and are applicable to

a wide spectrum of protocols. To illustrate the variety in

protocols, this section compares two common protocol ar-

chitectures.

Active Replication. As shown in Figure 4a, protocols re-

lying on active replication [147] first perform an agreement

on the incoming client requests and then require each replica

to execute each request. For replicas to remain consist, this

form of replication demands deterministic service implemen-

tations, meaning that for the same sequence of requests each

correct replica must produce the same results and reach the

same states. Active replication serves as basis for the vast

majority of BFT replication protocols because the fact that

multiple replicas execute all requests independently of each

other makes it possible for clients to verify the corresponding

results by comparing the responses of different replicas.

Passive Replication. Using passive replication [34], an

elected leader replica processes all incoming requests and

records the associated state modifications in the form of an

update message (see Figure 4b). In a next step, all replicas

then reach consensus on the state update and finally apply

the update to their local states. In contrast to active replica-

tion, passive replication does not necessarily require deter-

ministic applications as each request is only executed by a sin-

gle replica. On the other hand, this property also means that

results cannot be verified by comparing responses, which

is why passive replication can be primarily found in CFT

protocols where clients and replicas are assumed to trust

each other.

2.3 Research Challenge 1: Parallelization
The vast majority of protocol specifications deliberately ap-

ply sequential execution as a means to keep replicas con-

sistent. While this approach simplifies protocol design, it

also makes it inherently difficult to build replication system

software for multi-core servers.

Parallelized Execution. A number of works approached

the problem by proposing mechanisms targeting the execu-

tion stage of a replica, which can be parallelized in several

different ways. CBASE [75, 100], for example, assumes that

requests carry hints about the state parts they access dur-

ing execution and uses this knowledge to identify requests

that conflict with each other when being processed concur-

rently. Based on this information, CBASE then only enforces

sequential execution for conflicting requests while process-

ing non-conflicting requests in parallel. OptSCORE [89] and

Storyboard [96] exploit the insight that to ensure consis-

tency among correct replicas it is usually not necessary to

sequentialize the entire execution of requests as long as all

critical sections are processed in the same order on all repli-

cas. Assuming that such sections are protected by locks,

these approaches rely on custom schedulers guaranteeing

that threads acquire locks in a consistent manner. Also fo-

cusing on synchronization primitives, Rex [87] traces non-

deterministic decisions made during parallel execution at a

leader replica and afterwards enforces the recorded order

of decisions when processing the same requests at other



replicas. In contrast, in Eve [97] all replicas independently

execute requests in parallel; if replicas diverge, they roll back

their states and for the retry resort to sequential execution.

State Partitioning. An alternative parallelization ap-

proach that goes beyond the execution stage is to partition

the state of the service application and handle each partition

separately. As a consequence, the consensus process for re-

quests accessing different partitions can be distributed across

multiple replica groups [2, 119, 140] or parallel agreement

instances running on the same set of servers [111]. Since for

many applications a clean division into disjoint partitions is

not feasible (e.g., due to the state being organized as a tree

with dependencies between parent and child nodes), a com-

mon challenge for such protocols is to ensure consistency

for requests that span two or more partitions [111, 119].

Analysis. Existing approaches to introduce parallelism

into replication protocols either focus on the execution stage

of a system or they impose additional restrictions on the ap-

plication such as the requirement of a partitioned state or the

need to identify the target of an operation from its request

message. As a consequence, the proposed techniques are

only applicable to replicated services that meet these criteria

and even then integrating the service application with the

replication system software usually involves further efforts.

Ideally, the replication system software of a replica should

be able to exploit parallelism in all of its components (in-

cluding the agreement stage) and without making additional

assumptions about the application; note that this does not

rule out the possibility of extending the parallelism to the

application for services that already are parallelized and/or

naturally support state partitioning. Chapter 3 presents a

generic solution that has the mentioned properties and can

be combined with a variety of existing replication protocols.

2.4 Research Challenge 2: Resource Efficiency
Replicating a service for fault tolerance in general is associ-

ated with a significant increase in consumption of network

and processing resources compared with the unreplicated

variant of the same service. As a consequence, a notable

amount of works addressed the challenge of improving the

resource efficiency of both CFT as well as BFT replication

protocols.

Phase-Specific Approaches. One direction of research

pursued to solve the problem is to distinguish between

(1) phases of benign conditions in which the network timely

delivers messages and all replicas behave correctly and

(2) phases of rough conditions in which the network is unre-

liable and/or some of the replicas are faulty. As a key benefit,

in a replicated system making progress under benign condi-

tions requires less resources than are necessary to actually

tolerate faults. This general insight can be exploited in vari-

ous forms: In some replication protocols, for example, only

a subset of replicas normally comprise a full copy of the

application state, while the other replicas maintain enough

information to be able to obtain the latest state and assist

if a full replica fails [58, 106, 115, 133, 169]. Other systems

actively involve all replicas during normal-case operation

but execute each request on only a subgroup of replicas;

the subgroup is sufficiently large so that the effects a re-

quest had on the application state do not get lost in case of

faults [57, 102]. Apart from these approaches, it is also pos-

sible to increase resource efficiency by enabling a system to

dynamically switch its replication protocol depending on the

current fault conditions [15, 55, 95], for example selecting

a high-performance protocol for benign conditions while

changing to a more robust protocol once faults are suspected

or detected.

Relaxed Fault Models. A second research direction,

which in particular aims at circumventing the high resource

demand of full-fledged BFT systems, is to apply hybrid fault

models that represent intermediate points on the spectrum

between the traditional CFT and BFT fault models (see Sec-

tion 1.1). On the one hand, this concept for example may be

used to minimize the size of a replica group by assuming

that a certain number of faults will cause a replica to crash

but not actually manifest in arbitrary behavior [44, 116, 137].

One the other hand, there are approaches to reduce replica-

group size by considering specific system components to

be trusted and to only fail by crashing, while still assum-

ing and tolerating Byzantine faults in the untrusted rest of

the replicated system [24, 43, 109, 157].

Analysis. Previous works targeting resource efficiency

in replicated systems primarily take effect at the replication-

protocol level and are based on the idea of cutting down

redundancy that is considered unnecessary, either temporar-

ily (i.e., during periods without replica failures or network

problems) or permanently (i.e., for use cases where relaxed

fault guarantees are acceptable). Integrated with the replica-

tion system software, the techniques above make it possible

to (dynamically or statically) adapt the resource footprint of a

replicated system to the current fault-tolerance requirements.

As a complement to these concepts, Chapter 4 presents an

approach that leverages resource savings at multiple system

levels (including the operating system and hardware) and

instead of fault conditions uses a system’s current workload

as indicator for when to reduce resource consumption.

2.5 Research Challenge 3: Application-Specific
Requirements

Replicated services in practice cover a wide spectrum of

application scenarios ranging from small deployments in

which all replicas are located within the same building [92]

to widely distributed systems with replicas on different con-

tinents [152]. To properly support all these services, replica-

tion system software needs to address their different charac-



teristics and requirements, not necessarily in a one-fits-all

manner (which is typically inefficient or even infeasible) but

at least in the form of customized implementations. The next

paragraphs discuss three examples of specific use cases that

are of relevance for this treatise.

Services in Heterogeneous Environments. Most repli-

cation-protocol designs (often implicitly) assume all repli-

cas to run on homogeneous servers with identical perfor-

mance capabilities (e.g., being equipped with the same num-

ber and type of processors). Unfortunately, in practical de-

ployments this assumption does not always hold, which

is especially true if services are executed in cloud envi-

ronments where the performance can significantly vary

across virtual machines [130]. Furthermore, the use of di-

verse replica implementations, which has been proposed

as a method to minimize the probability of multiple repli-

cas experiencing correlated faults [16], can further increase

heterogeneity. So far, previous works primarily focused on

exploring replica diversity as a means to improve robust-

ness [39, 42, 60, 80, 150, 154], however they did not study

the performance and resource-usage implications associated

with heterogeneous replication system software.

Services with Large States. For applications managing

a large amount of data, the need to create periodic check-

points (see Section 2.1) usually results in significant perfor-

mance overhead [30]. In particular, this problem is caused

by the fact that replication system software implementa-

tions typically suspend request execution during checkpoint

creation in order to obtain a consistent snapshot of the appli-

cation state. For BFT replication protocols this is especially

problematic since all replicas have to produce snapshots for

the same sequence numbers in order for the checkpoints to

be verifiable by comparison [37].

Geo-Replicated Services. Distributing a replicated sys-

tem across several geographic sites can be an effective way to

increase the system’s resilience against building-wide power

outages and natural disasters. On the other hand, such a

measure generally comes at the cost of increased response

times due the replication protocol now involving multiple

steps of wide-area communication. Existing solutions to min-

imize end-to-end latencies under such conditions include

modified agreement quorums [26, 148], protocols that allow

each replica to initiate consensus [61, 117, 118, 123, 124, 156],

and hierarchical system architectures that deploy an entire

replica group at each site [10, 88]. On the downside, all of

these approaches still require the execution of complex pro-

tocols over long-distance links.

Analysis. The examples illustrate that there is room for

improvement when it comes to tailoring replication system

software to use cases with special characteristics. Chapter 5

addresses these problems by presenting approaches that en-

able replication system software to support heterogeneous

environments, large states, and efficient geo-replication.

2.6 Main Paper
Replication is a powerful means to provide fault tolerance,

unfortunately many research papers on this topic primarily

focus on the description of algorithms and protocols, but do

not sufficiently discuss how to implement system software

for them. This is especially true for BFT protocols, which

compared with CFT protocols in general exhibit higher com-

plexity. To mitigate this problem, I wrote a survey article

that summarizes the state of the art in BFT state-machine

replication and specifically discusses issues that are com-

monly associated with building actual systems, but are often

neglected in research publications. The paper is part of this

cumulative treatise and its reprint can be found in Appen-

dix B.

CSUR ’21 Byzantine Fault-Tolerant State-Machine Replica-
tion from a Systems Perspective
Tobias Distler [53]

The paper gives an overview of different BFT system ar-

chitectures and identifies common building blocks for their

implementation. In addition, the survey presents a novel

abstraction for the analysis of agreement protocols that fa-

cilitates the task of deciding whether or not the underlying

concepts of different protocols can be combined. As another

important part of the survey, the paper discusses existing

solutions to essential problems such as efficiently creating

checkpoints, recovering replicas from faults, and dynami-

cally changing the composition of the replica group. Despite

the paper’s focus on Byzantine fault tolerance, many of the

topics discussed in the survey also (either fully or in parts)

apply to CFT systems.

3 Effective and Efficient Use of Multi-Cores
While the vast majority of servers today consist of proces-

sors with multiple cores, most replication protocols (still)

are designed as sequential algorithms [37, 94, 104, 129]. To

nevertheless utilize at least some of the available computing

resources, replication system-software implementations typ-

ically introduce parallelism by applying a concept that in the

following is referred to as task-oriented parallelization [23].

Specifically, they model a replication protocol as a chain

of individual processing stages that are connected through

message queues and each possess their own threads, similar

to a SEDA architecture [168].

One example for this implementation technique being

used in practice is the ZooKeeper coordination service [92],

a fault-tolerant distributed system that manages configura-

tion data and provides synchronization primitives such as

message queues or distributed locks. With this functionality,

ZooKeeper represents an essential building block for sev-

eral large-scale distributed platforms including Hadoop [12],

and Storm [13], Spark [173], as it enables their processes

to interact with each other. Although a key component for

the well-functioning of other services, there have been in-



Core Core Core Core. . .

Client
Handling

Agreement
(First Step)

Agreement
(Final Step) Execution

Figure 5. Replica architecture based on a task-oriented parallelization

cidents in which ZooKeeper due to its task-oriented replica

architecture became a performance bottleneck of the overall

system [41], requiring system designers to find ways to miti-

gate this problem. Among other things existing solutions to

the bottleneck issue include workarounds that keep the co-

ordination service off the critical path [54], migrate parts of

its workload to other systems [41], or rely on a composition

of multiple ZooKeeper instances [108]. Consequently, they

result in more complex designs as well as additional work

for programmers and administrators.

This chapter presents consensus-oriented parallelization,
an alternative solution for scenarios in which the traditional

task-oriented parallelization leads to performance bottle-

necks. The approach is based on a novel replica architecture

that enables the replication system software to use multi-

core machines both more effectively and more efficiently.

The concept behind consensus-oriented parallelization is

generic and therefore can be applied to different fault mod-

els as well as different replication techniques. Results show

that the approach can significantly improve performance

using standard server hardware.

3.1 State of the Art
As illustrated in Figure 5, the traditional method for achiev-

ing parallelism in replication system software is to divide the

sequential replication protocol into multiple modules that

each represent a different task in the processing pipeline,

for example the reception of a client request, a stage of the

agreement process, or the execution of the client request in

the application [30, 92, 145]. In a next step, the responsibility

for each of these tasks is then delegated to a dedicated thread,

thereby enabling the system to use more than one core. This

way, it for example becomes possible for a replica to exe-

cute a request while in parallel already reaching consensus

on a subsequent request. Another advantage of this replica

architecture is the fact that it usually is straightforward to

deduce the modularization of a specific protocol from its

specification. On the other hand, the task-oriented paral-

lelization scheme also has two drawbacks that in practice

can significantly impede performance: limited scalability and

considerable scheduling and synchronization overhead.

Limited Scalability. With modules representing differ-

ent protocol tasks, their number is bounded by the number

of individual steps the replication protocol consists of, and

so is the degree of parallelism that can be achieved for this

kind of replica architecture. Although it is possible to further

divide some of the tasks into subtasks (e.g., the computation

of signatures for different messages), the underlying prob-

lem still remains: If a replica has more cores at its disposal

than (sub)tasks to perform, the task-oriented parallelization

scheme prevents the replica from effectively utilizing all

of these cores. For ZooKeeper, for example, multiple stud-

ies [145, 146] independently of each other showed that the

system’s performance only increases up to four cores, which

is a small fraction of the number of cores today’s (and future)

servers are (and will be) typically equipped with.

Scheduling and Synchronization Overhead. When im-

plementing a replication protocol as a chain of tasks that are

each handled by separate threads, several context switches

become necessary to pass a request along the thread chain.

In addition, the transport of message data from one core to

another in practice usually has a measurable impact on per-

formance [46] since many of the protocol tasks themselves

involve only a few operations (e.g., inexpensive checks of

message attributes or comparisons of message contents).

Besides affecting performance, the scheduling and synchro-

nization overhead often also leads to a replica not being able

to fully utilize its available network resources, especially for

small requests [49, 146]. Experiments with ZooKeeper for

example show that due to task-oriented parallelization repli-

cas are unable to saturate the network for writes of 512 bytes

and below [146], which for ZooKeeper are common request

sizes [92].

3.2 Approach: Consensus-Oriented Parallelization
In an effort to overcome the limitations of the traditional

replica architecture, my research led to the development of a

new parallelization scheme for replication system software:

consensus-oriented parallelization. As shown in Figure 6,

this approach is based on the idea of achieving scalability by

relying on multiple largely independent partitions that each

are responsible for handling the entire replication process



Core Core Core Core. . .

. . .

Client Handling

Agreement (Last)

Agreement (First)

Client Handling

Agreement (Last)

Agreement (First)

Client Handling

Agreement (Last)

Agreement (First) Execution

Sequencer

(a) Parallel agreement + sequential execution (COP-SE)

Core Core Core Core. . .

. . .

Client Handling

Execution

Agreement (First)

Agreement (Last)

Client Handling

Execution

Agreement (First)

Agreement (Last)

Client Handling

Execution

Agreement (First)

Agreement (Last)

Client Handling

Execution

Agreement (First)

Agreement (Last)

(b) Parallel agreement + parallel execution (COP-PE)

Figure 6. Replica architectures based on consensus-oriented parallelization

for a dedicated request subset. On all replica servers, each

partition runs on a separate core and executes its own in-

stance of the replication protocol to reach consensus on the

requests assigned to the partition.

Depending on the properties and requirements of the ap-

plication, the concept can be applied in two variants: (1) In

COP-SE (see Figure 6a), only the agreement on requests is

parallelized into partitions, their execution in contrast still

occurs sequentially, as in traditional implementations. For

this purpose, a new sequencer component is introduced to

merge the local request sequences determined by the parti-

tions into a global sequence used by the application. Since the

agreement protocol ensures that the local sequences are con-

sistent across replicas and the sequencer’s merge algorithm

is deterministic, it is guaranteed that all correct replicas in

the system produce the same global request sequence. (2) In

the COP-PE variant (see Figure 6b), not only agreement is

parallelized but also execution. This architecture is suitable

for applications that are able to guarantee consistency in

the presence of concurrent execution, and compared with

COP-SE it has the main advantage of eliminating the merge

overhead for creating the global request sequence.

Independent of the specific variant used in an implementa-

tion, consensus-oriented parallelization enables replication

system software to mitigate the problems associated with

task-oriented parallelization. This applies to both issues that

have been discussed in Section 3.1, that is, scalability as well

as scheduling and synchronization overhead.

Improved Scalability. While task-oriented paralleliza-

tion distributes work by assigning an individual protocol

task to a thread (which the thread then has to perform for

all requests), consensus-oriented parallelization partitions

the responsibilities for requests (for which a partition then

has to perform all protocol tasks). With the number of tasks

that are involved in the replication protocol in general being

dwarfed by the number of requests a system needs to handle

over the course of its lifetime, consensus-oriented paralleliza-

tion therefore enables a much more fine-grained degree of

parallelism. As a consequence, the number of partitions can

simply be configured based on the number of available cores.

Minimized Scheduling and Synchronization Over-
head. Due to the fact that a partition performs all neces-

sary tasks on a request, consensus-oriented parallelization

no longer requires requests to be passed along a chain of

threads. Instead, the vast majority of requests never leave

their partition until the completion of the agreement pro-

cess (COP-SE) or even the end of the execution (COP-PE).

Occasionally, partitions do need to communicate with each

other (e.g., to balance load, handle faults, or create check-

points in a coordinated manner [23, 146]), however such

events are rare compared with the workload involved in

normal request handling. As a result, the scheduling and

synchronization costs associated with consensus-oriented

parallelization for many use-case scenarios are negligible.



3.3 Results
As part of my research, consensus-oriented parallelization

has been throughly studied as a means to make replication

system software ready for multi-core machines. The follow-

ing paragraphs summarize important insights and observa-

tions obtained from these works.

Applicability. Up to now, the concept of consensus-orien-
ted parallelization has been successfully integrated with four

replication system software implementations with individual

properties and characteristics [23, 24, 49, 146]. This includes

systems addressing different fault models such as crash tol-

erance [49, 146], Byzantine fault tolerance [23], and even

a hybrid setting [24]. The underlying replication protocols

cover both major types of replication (i.e., active [23, 24] and

passive [146], see Section 2.2) and parallelizing them in a

consensus-oriented manner in no case required modifica-

tions to complex parts such as the consensus algorithm. All

in all, this illustrates the concept’s broad applicability.

Performance. Results obtained from experimental evalu-

ations with a variety of different use cases confirmed con-

sensus-oriented parallelization to enable a replica to use

its available computing resources both effectively as well

as efficiently. For Agora [146], a COP-PE version of the

ZooKeeper service, for example, experiments showed the

write throughput to scale linearly with the number of cores

on a server until reaching network saturation, which is the

case for requests as small as 128 bytes. When configured to

use only a single partition (i.e., one core per server), Agora’s

throughput exceeds ZooKeeper’s throughput by more than

a factor of two for both reads and writes. This illustrates

the efficiency improvements possible due to the minimized

scheduling and synchronization overhead.

Relying on consensus-oriented parallelization, the proto-

type of COP [23], a COP-SE implementation of the Byzan-

tine fault-tolerant replication protocol PBFT [37], is able to

complete the consensus processes of more than 1.2 million

requests per second using standard server hardware. For

comparison, prior to the publication of the COP measure-

ment results, the highest published throughput provided by

a replication system software implementation from this do-

main had been about 90.000 agreed requests per second [30].

Consistency Guarantees. Relaxing the order in which

requests are agreed on and processed by different replicas

raises the question which impact consensus-oriented paral-

lelization has on the consistency guarantees that the overall

replicated system is able to provide. A key insights obtained

from the development of multiple prototypes is that when

answering this question for COP-SE it is important to distin-

guish between two types of requests: (1) For requests that

go through the consensus process (i.e., typically writes), the

guarantees are the same as in traditional systems relying on

task-oriented parallelization, since all correct replicas still

sequentially execute such requests in the same order. This

means that correct replicas advance their states in an identi-

cal manner and clients observe these changes in the same

way as in traditional systems. Consequently, if a system for

example originally offers strong consistency (i.e., lineariz-

ability [91]) for agreed requests, it remains strongly consis-

tent in its parallelized form without requiring any further

modifications. (2) For requests that bypass the consensus

process (i.e., typically reads), on the other hand, additional

measures may be necessary to preserve the original consis-

tency guarantees, especially for protocols in which the leader

ensures strong consistency for such requests [129]. Since par-

titions in COP-SE are largely independent and each comprise

their own leader, there is no single global entity with the

same capabilities as a leader in a traditional replica architec-

ture. Nevertheless, as shown in the Niagara paper [49], by

extending the functionality of the sequencer it is possible to

design mechanisms to achieve strong consistency in COP-SE

even for request that bypass the agreement stage.

Parallelizing both agreement and execution with COP-

PE, replicas do not have a global request sequence they can

adhere to. Specifically, with partitions being only loosely

coupled, the relative order of requests handled by different

partitions can diverge between replicas. Providing lineariz-

ability under such conditions would make it necessary to

insert synchronization points and hence would reintroduce

most of the overhead saved by parallel execution. To avoid

this problem, it is advisable for COP-PE systems to resort

to weaker consistency guarantees that require less synchro-

nization. Agora for example implements causal serializabil-

ity [138] by using vector clocks [103] to identify and respect

causal dependencies between writes across partitions [146].

Despite offering slightly weaker consistency guarantees on

paper, Agora still supports the same use cases as ZooKeeper.

3.4 Main Papers
Three papers constitute the core of the research performed

on consensus-oriented parallelization and therefore are in-

cluded in this cumulative habilitation treatise (see reprints

in Appendix B). Below, the specific contribution of each of

these papers is described in detail.

Middleware ’15 Consensus-Oriented Parallelization: How
to Earn Your First Million
Johannes Behl, Tobias Distler, and Rüdi-
ger Kapitza [23]

The paper introduces the concept of consensus-oriented

parallelization and applies it to the domain of Byzantine fault

tolerance. The developed system implements the COP-SE

replica architecture and relies on the PBFT [37] protocol to

perform active replication. Besides confirming the effective-

ness of consensus-oriented parallelization for multi-cores,

the system also shows the approach to be compatible with

existing optimization techniques such as batching [79] and



leader rotation [155]. Equipped with 12 cores and 4Gigabit

network adapters per replica, the prototype is the first BFT

system to agree on more than a million requests per second.

DSN ’17 Agora: A Dependable High-Performance Coor-
dination Service for Multi-Cores
Rainer Schiekofer, Johannes Behl, and Tobias
Distler [146]

The paper shows consensus-oriented parallelization to be a

technique that is not only limited to Byzantine fault tolerance,

but also applicable to other fault models. For this purpose, the

paper presents the design of a crash-tolerant coordination

service called Agora, which relies on Zab [94] for replica-

tion and supports the same use cases as ZooKeeper [92].

Agora is the first case study to investigate the integration

of consensus-oriented parallelization into a service that is

widely used in production. Furthermore, the paper is the first

to apply the approach to passive replication, and to describe

and evaluate load balancing for the COP-PE architecture.

PaPoC ’19 In Search of a Scalable Raft-based Replication
Architecture
Christian Deyerl and Tobias Distler [49]

The paper presents Niagara, a second case study with

a replication system software used in production, here the

crash-tolerant Raft [129] implementation of the key-value

store etcd [76]. Integrating consensus-oriented paralleliza-

tion did not require any modifications to the core mecha-

nisms responsible for consensus, leader election, and batch-

ing. Relying on the COP-SE replica architecture, this paper

is the first to introduce the sequencer as a separate compo-

nent and to examine additional tasks it may be entrusted

with (e.g., the coordination of strongly consistent reads).

The initial and BFT-related work on consensus-oriented

parallelization was conducted with Johannes Behl during his

PhD, supervised by Rüdiger Kapitza andme. Under my super-

vision, Rainer Schiekofer and Christian Deyerl (both Master

students) then developed and implemented parallelized vari-

ants for the CFT protocols Zab and Raft, respectively.

4 Energy-Aware Adaptation to Varying
Workloads

Avoiding performance bottlenecks by enabling replication

system software to utilize all available resources (as ad-

dressed by Chapter 3) is crucial during periods of high work-

loads in which a replicated service needs to respond to a

large number of requests within a small amount of time. In

practice, many distributed services experience these kinds of

conditions on a regular basis, however they do not operate

under them all of the time. Instead, the workload on services

such as key-value stores [77, 112, 131] in production usually

follows diurnal patterns. Specifically, often as a byproduct

of the day/night cycle, the workload level typically varies

over the course of a day [5, 14, 48]. This means that there

are periods of lower utilization during which the perfor-

mance requested from a service significantly drops below its

maximum, causing the bottleneck problem to no longer be

imminent.

This chapter presents an approach that enables replication

system software to minimize the energy consumption of a

service during such phases of low and medium workloads.

To achieve this, the system software automatically adapts its

configuration by adjusting a set of parameters at different

system levels including, for example, the mapping of pro-

gram modules to threads or the number of active cores on

a server. Results show that switching to less powerful, but

more resource-efficient configurations in the absence of high

workloads can result in significant energy savings without

impeding performance.

4.1 State of the Art
In today’s computing infrastructures, processors are a major

contributor to a system’s overall energy consumption [32,

120]. How much energy exactly needs to be spent in order

to handle a certain workload to a significant degree depends

on a system’s configuration, which for example includes the

number of threads that are available to a service for process-

ing requests. For services whose implementations are able to

leverage parallelism, the provision of additional threads (up

to a certain point) in general leads to an improvement in the

maximum throughput they are able to achieve. On the other

hand, for the type of services considered in this treatise more

threads typically also result in higher energy consumption

due to the increased inter-thread synchronization overhead.

As a consequence, there commonly is a tradeoff between pro-

viding high performance and saving energy. To illustrate this

tradeoff, Figure 7 presents a set of measurement results [64]

obtained from a case study with a key-value store and two

different configurations 𝐶𝑝𝑒𝑟𝑓 and 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 . While the 𝐶𝑝𝑒𝑟𝑓

configuration has been designed for peak performance and

therefore executes the service with 24 threads, the 𝐶𝑒𝑛𝑒𝑟𝑔𝑦

configuration in contrast addresses periods of medium work-

loads and hence comprises only 2 threads. With regard to

the mentioned tradeoff these numbers offer two important

insights: (1) Relying on more threads,𝐶𝑝𝑒𝑟𝑓 is able to achieve

a 46% higher maximum throughput than 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 . (2) At a

throughput of 70.000 requests per second, a level which both

configurations are able to sustain,𝐶𝑒𝑛𝑒𝑟𝑔𝑦 consumes 21% less

power than𝐶𝑝𝑒𝑟𝑓 despite handling the same workload. These

two observations indicate that (with high probability) there

is no single optimal configuration that would enable the ser-

vice to provide peak performance when utilization is high

and to minimize energy consumption when utilization is

low. Since existing replication system software [30, 55] is

workload-agnostic and therefore does not include support

for dynamic reconfigurations, administrators are forced to

statically select a configuration and thereby compromise

between high performance and energy efficiency.



0 100 200 300 400

Cenergy

Cperf

Maximum Throughput [kOps/s]

0 5 10 15 20

Cenergy

Cperf

Power Consumption at 70 kOps/s [W]

Figure 7.Measurement results for two configurations of a

key-value store [64]

Independent of a specific replication system software con-

figuration, modern servers typically adjust their power con-

sumption by applying the concept of dynamic voltage and fre-

quency scaling (DVFS). DVFS enables the operating system

of a server to save energy during periods of low utilization

by limiting the CPU’s maximum speed. As it is controlled

by the operating system, the technique has the advantage of

being effective without requiring any modifications to the

software running at higher levels. On the other hand, this

property also prevents DVFS from always identifying and

applying the ideal tradeoff between performance and energy

consumption [65]. Specifically, there may be cases in which

it is possible to further minimize power consumption with-

out decreasing performance by disabling DVFS and instead

using a power governor [114] to set the CPU to its lowest

frequency. This is a direct result of the fact that DVFS has no

knowledge about the specific characteristics of a service and

consequently needs to make pessimistic assumptions on the

extent to which itself negatively impacts the performance of

a service.

4.2 Approach: Energy-Aware Reconfigurations
In order to be able to automatically adapt to varying work-

loads in an energy-aware manner, replication system soft-

ware needs to be flexible enough to (1) offer several configu-

rations with different characteristics regarding performance

and energy consumption and (2) dynamically switch between

these configurations whenever it is beneficial. Furthermore,

the system software should provide interfaces to both upper

layers (i.e., the service applications) as well as lower lay-

ers (i.e., the underlying operating system and hardware) that

allow the software to collect feedback on the effects of its

reconfiguration decisions. Figure 8 presents a replica archi-

tecture that is a result of my research and has been developed

to address these requirements. Its core component is a con-

troller whose main responsibility is to store information on

the impact of system parameters at different levels and to

use this knowledge to select the most suitable configuration

for the current workload.

Saving Energy at Different System Levels. To create a
variety of configurations with heterogeneous performance

and energy-consumption characteristics, the controller relies

on techniques that take effect at different system levels. The

three most important ones are:

• Mapping of Modules to Threads: At the replication-
software level, the controller is able to dynamically

change the number of threads that execute the replica-

tion software and its service. To increase performance

and minimize overhead such reconfigurations typically

also involve a remapping of softwaremodules to threads;

a module, for example, includes a task in the processing

pipeline (see Section 3.1) or a consensus partition (see

Section 3.2). The dynamic remapping can be simplified

by implementing modules as actors [3] so that they do

not share state and only communicate by exchanging

messages. As a consequence, this makes it significantly

easier to migrate modules between threads in case the

controller decides to perform a reconfiguration that ei-

ther increases or decreases the number of active threads.

• Mapping of Threads to Cores: At the operating-sys-
tem level, the controller can influence the thread-to-

core mapping, for example by pinning each thread to

a separate core and thereby reducing scheduling over-

head. During periods in which there are more cores

than threads, the controller deactivates unused cores to

save energy.

• Capping Power Consumption of Cores: At the hard-
ware level, the controller exploits modern features such

as Intel’s (RAPL) [93] to specify the maximum amount

of power a processor is allowed to use. Low thresholds

conserve energy but at the same time also decrease the

performance a processor is able to provide. In contrast to

DVFS, RAPL not only changes voltages and frequencies

but enables further savings by making use of additional

hardware features such as throttling a CPU’s clock.

By combining these techniques, a controller is able to pro-

duce configurations that are tailored for different workload

levels. When service utilization is high, the workload is usu-

ally distributed across multiple threads/cores, whereas dur-

ing low utilization a single thread on a (power-capped) core

can sometimes be sufficient to timely process all requests.

Dynamic Reconfiguration. While the system is running,

the controller continuously collects information on the cur-

rent workload from the replication software and if suitable

adjusts the configuration. As a basis for reconfiguration deci-

sions, the controller maintains a database containing knowl-

edge about the characteristics of different configurations

(e.g., processing latency, maximum throughput, power con-

sumption at different throughput levels). The database is

compiled during a training phase and later updated based

on performance and energy-consumption measurements the

controller conducts at runtime.



Controller

Configuration
Database

Replication Software

Operating System

Hardware

Core Core Core

Threads

Core [capped] Core CoreCore [disabled]

Information

Adaptation

Adaptation

Information

Adaptation

Figure 8. Energy-aware replica architecture enabling reconfigurations at different system levels

4.3 Results
To study its strengths and weaknesses, as part of my research

the approach presented in Section 4.2 was integrated with

systems from multiple domains [62, 64, 65], not limited to

replication system software. In all cases, the combination

of information collected at different layers enabled the con-

troller to optimize energy consumption while sustaining the

requested level of performance. The following paragraphs

summarize further results.

Power Caps as a Means to Save Energy in Replicated
Systems. One of the key outcomes of the conducted exper-

iments is the insight that power caps can be an effective

tool to minimize the energy consumption of a replicated

service while handling low and medium workloads. This

was not obvious from the beginning since power-capping

features such as RAPL originally were designed for a dif-

ferent purpose: as a protection mechanism against peaks

in power consumption. RAPL specifically, for example, has

been applied to maintain acceptable thermal load [45] and to

prevent circuit breakers from tripping [170]. Measurement

results obtained from a BFT coordination service show that

even in the presence of low power caps a replicated system

can still perform a significant amount of work [62]. Despite

the CPU-package power consumption being limited to 12W,

the coordination service for example is able to process more

than 40,000 read requests per second with a latency of less

than 5 milliseconds, which is often sufficient during periods

of low utilization.

Integration with Execution Platforms. Since the con-
cept of energy-aware reconfiguration does not depend on

specifics of the replication logic, there is no necessity to

implement it inside the replication software. As shown by

Empya [63, 64] and Strome [65], the controller for example

may also be placed within an underlying execution envi-

ronment, which in case of Empya and Strome is a general-

purpose platform for actor-based applications [4] and data-

stream processing applications [101], respectively. As a key

benefit, this makes energy-aware reconfigurations available

to a wide spectrum of different services.

Coordinating Reconfigurations Across Servers. In a

replicated system in which all replicas handle the same work-

load, it is usually feasible for the controller to make recon-

figuration decisions solely based on information it collects

from its local server. On the other hand, for distributed ap-

plications that split the workload among servers or rely on

different machines to perform different tasks, it can be benefi-

cial to coordinate reconfigurations across servers. In Strome,

for example, where the output of one server represents the

input of another, a central controller monitors the impact of

server-local reconfigurations on overall system performance

and fine-tunes the adaptations in an effort to reach a global

optimum.

4.4 Main Papers
Three papers represent the core of my research on energy-

aware adaptation in system software and hence are included

in this cumulative habilitation treatise (see reprints in Ap-

pendix B). Below, the specific contribution of each of these

papers is described in detail.

ARM ’15 Towards Energy-Proportional State-Machine Repli-
cation
Christopher Eibel and Tobias Distler [62]

The paper introduces the idea of relying on dynamic re-

configurations at multiple system levels to improve energy

efficiency in the presence of varying workloads. Specifically,

the paper investigates the approach as a means to achieve

energy proportionality [18] in infrastructures controlled by

replication system software. A system is energy-proportional

if its energy consumption correlates with the provided perfor-

mance. For evaluation purposes, the paper uses a Byzantine

fault-tolerant coordination service that is implemented on

top of an existing replication library [55].

IC2E ’18 Empya: Saving Energy in the Face of VaryingWork-
loads
Christopher Eibel, Thao-Nguyen Do, Robert
Meißner, and Tobias Distler [64]

The paper and its extended version [63] examine the chal-

lenges and implications of integrating the controller with

a general-purpose programming and execution platform,



using the actor-based Akka [4] as example. The resulting

energy-aware platform Empya can serve as a basis for the

implementation of replication system software, but also for

the execution of data-processing applications such as MapRe-

duce [47] and Spark [173] jobs, which do not rely on state-

machine replication for fault tolerance.

DAIS ’18 Strome: Energy-Aware Data-Stream Processing
Christopher Eibel, Christian Gulden, Wolfgang
Schröder-Preikschat, and Tobias Distler [65]

The paper is the first to present coordinated reconfig-

urations. The evaluated use case is Twitter’s data-stream

processing platform Heron [101] whose master and worker

nodes have been extended with controller components that

interact with each other to determine the effects of local

decisions on overall system performance and energy con-

sumption. The paper received the Best Paper Award at the

18th International Conference on Distributed Applications

and Interoperable Systems (DAIS ’18).

The work presented in this chapter was conducted with

Christopher Eibel as a part of his doctoral studies that was

supervised by me. His doctoral studies also included research

on other energy-related topics for which he was supervised

by Wolfgang Schröder-Preikschat and Timo Hönig. Under

Christopher’s and my supervision, three Bachelor/Master

students contributed to the project: Thao-Nguyen Do imple-

mented parts of the Empya platform. Robert Meißner created

an extension for Empya that enables the platform to exe-

cute Spark applications. Christian Gulden developed and

implemented the Strome prototype.

5 Techniques Tailored to Specific Use Cases
Leveraging multiple cores on a server (Chapter 3) and mini-

mizing the energy consumption of replicas (Chapter 4), the

approaches presented in the previous two chapters can sup-

port a broad spectrum of replication use cases. To comple-

ment these works, this chapter examines possibilities of fur-

ther improving the efficiency of replication system software

through mechanisms and concepts that are tailored to the

characteristics and requirements of particular application

scenarios such as heterogeneous environments, services with

large states, and geo-replicated settings. Although designed

with a specific use case in mind, the approaches presented

in this chapter are nevertheless generally applicable in the

sense that they are neither limited to a certain fault model

nor a specific replication protocol.

5.1 Services in Heterogeneous Environments
Replication protocols commonly assume replicas to be fault

independent, meaning that a single cause cannot lead to the

simultaneous failures of multiple replicas. In practice, the

probability of correlated failures can be reduced by placing

replicas at different geographic locations (see Section 5.3)

and/or diversifying their implementations [16, 78], for ex-

ample by relying on heterogeneous off-the-shelf software

components [39, 42, 60, 80–82, 84, 150, 154]. So far, the pri-

mary focus of these works was laid on the impact diversifica-

tion can have on the overall resilience of a replicated system

against faults.

In general, existing studies do not address the fact that het-

erogeneity not only has an influence on fault tolerance, but

typically also affects the individual performance of replicas,

for example as a result of the use of different programming

languages, service implementations, and/or operating sys-

tems. The same is true for environments in which the server

hardware or the amount of available resources (e.g., the num-

ber of cores a replica has at its disposal) differs among repli-

cas. A common example of such environments are cloud in-

frastructures where the performance can vary significantly

across virtual machines, even if the virtual machines on pa-

per are of the same instance type [130].

For simplicity, most replication protocols either implicitly

or explicitly assume replicas to be equally powerful and thus

provide a homogeneous level of performance, independent

of whether their implementations are diversified or not. As

discussed in the following by example of BFT replication, in

application scenarios in which a replicated system runs in

an heterogeneous environment, this approach may prevent

replication system software from fully utilizing all available

resources on servers that are more powerful than others.

State of the Art. Figure 9 illustrates the problem based

on an example scenario in which the replicated system is

required to tolerate one Byzantine fault. In the shown set-

ting, there are two categories of servers: (1) fast machines

with 2.4 GHz processors and (2) slow machines with 1.6 GHz

processors, meaning that the fast servers have 50% more

processing resources than the slow servers, as indicated by

the respective height of a server’s bar.

A common solution to tolerate 𝑓 = 1 Byzantine fault is

to rely on the PBFT [37] protocol, which for this purpose

requires a minimum of 𝑛 = 3𝑓 + 1 = 4 replicas. However,

as depicted in Figure 9a, applying PBFT with four replicas

would result in the replication system software leaving un-

used about one third of the fast server’s processing resources.

This is a consequence of the fact that in PBFT, as it is the case

for many other fault-tolerant protocols, the system can only

make progress if a sufficient number of replicas participate

in the agreement process; in PBFT this quorum threshold

is ⌈𝑛+𝑓 +1
2

⌉ = 3 replicas. Or in other words, the overall per-

formance of PBFT is limited by the ⌈𝑛+𝑓 +1
2

⌉th fastest server,

independent of whether or not some of the faster servers

have spare processing resources.

Unfortunately, providing further resources in the form of

additional servers in this scenario also does not solve the

problem. Technically, it is possible to operate PBFT with

more than the minimum number of required replicas (see

Figure 9b), however instead of improving performance such



Servers
1 2 3 4 5

A
+

E

A
+

E

A
+

E

A
+

E

(a) PBFT [37] with 4 replicas

Servers
1 2 3 4 5

A
+

E

A
+

E

A
+

E

A
+

E

A
+

E

(b) PBFT [37] with 5 replicas

Servers
1 2 3 4 5

A1 A1 A1 A1

A2 A2 A2

A2

E E

E

(c) Omada [72]

Figure 9. CPU resource utilization in different replicated systems tolerating one Byzantine fault. Bar heights symbolize the

capabilities of individual servers, with higher bars indicating more powerful processors. Replicas consist of (combined) modules

for agreement (𝐴) and execution (𝐸).

a measure typically has the opposite effect. This has mainly

two reasons: (1) Increasing the replica-group size to 𝑛 = 5,

PBFT needs to resort to larger agreement quorums, which

in turn means that for the example setting the performance

bottleneck shifts from the third fastest server to the fourth

fastest server, that is in the wrong direction. (2) With more

replicas participating in the consensus process, PBFT needs

to exchange more messages between replicas, which not

only requires additional processing and network resources

but usually also negatively impacts performance [72].

Approach: Group-based System Architecture. To min-

imize the amount of resources lying idle in heterogeneous

environments, replication system software must be enabled

to flexibly move work to the locations at which the neces-

sary resources are actually available. The Omada system

architecture [72], a result of my research, solves this prob-

lem by organizing a replicated system into different module

groups, specifically one group that comprises the execution

stage, and a configurable number of groups responsible for

handling request agreement. Given this basic concept, the

Omada system architecture can be seen as an extension of

the partition-based COP-SE replica architecture presented

for consensus-oriented parallelization in Section 3.2. How-

ever, there are three important differences:

• Flexible Distribution: Using COP-SE all replicas host

all partitions, whereas in the Omada architecture the

module groups are distributed across different replicas,

as shown in Figure 9c. In this example, the agreement

stage is split into two groups𝐴1 and𝐴2 to enable a fine-

grained distribution of work. This way, fast servers with

many resources can be assigned more tasks (e.g., the

responsibility for both agreement groups as well as the

execution group) compared with the work that needs

to be performed by slow servers (e.g., hosting only two

of the three groups).

• Efficient Execution: Omada exploits the insight that

when agreement and execution are separated, 2𝑓 + 1 ex-
ecution replicas are sufficient to tolerate up to 𝑓 Byzan-

tine faults [171]. In the example depicted in Figure 9c,

this enables Omada to save resources my limiting the

execution-group size to three servers (i.e., Servers 1 to 3).

• Heterogeneous Groups: While COP-SE uniformly

distributes the agreement workload among its parti-

tions, agreement groups in Omada may possess hetero-

geneous configurations. By relying on group-specific

maximum batch sizes (i.e., upper thresholds for the num-

ber of requests each group is allowed to handle within

a single consensus instance), it is for example possi-

ble to create agreement groups with diverse resource-

consumption characteristics. This is important since it

enables Omada to adapt the workload distribution to

the amount of resources available in the system.

In order to assist practitioners in deploying their systems

as well as to increase resource utilization, Omada comes

with a systematic approach to determine the number and

placement of groups in a heterogeneous environment. In

a first step, this includes a measurement-based assessment

of the actual processing resources available on each partic-

ipating server, which typically involves the execution of a

small microbenchmark performing cryptographic computa-

tions, as are used by replication protocols to authenticate

messages [37]. Based on the results obtained from these

measurements, each server is assigned a certain number of

performance points, which is a unitless metric to quantify



Replica . . .

Replica . . .

Replica . . .

Replica . . .

Checkpoint Checkpoint CheckpointRequest Execution Request Execution Request Execution

Time

(a) Lockstep checkpoints

Replica . . .

Replica . . .

Replica . . .

Replica . . .

Checkpoint Checkpoint Checkpoint

Checkpoint Checkpoint Checkpoint

Request Execution Request Execution Request Execution

Request Execution Request ExecutionTime

(b) Checkpoint rotation

Figure 10. Comparison of state-of-the-art checkpointing techniques

the relative performance differences between servers. Next,

it is necessary to estimate the ratio between the resource

demands of an agreement group and the resource demands

of the execution group. This property is also expressed in

terms of performance points and depends on the specific pro-

tocol used for replication. In a final step, all the information

gathered up to this point serves as input for the formulation

of an integer linear program [132]. This program then allows

a solver to automatically analyze all possible assignments of

groups to servers and thereby determine an optimal Omada

configuration.

Results. So far, the Omada system architecture has been

implemented and evaluated in conjunction with two differ-

ent BFT protocols, namely PBFT [37] and Spinning [155].

In both cases, Omada enables the replication system soft-

ware to rely on agreement groups that employ the respective

consensus-protocol implementation as a black-box compo-

nent, requiring no modifications to the essential protocol

parts. In general, there is no limitation preventing the ap-

proach to also be applied to CFT agreement protocols that

establish a stable total order on incoming client requests.

The rationale behind the primary focus on BFT was the fact

that Byzantine fault tolerance typically requires significantly

more resources than crash tolerance, and consequently it

becomes all the more costly if resources lie idle.

Another major result of the research on Omada is the

insight that there are several opportunities for the replication

system software to optimize the interaction between groups

in cases in which two modules of different groups reside

on the same server and consequently can be assumed to

trust each other, as they do in traditional non-group-based

architectures. For example, if an execution module receives

an ordered request from a co-located agreement module,

the execution module may immediately accept the message

without the need to consult other agreement-groupmembers,

thereby saving resources.

Experiments conducted with a coordination service show

that for a heterogeneous environment such as the one in

Figure 9 (i.e., two fast servers and three slow servers) Omada

is able to improve performance by utilizing resources more

effectively [72]. Specifically, integrated with the Omada ar-

chitecture the maximum throughputs achieved by PBFT and

Spinning increase by 15% and 10%, respectively. A second

important outcome of the experiments is the observation

that the performance improvements possible with Omada

further increase if the differences in available resources be-

tween servers become larger, that is if servers are even more

heterogeneous. For a six-server setting (i.e., two fast servers

and four slow servers) in which each slow server only has

a third of the computing power of a fast server (instead of

two thirds as in the scenario in Figure 9), Omada for exam-

ple enables throughput improvements of 108% (PBFT) and

168% (Spinning).

5.2 Services with Large States
Replication protocols usually make no specific assumptions

on the size of the application state they need to keep con-

sistent across replicas. From a theoretical point of view this

approach is reasonable since the state size in general has no

influence on the correctness of a protocol. However, when it

comes to building actual systems, the amount of application

data involved suddenly can become an important factor im-

pacting the efficiency of replication system software. Specif-

ically, this is true with regard to the problem of creating



Replica
. . .

Replica
. . .

Replica
. . .

Replica
. . .

SC

SC

SC

SC

SC

SC

SC

SC

CC

CC

CC

CC

CC

CC

CC

CC

Request Execution Request Execution Request Execution

Time State Capture Checkpoint Completion

Figure 11. Creation of deterministic fuzzy checkpoints in parallel with request execution

periodic checkpoints, which as explained in Section 2.1 are

necessary to perform garbage collection and to update new

or trailing replicas via state transfer. In replicated systems,

checkpoints are a representation of the application state at a

particular point in time, typically in between the execution

of two client requests with neighboring sequence numbers.

Persisting the contents of such a checkpoint by writing it to

stable storage commonly requires means to capture and se-

rialize all relevant application objects, which is an operation

that can result in significant overhead for replicated services

with large states.

State of the Art. As illustrated in Figure 10a, the most

widely used checkpointing method in replicated systems is

to instruct replicas to create checkpoints in lockstep, mean-

ing that all replicas in the system produce snapshots for the

same sequence numbers [37]. As a key benefit, this approach

makes it possible to directly compare the checkpoints gen-

erated by different replicas and thereby detect faulty copies

of the application state. For this to work, it is crucial that

checkpoints consistently reflect the contents of the replicated

application after a certain sequence number. A straightfor-

ward way to ensure this is to first suspend the execution

of requests, then serialize all state objects to a suitable lo-

cation (e.g., a file on disk), and afterwards resume request

processing. Although leading to consistent checkpoints, this

technique unfortunately has the main drawback of reduc-

ing the availability of services with large states, for which

the state serialization can take a significant amount of time

during which the system does not process requests. The pe-

riod of unavailability can be shortened by only storing the

changes since the latest checkpoint [37, 39], however this

still leaves the problem that all replicas in the system are

affected at the same time.

To address this issue, Bessani et al. [30] proposed an ap-

proach that enables replicas to snapshot their application

instances at different sequence numbers, as shown in Fig-

ure 10b. This way, one replica at a time can focus on request

executionwhile the rest of the group continues to provide the

service. Notice that the improvement in availability comes

at the cost of checkpoints from different replicas not being

directly comparable anymore. To verify a checkpoint 𝑐𝑝𝐴
based on another (later) checkpoint 𝑐𝑝𝐵 using this technique,

a replica first needs to load the 𝑐𝑝𝐴 contents received from

one replica, process subsequent requests, and finally com-

pare the resulting application state to the checkpoint 𝑐𝑝𝐵
provided by a different replica. In CFT systems in which

replicas trust each other this does not pose a problem, how-

ever in BFT systems the necessity to load unverified state

data (i.e., checkpoint 𝑐𝑝𝐴) entails the risk of being exploitable

by adversaries [53].

Approach: Deterministic Fuzzy Checkpoints. To be ef-

ficient and generally applicable in both CFT and BFT systems

with large states, a checkpoint technique should not require

the temporary suspension of request execution, and still pro-

duce comparable checkpoints that can be verified without

loading them first. This problem served as a starting point for

my research on deterministic fuzzy checkpoints (DFC) [68],
which was inspired by the fuzzy-checkpointing techniques

proposed for early in-memory databases [90, 113, 144]. As

shown in Figure 11, using DFC the replication system soft-

ware produces snapshots while continuously processing

requests. The checkpointing process itself consists of two

phases:

• State Capture Phase: In this phase, the replication

system software collects all information necessary to

later be able to produce the actual checkpoint. Specifi-

cally, a separate checkpointer thread iterates over all

state objects and copies them. With request execution

continuing, the resulting overall snapshot is likely to

neither reflect a consistent state nor the exact state of

the application at the intended sequence number. There-

fore, to not miss any intermediate changes the system

software in addition also records all modifications that

take place after a state object has been copied.

• Checkpoint Completion Phase: This phase trans-
forms the fuzzy snapshot obtained during state capture

into a comparable and consistent checkpoint. For this

purpose, also in parallel with request execution, the

replication system software takes the state-objects snap-

shot from the previous phase and applies all recorded



Wide-Area BFTProtocol
Client

Replica

Leader

Replica

Replica

(a) Single-tier protocols (e.g., PBFT [37])

Wide-area CFTProtocol

Local-Area
BFTProtocol

Client

Replica
Leader
Replica
Replica

Replica
Leader
Replica
Replica

Replica
Leader
Replica
Replica

Leader Site

(b) Hierarchical protocols (e.g., Steward [10])

Figure 12. Message flow in wide-area environments for state-of-the-art replication protocols

changes to it. At the end, the checkpoint produced by

DFC is indistinguishable from the checkpoints tradi-

tional lockstep techniques would create for the same

sequence number.

Depending on the characteristics and requirements of the

particular use-case scenario, there are different ways to im-

plement the DFC checkpointing mechanism in replication

system software. For example, if the application interface

already contains means to notify the system software about

imminent object modifications [39], a straightforward ap-

proach is to perform most of the work inside the replication

system software and in an application-independent manner.

On the other hand, there is the possibility to let the repli-

cation system software only coordinate the checkpointing

process and outsource the monitoring of state changes to

the service application. Compared with the generic solution,

this variant requires additional implementation work but in

return enables further service-specific optimizations such as

a more efficient management of state modifications [68].

Results. As part of the research on DFC, the technique

has been successfully used to not only create full check-

points (i.e., copies of the entire application state) but also

differential checkpoints (i.e., snapshots of the changes since

the latest checkpoint). In both cases, DFC was found to al-

ready improve the availability of replicated services with

comparably small states. For a key-value store with a 3GB

database the use of DFC for example resulted in no notable

downtime during the creation of full checkpoints; without

DFC, request execution had to be suspended for about 4.7 sec-

onds once every checkpoint interval [68].

A second important insight is the fact that DFC is able to

minimize the duration between (1) the point in time at which

the state reflected by a checkpoint exists in the application

and (2) the point in time at which the corresponding fully

serialized checkpoint becomes ready. More specifically, tra-

ditional approaches start the creation of the checkpoint for a

sequence number 𝑠 immediately after having processed the

request assigned to sequence number 𝑠 . In contrast, using

DFC a replica at this point already initiates the final check-

point completion phase, after having finished most of the

work in advance.

5.3 Geo-Replicated Services
For use-case scenarios in which the clients of a replicated

service are scattered across the globe, a common approach is

to also geopraphically distribute the server-side of the system.

The rationale behind this strategy is to give clients faster

access to the service by placing replicas in close distance

to them and thereby reduce transmission times between

clients and replicas. On the downside, hosting replicas near

clients typically also means that they are farther apart from

each other and as a result it takes longer for them to reach

consensus. This predicament illustrates the necessity for

research on how replication system software can minimize

end-to-end response times in geo-replicated settings.

State of the Art. Replicating a service across multiple

geographic sites is a highly relevant problem in practice and

therefore has been extensively studied in the context of both

CFT and BFT. Overall, the proposed solutions can be divided

into two high-level categories:

• Single-Tier Protocols: Protocols in this category [37,

117, 124, 156] share the commonality that they only

host a single replica at each participating location and

thus require all protocol mechanisms (e.g., consen-

sus algorithm, leader election, state transfer) to be

entirely executed across wide-area connections (see

Figure 12a).

• Hierarchical Protocols: Systems belonging to this

category [8, 10, 88] deploy multiple replicas at each

site and implement the overall replication protocol as

a combination of subprotocols at two distinct hierar-

chical levels, as shown in Figure 12b: (1) a local-area



subprotocol that is executed among replicas residing

at the same geographic location and (2) a wide-area

subprotocol that connects different sites.

A major benefit of the hierarchical approach is the fact that

by designing the local-area subprotocol in a fault-tolerant

manner, the set of replicas at each site is able to provide

stronger resilience guarantees than a single replica. Com-

pared with single-tier protocols, this makes it possible to

reduce the complexity of the protocol run at the wide-area

level.

Independent of the specific category, in leader-based repli-

cation protocols client requests need to pass through the

agreement leader in order to be considered in the consensus

process. As a consequence, the end-to-end response times

provided by a geo-replicated system can vary significantly de-

pending on where the current leader is located [70, 117, 148].

Some protocols aim at addressing this issue by rotating the

leader role among replicas [117, 118, 123, 155, 156], there

enabling a client to save time by submitting requests to the

replica closest to its own location. Unfortunately, experi-

ments in real-world environments have shown that the strat-

egy of rotating the leader role overall does not necessarily

always lead to better response times than a fixed leader at a

well-connected site [148].

When a service is used by clients from all over the world,

it is likely that not all of those clients continuously access

the service. Instead, accesses in practice often follow diur-

nal patterns (see Chapter 4) and as a consequence of the

day/night cycle the origins of client requests usually change

over the course of a day. Since only few replication protocols

support dynamic reconfigurations of the replica group [30,

105, 129, 142], leaderless protocols [61, 124] and weighted-

voting schemes [26, 148] can be used to reduce response

times in deployments with a larger number of static replica

sites. However, this comes at the cost of an increased network

overhead necessary to keep replicas consistent.

Approach: Clustered System Architecture. Geo-replica-
tion protocols should provide low latency and support for

flexibly adding/removing new replica sites to/from the sys-

tem at runtime. The cluster system architecture Spider [73],

a result of my research, addresses these issues by splitting the

replication system software into two main parts, agreement

and execution [171], and instantiating these parts in different

replica clusters and at different geographic locations. Pre-

cisely, Spider comprises one agreement cluster and multiple

execution clusters, which are all dimensioned to tolerate a

preconfigured number of replica faults. The agreement clus-

ter is responsible for running the consensus protocol and

establishing a global order on client requests, while the exe-

cution clusters host copies of the service application, handle

the interaction with clients, and process the requests.

The Spider architecture is specifically designed for deploy-

ment in public clouds and tailored to leverage the charac-

teristics of the infrastructures providing them. In particular,

the approach exploits the fact that today’s clouds are orga-

nized as a collection of regions, which are further divided

into availability zones [7, 85, 122]. Availability zones are

constructed in such a way that they represent distinct fault

domains. They are typically hosted in data centers that have

dedicated power supply systems and networking and are

located several tens of kilometers apart from each other. All

these measures are taken to minimize the probability of two

availability zones being affected by correlated failures even

if they reside in the same region. Spider benefits from these

properties by distributing each agreement/execution cluster

across different availability zones of a region. This way, the

communication within a cluster can be efficiently performed

with low latency while still enabling the cluster as a whole

to serve as a fault-tolerant entity. In contrast to traditional

single-tier or hierarchical systems, this strategy circumvents

the need to execute expensive replication protocols over

long-distance links. Instead, all complex protocols (e.g., the

consensus algorithm) in Spider are run inside a cluster and

therefore limited to a single region. Wide-area connections

between regions, on the other hand, are primarily respon-

sible for forwarding the protocol outputs of one cluster to

another cluster.

As illustrated in Figure 13, clients in Spider submit re-

quests to their nearest execution cluster. Since the execution

replicas themselves manage copies of the service state and

process all modifications in the same order, they are able to

immediately respond with weakly consistent results provid-

ing consistent-prefix guarantees [151]. For clients requiring

strongly consistent reads or writes (i.e., linearizability [91]),

an execution cluster forwards the corresponding requests to

the agreement cluster where the consensus protocol assigns

each request with a unique and stable sequence number. Due

to the consensus process being limited to the agreement clus-

ter, the specific algorithm used for the agreement of requests

is fully independent of execution-cluster implementations,

making it possible to integrate Spider with different agree-

ment protocols. After the consensus is complete, the agree-

ment cluster delivers the requests to all execution clusters,

which process them in the order of their sequence numbers

and (if connected to the client) return the result.

To simplify system design and implementation, the re-

search on Spider also involved the development of a replica-

tion system software component for handling the exchange

of information between clusters: the inter-regional message

channel (IRMC) [73]. IRMCs are unidirectional𝑚-to-𝑛 chan-

nels that connect𝑚 replicas of one cluster to 𝑛 replicas of

another cluster. For the messages sent through them, the

channels offer first-in-first-out semantics as well as a flow-

control mechanism that prevents the cluster of sender repli-

cas from overwhelming the cluster of receiver replicas. Be-

sides enabling Spider’s modular design, IRMCs also greatly

simplify the dynamic addition/removal of execution clusters.



Preprocessing Execution

Execution
Agreement

Client

Execution
Cluster

Execution
Cluster

Agreement
Cluster

Weakly consistent results

Inter-Regional
Message Channel

Inter-Regional
Message Channel

Inter-Regional
Message Channel

Strongly consistent results

Figure 13. Clustered system architecture for geo-distributed replicated systems

Results. The Spider system architecture has been inte-

grated with an existing BFT replication system software im-

plementation and evaluated for a geo-replicated key-value

store in the public Amazon EC2 cloud [73]. Themeasurement

results indicate that Spider enables low end-to-end response

times for several operations. For strongly consistent writes,

for example, the overall latency in Spider is dominated

by a single wide-area round trip between a client’s near-

est execution cluster and the agreement cluster. In general,

this constitutes an improvement over the number of long-

distance hops required by single-tier BFT protocols such as

PBFT [37] or hierarchical protocols such as Steward [10],

as previously shown in Figure 12. As a consequence, in the

evaluated setting Spider completed writes up to 95% (PBFT)

and 94% (Steward) faster than the other replication protocols.

Another key takeaway from the experiments is that in Spi-

der end-to-end response times are fairly stable independent

of where the current agreement leader is located. This is a

result of the fact that, while in PBFT and Steward the leader

role can move between all participating sites, the leader

replica in Spider is guaranteed to be one of the replicas in

the agreement cluster. Hence, instead of hundreds or thou-

sands of kilometers as in traditional system architectures,

the Spider leader solely shifts among different availability

zones of the same cloud region, which typically has only a

minor impact on overall latency.

An analysis of existing public-cloud infrastructures has

shown a wide range of deployment options for Spider-based

systems. At the time the study was conducted in 2020, the

three major public-cloud providers Amazon, Microsoft, and

Google together already offered a total of 54 compute-cloud

regions that comprise three or more availability zones and

therefore are qualified to host a Spider execution cluster

tolerating one Byzantine fault. Four of those regions further-

more are sufficiently equipped to accommodate a correspond-

ing agreement cluster due to having four or more availability

zones. To support deployments with larger agreement clus-

ters there are mainly two possible ways to achieve this: (1) If

the designated agreement region lacks the required number

of availability zones, some of the agreement replicas may be

placed in neighboring regions of the same cloud provider.

Although this approach does not endanger correctness, it

may come at the cost of increasing volatility in response

times in the presence of leader changes. (2) The agreement

cluster may be distributed across availability zones of dif-

ferent cloud providers that are located in relatively close

distance to each other. Apart from keeping response times

stable, this strategy also has the benefit of making the system

resilient against faults that affect an entire provider. Such

diversification in deployment has previously been proposed

for various use-case scenarios including, for example, storage

services [1, 28].

5.4 Main Papers
The core of my research on application-specific replication

system software comprises three papers included in this

cumulative habilitation treatise (see reprints in Appendix B).

In the following, the specific contribution of each of these

papers is described in detail.

Computing ’19 Scalable Byzantine Fault-tolerant State-
Machine Replication on Heterogeneous
Servers
Michael Eischer and Tobias Distler [72]

The paper and its conference version [69] are the first

to analyze the impact of servers with heterogeneous char-

acteristics on the performance and resource efficiency of

replication system software. To address the identified prob-

lems, the papers present the Omada approach and imple-

mentation, which improves the flexibility and scalability of

replication system software by parallelizing the agreement

stage into heterogeneous groups.Omadawas evaluated with

two protocols: PBFT [37] and Spinning [155].

SRDS ’19 Deterministic Fuzzy Checkpoints
Michael Eischer, Markus Büttner, and To-
bias Distler [68]



The paper proposes deterministic fuzzy checkpoints as a

means for replication system software to efficiently snapshot

replicated BFT services with large states. To underline the

broad applicability of the technique, the paper discusses alter-

natives for integrating the fuzzy-checkpointing mechanism

with existing replication system software architectures. In

addition, it evaluates the approach in conjunction with both

full as well as differential checkpoints, showing significant

improvements in service availability.

Middleware ’20 Resilient Cloud-based Replication with
Low Latency
Michael Eischer and Tobias Distler [73]

The paper introduces the clustered system architecture

Spider in the context of BFT geo-replication and discusses

details on how to integrate the architecture with today’s

public-cloud infrastructures. Specifically, the paper explores

ways to support both strongly and weakly consistent oper-

ations, to dynamically add new replica sites to the system,

and to offer multiple implementations of inter-regional mes-

sage channels with different characteristics. Experiments

conducted with a prototype on Amazon EC2 [6] show Spi-

der to provide lower latency than existing approaches for

wide-area environments and response times to remain stable

even across different agreement-leader replicas. The paper

received the Best Student Paper Award at the 21st Middleware

Conference (Middleware ’20).

The work presented in this chapter was conducted with

Michael Eischer during his doctoral studies, supervised by

me. Under our both supervision, in his Bachelor thesis Mar-

kus Büttner implemented parts of the mechanism for creat-

ing deterministic fuzzy checkpoints.

6 Conclusion
Dedicated to improving the efficiency of reliable replica-

tion system software, this treatise has presented several ap-

proaches and techniques to advance the state of the art. This

section summarizes the key contributions and outlines ways

to combine them with each other. In addition, the section

includes a discussion on how the developed concepts can

be applied to a category of replicated services that in recent

years became highly relevant in practice: blockchains. Fi-

nally, the section describes open challenges in the domain of

replication system software research that can serve as basis

for future work in this area.

6.1 Summary of Contributions
The following list summarizes the most important contribu-

tions of this treatise:

Consensus-Oriented Parallelization is a parallelization

scheme that distributes the responsibilities of a replica

across loosely coupled partitions. This enables the sys-

tem software to effectively utilize multiple cores on

each server in an efficient manner.

Energy-Aware Reconfigurations take effect at different

system levels and for example change the mapping of

program modules to threads or the power-consump-

tion threshold of a processor. They are a means for the

replication system software to reduce the energy foot-

print of a replica during periods of low and medium

workloads.

Group-based System Architectures divide the agreement

stage of a replicated system into multiple non-uniform

groups. By instructing powerful replicas to participate

in more groups, the system architecture makes it pos-

sible to increase performance as a result of improving

resource utilization in environments with heteroge-

neous servers.

Deterministic Fuzzy Checkpoints enable the replication

system software to create snapshots of the service state

in parallel with request execution. Such a mechanism

is particularly useful to achieve high availability for

applications with large states.

Clustered System Architectures exploit the special prop-

erties of today’s public-cloud infrastructures to mini-

mize the amount of long-distance network traffic. For

geo-replicated systems, this leads to less complex sys-

tem designs and enables low latency.

For all of these approaches, there exists at least one pro-

totype implementation that has been used for evaluation.

The measurement results obtained from these experiments

have been key in identifying the individual strengths and

weaknesses of the proposed concept.

6.2 Compatibility of Approaches
The approaches presented in this treatise have been designed

for different objectives (see Table 1), which raises the ques-

tion whether they are compatible with each other. Techni-

cally, there is no reason that would prevent an integrated

replication system software implementation combining all

of the proposed concepts. However, this does not necessarily

mean that building such an implementation would actually

be reasonable in practice since the common use cases of

replicated services typically do not require all the developed

mechanisms within a single system. Consequently, it is likely

to make more sense to combine a few selected approaches

as part of a special purpose replication system software. The

remainder of this section discusses two examples of compos-

ability in more detail.

Supporting the Full Spectrum of Workloads. Address-
ing periods of high and low utilization, respectively, con-

sensus-oriented parallelization (see Section 3.2) and energy-

aware reconfigurations (see Section 4.2) are ideal candidates

for integration within the same implementation. By effec-

tively using all available cores on a server the former could

ensure that the replicated service is able to sustain high

throughput during workload peaks, whereas the latter would



Approach Description Primary Objective Scope
Consensus-oriented parallelization Section 3.2 High throughput Replica

Energy-aware reconfigurations Section 4.2 Saving energy Replica

Group-based system architecture Section 5.1 Scalability Replica cluster

Deterministic fuzzy checkpoints Section 5.2 High availability Replica

Clustered system architecture Section 5.3 Low latency Entire system

Table 1. Comparison of the approaches presented in this treatise

be responsible for saving energy at times when clients issue

fewer requests to the service. On a technical level, there is

especially one question that should be answered when com-

bining the two approaches: How to deal with the fact that

there are multiple partitions, which on the one hand enables

parallelism when utilization is high, but on the other hand

constitutes overhead (e.g., additional network connections,

need for load balancing) when utilization is low? One way

to handle this issue is to keep the number of partitions static

and only vary the assignments of partitions to threads, for

example instructing a single thread to process all partitions

during periods of low workloads. Another possibility is to

minimize overhead by providing an auxiliary mechanism to

dynamically change the number of partitions as part of the

energy-aware reconfigurations.

Nesting Architectures. As shown in Table 1, the pro-

posed architectures take effect at different scopes. The clus-

tered Spider system architecture (see Section 5.3) separates a

replicated system into an agreement cluster and multiple exe-

cution clusters. In contrast, the group-based architecture (see

Section 5.1) focuses on a single cluster, for which it enables

an extended distribution across additional servers. Finally,

consensus-oriented parallelization defines the architecture of

individual replicas (see Section 3.2). Consequently, if consid-

ered useful, the agreement cluster of a Spider system could

use a group-based approach to include additional replicas

for scalability, and internally every replica could organize

each of these groups as a collection of partitions handled by

different threads.

6.3 Applicability to Permissioned Blockchains
Apart from the use cases considered in previous chapters

(e.g., key-value stores, coordination services), in recent years

an additional domain of application scenarios for replicated

systems, and especially BFT protocols, has emerged: permis-

sioned blockchains [11, 19, 27, 86]. In contrast to permis-

sionless blockchains, as for example used for Bitcoin [125],

in permissioned blockchains an access-control mechanism

ensures that only a selected set of nodes (instead of arbitrary

nodes) are able to participate in system operations. Hence,

permissioned blockchains better fit the systemmodel of exist-

ing CFT and BFT protocols, which as discussed in Section 1.1

typically assume a replica group whose size and composi-

tion is a matter of controlled configuration, for example by

a trusted administrator.

Permissioned blockchains in general rely on system archi-

tectures that follow the execute-verify principle [97], which

means that replicas first process client requests and after-

wards agree on the order in which to apply the correspond-

ing state updates [11]. Compared with traditional replicated

systems, which first reach consensus on requests and then

execute them (see Section 2.1), from an overall perspective

this constitutes a reordering of protocol steps and therefore

can be considered a new paradigm. On the other hand, as

discussed in detail my survey paper [53], it is also possible

to regard permissioned-blockchain systems as compositions

of two services: (1) a user-facing front-end application that

transforms user requests into state transactions and (2) a

back-end application that verifies the transactions and main-

tains a history of the corresponding blockchain state. As

illustrated in Figure 14, from this point of view processes of

the front-end application are essentially clients of a tradition-

ally replicated back-end application, with the exception that

these processes themselves manage a considerable amount

of application state. Specifically, for the back-end part of

the blockchain, system designers commonly assume a sim-

ilar system model as is used for many existing replicated

architectures and protocols.

With regard to the approaches of this treatise, this means

that they are also applicable to the domain of permissioned

blockchains, where they especially could be of benefit to im-

prove efficiency and availability of the back ends of such sys-

tems. In particular, consensus-oriented parallelization (see

Section 3.2) for example may enable a back end to sustain

high throughputs of transactions. Furthermore, the deter-

ministic fuzzy checkpointing technique presented in Sec-

tion 5.2 could be used to create snapshots of the (often large)

blockchain history without the need to temporarily suspend

the processing of transactions.

6.4 Open Challenges
Despite decades of advances in research, there is still room

for improvement when it comes to the implementation of

replication system software. This section discusses several

open issues that have been identified as a byproduct of the

work presented in this treatise.

Closing the Gap Between Specification and Implemen-
tation. One of the most important problems of both CFT

and BFT replication is the fact that it is inherently difficult

to implement replication system software based on existing



HistoryAgreement Replica

HistoryAgreement Replica

HistoryAgreement Replica

...

Validators

Users Front-End Application Back-End Application

Requests
Transactions

Figure 14. Composite system architecture used for permissioned blockchains

protocol specifications. This is a result of the common ap-

proach to develop protocols by primarily focusing on the

tasks essential for safety and liveness, thereby for example

abstracting from practical problems related to replica interac-

tion such as flow control. For the crash-tolerant Paxos [104],

for example, this led to a significant amount of secondary

literature whose sole purpose is to discuss how the protocol

works and how to implement it [33, 40, 98, 121, 153]. Caus-

ing already complications for CFT protocols, the problems

become even larger for the more complex BFT protocols. To

address these issues, research should aim at finding means to

specify replication protocols in a way that makes it possible

to infer a direct implementation.

Minimizing the Impact of Message Authentication
on Protocol Design. Many replication protocols, especially

from the BFT domain, for correctness require their replicas

to communicate via authenticated messages. Unfortunately,

with different authentication algorithms providing different

properties, the particular scheme in use commonly has an

impact on protocol design. MAC-based authenticators [37],

for example, typically are less powerful than signatures [141]

due to MACs only being able to prove the authenticity of a

message to a specific recipient, but not to others. Although

this difference may seem small, it generally affects the num-

ber of message exchanges needed to reach consensus. For

PBFT, Castro for example discusses several authentication-

scheme-specific protocol variants in his dissertation [36], in

addition to the already differing versions presented in the

corresponding conference [37] and journal [38] papers. Most

other researchers did not go to the same length as Castro

and designed their protocols for particular authentication

schemes, often requiring different schemes for different sub-

protocols [9, 43, 99, 157]. From a system software perspective

this situation is not ideal since it limits flexibility and min-

imizes the reusability of components. As a result, it would

be beneficial to develop protocols in which authentication

schemes are not hard-wired but replaceable without further

modifications.

Diversifying Replication System Software at Multi-
ple Levels. Due to the high costs for code development and

maintenance, existing replication system software usually

relies on the same implementation for all replicas. Conse-

quently, a single bug or vulnerability can lead to the failure

of the entire system. Although there are approaches to auto-

matically diversify implementations [136, 143], they so far

are not broadly used in practice and furthermore cannot

be directly applied to software implemented in interpreted

programming languages (e.g., Java [30, 44, 55, 157]). Hence,

to increase the resilience of replication system software it is

crucial to develop means that facilitate the introduction of

heterogeneity at all system levels including communication,

authentication, and agreement protocols.

6.5 Concluding Remarks
My work on replication system software started in the con-

text of my diploma thesis [50] more than a decade ago. The

approaches and techniques described in this habilitation trea-

tise represent the most important of my latest research con-

tributions to this area. The following paragraphs summarize

three key insights gained throughout all this time.

Resource Awareness. Managing the provided resources

and making them available to applications is one of the main

responsibilities of system software in general, and thus the

same of course also applies to replication system software.

While traditional works in this domain usually leave most of

the resource management to lower layers, especially the op-

erating system, this treatise examined the benefits of making

all replication system software layers resource aware, in-

cluding the replication logic and its execution environment.

Among other things, this approach enabled the develop-

ment of replication protocols that use the available process-

ing and network resources more effectively and efficiently

than existing protocols. Furthermore, resource awareness

makes it possible to save energy during periods of low and

medium utilization without affecting the quality of service

of the replicated application. As illustrated in the context

of geo-replication, it is not always sufficient to only know

the amount and type of the resources available. For some

settings in addition it is also crucial where the resources can

be used in order to improve performance.

Protocol Independence. Although technically feasible,

replication system software implementations ideally should

not only support a single fault model or consensus algorithm.

As a consequence, to increase reusability it is beneficial to



develop new concepts in such a way that they are applicable

to both CFT and BFT. The research presented in this treatise

was guided by this principle and consequently many of the

proposed approaches have been integrated with a variety of

replication protocols. The group-based system architecture,

for example, has been examined for two different agreement

processes. Moreover, consensus-oriented parallelization has

been explored for two fault models (i.e., CFT and BFT) and

bothmain forms of replication (i.e., active and passive). A cru-

cial step towards the reusability of system parts is modularity,

as for instance shown by the clustered system architecture

for geo-replicated services that enables the use of different

consensus algorithms inside the agreement cluster and with-

out the need to modify execution clusters. Another example

of a modular mechanism is deterministic fuzzy checkpoint-

ing, which creates checkpoints that are indistinguishable

from those produced by traditional methods.

Prototype-based Evaluation. In replication system soft-

ware research, new ideas sometimes appear promising on

paper but do not actually provide the anticipated benefits in

real-world deployments. Therefore, it is essential to assess

the advantages and disadvantages of developed approaches

based on experimental evaluations, not just analytical analy-

ses or simulations. This treatise accounts for this demand by

relying on at least one prototype implementation for each of

the presented approaches and drawing conclusions based on

measurement results obtained with replicated applications

such as key-value stores and coordination services, which

constitute typical examples of use cases in practice.

A Publications
All journal, conference, and workshop publications that are

listed in the following underwent a formal peer-review pro-

cess, which in some cases involved several rounds. After hav-

ing been selected for publication, the papers were printed in

journals or conference proceedings, and/or added to widely

recognized digital libraries (e.g., ACM, IEEE).

Journal Papers: [53, 55, 72, 165]

Conference Papers: [21, 23, 24, 54, 57, 58, 60, 64, 65, 68, 69,
73, 95, 110, 111, 146, 160–162, 164]

Workshop Papers: [20, 22, 49, 56, 59, 62, 66, 70, 71, 74, 96,
139, 163]

Other Peer-Reviewed Contributions: [67, 150, 159, 166,
167]

Invited Papers: [52]

Theses: [50, 51]

Technical Reports: [25, 63]

Workshop Proceedings: [29]

B Paper Reprints
The following 10 peer-reviewed publications constitute the

main part of this cumulative habilitation treatise. They are

provided as personal reprints here. All copyrights remain

with the authors and/or the respective publishers (i.e., ACM,

IEEE, and Springer).

System Software for Replicated Services

CSUR ’21 Byzantine Fault-Tolerant State-Machine
Replication from a Systems Perspective
Tobias Distler [53]

Effective and Efficient Use of Multi-Cores

Middleware ’15 Consensus-Oriented Parallelization: How
to Earn Your First Million
Johannes Behl, Tobias Distler, and Rüdi-
ger Kapitza [23]

DSN ’17 Agora: A Dependable High-Performance
Coordination Service for Multi-Cores
Rainer Schiekofer, Johannes Behl, and To-
bias Distler [146]

PaPoC ’19 In Search of a Scalable Raft-based Repli-
cation Architecture
Christian Deyerl and Tobias Distler [49]

Energy-Aware Adaptation to Varying Workloads

ARM ’15 Towards Energy-Proportional State-Ma-
chine Replication
Christopher Eibel and Tobias Distler[62]

IC2E ’18 Empya: Saving Energy in the Face of Vary-
ing Workloads
Christopher Eibel, Thao-Nguyen Do, Ro-
bert Meißner, and Tobias Distler [64]

DAIS ’18 Strome: Energy-Aware Data-Stream Pro-
cessing
Christopher Eibel, Christian Gulden,
Wolfgang Schröder-Preikschat, and To-
bias Distler [65]

Techniques Tailored to Specific Use Cases

Computing ’19 Scalable Byzantine Fault-tolerant State-
Machine Replication on Heterogeneous
Servers
Michael Eischer and Tobias Distler [72]

SRDS ’19 Deterministic Fuzzy Checkpoints
Michael Eischer, Markus Büttner, and To-
bias Distler [68]

Middleware ’20 Resilient Cloud-based Replication with
Low Latency
Michael Eischer and Tobias Distler [73]

[The paper reprints have been excluded from this PDF. Please
access the papers through the author’s website at https://www4.
cs.fau.de/~distler/ or the respective digital libraries.]

https://www4.cs.fau.de/~distler/
https://www4.cs.fau.de/~distler/


References
[1] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon.

2010. RACS: A Case for Cloud Storage Diversity. In Proceedings of
the 1st Symposium on Cloud Computing (SoCC ’10). 229–240.

[2] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ron-

nie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin

Theimer, and Roger P. Wattenhofer. 2002. FARSITE: Federated, Avail-

able, and Reliable Storage for an Incompletely Trusted Environment.

In Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI ’02). 1–14.

[3] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press.

[4] Akka. 2020. https://akka.io/.
[5] Ahmad Al-Shishtawy and Vladimir Vlassov. 2013. ElastMan: Au-

tonomic Elasticity Manager for Cloud-Based Key-Value Stores. In

Proceedings of the 22nd International Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’13). 115–116.

[6] Amazon EC2. 2020. https://aws.amazon.com/ec2/.
[7] Amazon EC2. 2020. Regions and Availability Zones.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
regions-availability-zones.html.

[8] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2007. Cus-

tomizable Fault Tolerance for Wide-Area Replication. In Proceed-
ings of the 26th International Symposium on Reliable Distributed Sys-
tems (SRDS ’07). 65–82.

[9] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2011. Prime:

Byzantine Replication Under Attack. IEEE Transactions on Dependable
and Secure Computing 8, 4 (2011), 564–577.

[10] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane,

Cristina Nita-Rotaru, Josh Olsen, and David Zage. 2010. Steward:

Scaling Byzantine Fault-Tolerant Replication to Wide Area Networks.

IEEE Transactions on Dependable and Secure Computing 7, 1 (2010),

80–93.

[11] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-

stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Fer-

ris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan,

Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,

Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić,

Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger Fabric:

A Distributed Operating System for Permissioned Blockchains. In

Proceedings of the 13th EuroSys Conference (EuroSys ’18). Article 30,
15 pages.

[12] Apache Hadoop. 2020. https://hadoop.apache.org/.
[13] Apache Storm. 2020. https://storm.apache.org/.
[14] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. 2012. Workload Analysis of a Large-scale Key-Value Store.

In Proceedings of the 12th Joint International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS ’12). 53–64.

[15] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien

Quéma, and Marko Vukolić. 2015. The Next 700 BFT Protocols. ACM
Transactions on Computer Systems 32, 4, Article 12 (2015), 45 pages.

[16] Algirdas Avižienis. 1985. The N-Version Approach to Fault-Tolerant

Software. IEEE Transactions on Software Engineering 12 (1985), 1491–

1501.

[17] Amy Babay, John Schultz, Thomas Tantillo, Samuel Beckley, Eamon

Jordan, Kevin Ruddell, Kevin Jordan, and Yair Amir. 2019. Deploy-

ing Intrusion-Tolerant SCADA for the Power Grid. In Proceedings
of the 49th International Conference on Dependable Systems and Net-
works (DSN ’19). 328–335.

[18] Luiz André Barroso and Urs Hölzle. 2007. The Case for Energy-

Proportional Computing. IEEE Computer 40, 12 (2007), 33–37.
[19] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis,

François Garillot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perel-

man, and Alberto Sonnino. 2019. State Machine Replication in the

Libra Blockchain. Technical Report. Calibra.
[20] Johannes Behl, Tobias Distler, Florian Heisig, Rüdiger Kapitza, and

Matthias Schunter. 2012. Providing Fault-Tolerant Execution of Web-

service-based Workflows within Clouds. In Proceedings of the 2nd
International Workshop on Cloud Computing Platforms (CloudCP ’12).
39–44.

[21] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2012. DQMP:

A Decentralized Protocol to Enforce Global Quotas in Cloud En-

vironments. In Proceedings of the 14th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS ’12). 217–
231.

[22] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2014. Scalable

BFT for Multi-Cores: Actor-based Decomposition and Consensus-

oriented Parallelization. In Proceedings of the 10th Workshop on Hot
Topics in System Dependability (HotDep ’14). 49–54.

[23] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2015. Consensus-

Oriented Parallelization: How to Earn Your First Million. In Proceed-
ings of the 16th Middleware Conference (Middleware ’15). 173–184.

[24] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids on

Steroids: SGX-Based High Performance BFT. In Proceedings of the 12th
European Conference on Computer Systems (EuroSys ’17). 222–237.

[25] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybster
– A Highly Parallelizable Protocol for Hybrid Fault-Tolerant Service
Replication. Technical Report 64440. TU Braunschweig.

[26] Christian Berger, Hans P. Reiser, João Sousa, and Alysson Bessani.

2019. Resilient Wide-Area Byzantine Consensus Using Adaptive

Weighted Replication. In Proceedings of the 38th International Sympo-
sium on Reliable Distributed Systems (SRDS ’19). 183–192.

[27] Alysson Bessani, Eduardo Alchieri, João Sousa, André Oliveira, and

Fernando Pedone. 2020. From Byzantine Replication to Blockchain:

Consensus is only the Beginning. In Proceedings of the 50th Inter-
national Conference on Dependable Systems and Networks (DSN ’20).
424–436.

[28] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André,

and Paulo Sousa. 2013. DepSky: Dependable and Secure Storage in a

Cloud-of-Clouds. ACM Transactions on Storage 9, 4, Article 12 (2013),
33 pages.

[29] Alysson Bessani, Hans P. Reiser, Marko Vukolić, and Tobias Distler.

2018. Workshop on Byzantine Consensus and Resilient Blockchains

(BCRB ’18). In Proceedings of the 48th International Conference on
Dependable Systems and Networks Workshops (DSN-W ’18). 121.

[30] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. 2014. State

Machine Replication for the Masses with BFT-SMaRt. In Proceed-
ings of the 44th International Conference on Dependable Systems and
Networks (DSN ’14). 355–362.

[31] Alysson Neves Bessani, Paulo Sousa, Miguel Correia, Nuno Ferreira

Neves, and Paulo Veríssimo. 2008. The CRUTIAL Way of Critical

Infrastructure Protection. IEEE Security & Privacy 6, 6 (2008), 44–51.

[32] William Lloyd Bircher and Lizy K. John. 2012. Complete System

Power Estimation Using Processor Performance Events. IEEE Trans.
Comput. 61, 4 (2012), 563–577.

[33] Romain Boichat, Partha Dutta, Svend Frølund, and Rachid Guerraoui.

2003. Deconstructing Paxos. ACM Sigact News 34, 1 (2003), 47–67.
[34] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg.

1993. The Primary-Backup Approach. In Distributed Systems (2nd
Edition). Addison-Wesley, 199–216.

[35] Mike Burrows. 2006. The Chubby Lock Service for Loosely-Coupled

Distributed Systems. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06). 335–350.

[36] Miguel Castro. 2001. Practical Byzantine Fault Tolerance. Ph.D. Dis-
sertation. Massachusetts Institute of Technology.

[37] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault

Tolerance. In Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation (OSDI ’99). 173–186.

https://akka.io/
https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://hadoop.apache.org/
https://storm.apache.org/


[38] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault

Tolerance and Proactive Recovery. ACM Transactions on Computer
Systems 20, 4 (2002), 398–461.

[39] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. 2003. BASE:

Using Abstraction to Improve Fault Tolerance. ACM Transactions on
Computer Systems 21, 3 (2003), 236–269.

[40] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007.

Paxos Made Live: An Engineering Perspective. In Proceedings of the
26th Symposium on Principles of Distributed Computing (PODC ’07).
398–407.

[41] Sanket Chintapalli, Derek Dagit, Robert Evans, Reza Farivar, Zhuo

Liu, Kyle Nusbaum, Kishorkumar Patil, and Boyang Peng. 2016. Pace-

Maker: When ZooKeeper Arteries Get Clogged in Storm Clusters.

In Proceedings of the 9th International Conference on Cloud Comput-
ing (CLOUD ’16). 448–455.

[42] Byung-Gon Chun, Petros Maniatis, and Scott Shenker. 2008. Diverse

Replication for Single-Machine Byzantine-Fault Tolerance. In Pro-
ceedings of the 2008 USENIX Annual Technical Conference (USENIX
ATC ’08). 287–292.

[43] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubia-

towicz. 2007. Attested Append-only Memory: Making Adversaries

Stick to their Word. In Proceedings of the 21st Symposium on Operating
Systems Principles (SOSP ’07). 189–204.

[44] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo

Alvisi, Mike Dahlin, and Taylor Riche. 2009. UpRight Cluster Ser-

vices. In Proceedings of the 22nd Symposium on Operating Systems
Principles (SOSP ’09). 277–290.

[45] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna,

and Christian Le. 2010. RAPL: Memory Power Estimation and Cap-

ping. In Proceedings of the 16th International Symposium on Low Power
Electronics and Design (ISPLED ’10). 189–194.

[46] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2013. Ev-

erything You Always Wanted to Know about Synchronization but

Were Afraid to Ask. In Proceedings of the 24th Symposium on Operating
Systems Principles (SOSP ’13). 33–48.

[47] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified

Data Processing on Large Clusters. In Proceedings of the 6th Sym-
posium on Operating Systems Design and Implementation (OSDI ’04).
137–150.

[48] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Siva-

subramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo:

Amazon’s Highly Available Key-Value Store. In Proceedings of the 21st
Symposium on Operating Systems Principles (SOSP ’07). 205–220.

[49] Christian Deyerl and Tobias Distler. 2019. In Search of a Scalable Raft-

based Replication Architecture. In Proceedings of the 6th Workshop on
Principles and Practice of Consistency for Distributed Data (PaPoC ’19).
1–7.

[50] Tobias Distler. 2008. Unterstützung eines schnellen verteilten Proac-

tive Recovery unter Verwendung eines Hypervisors.

[51] Tobias Distler. 2014. Resource-efficient Fault and Intrusion Toler-
ance. Ph.D. Dissertation. Friedrich-Alexander-Universität Erlangen-
Nürnberg.

[52] Tobias Distler. 2015. Ressourceneffiziente Fehler- und Einbruchstol-

eranz. In Ausgezeichnete Informatikdissertationen 2014. Gesellschaft
für Informatik, 71–80.

[53] Tobias Distler. 2021. Byzantine Fault-Tolerant State-Machine Repli-

cation from a Systems Perspective. Comput. Surveys 54, 1, Article 24
(2021), 38 pages.

[54] Tobias Distler, Christopher Bahn, Alysson Bessani, Frank Fischer,

and Flavio Junqueira. 2015. Extensible Distributed Coordination. In

Proceedings of the 10th European Conference on Computer Systems
(EuroSys ’15). 143–158.

[55] Tobias Distler, Christian Cachin, and Rüdiger Kapitza. 2016. Resource-

efficient Byzantine Fault Tolerance. IEEE Trans. Comput. 65, 9 (2016),
2807–2819.

[56] Tobias Distler, Frank Fischer, Rüdiger Kapitza, and Siqi Ling. 2012.

Enhancing Coordination in Cloud Infrastructures with an Extendable

Coordination Service. In Proceedings of the 1st Workshop on Secure and
Dependable Middleware for Cloud Monitoring and Management (SDM-
CMM ’12). 1–6.

[57] Tobias Distler and Rüdiger Kapitza. 2011. Increasing Performance

in Byzantine Fault-Tolerant Systems with On-Demand Replica Con-

sistency. In Proceedings of the 6th European Conference on Computer
Systems (EuroSys ’11). 91–105.

[58] Tobias Distler, Rüdiger Kapitza, Ivan Popov, Hans P. Reiser, and Wolf-

gang Schröder-Preikschat. 2011. SPARE: Replicas on Hold. In Pro-
ceedings of the 18th Network and Distributed System Security Sympo-
sium (NDSS ’11). 407–420.

[59] Tobias Distler, Rüdiger Kapitza, and Hans P. Reiser. 2008. Efficient

State Transfer for Hypervisor-Based Proactive Recovery. In Proceed-
ings of the 2nd Workshop on Recent Advances on Intrusion-Tolerant
Systems (WRAITS ’08). 7–12.

[60] Tobias Distler, Rüdiger Kapitza, and Hans P. Reiser. 2010. State Trans-

fer for Hypervisor-Based Proactive Recovery of Heterogeneous Repli-

cated Services. In Proceedings of the 5th "Sicherheit, Schutz und Zuver-
lässigkeit" Conference (SICHERHEIT ’10). 61–72.

[61] Jiaqing Du, Daniele Sciascia, Sameh Elnikety, Willy Zwaenepoel, and

Fernando Pedone. 2014. Clock-RSM: Low-Latency Inter-Datacenter

State Machine Replication Using Loosely Synchronized Physical

Clocks. In Proceedings of the 44th International Conference on De-
pendable Systems Networks (DSN ’14). 343–354.

[62] Christopher Eibel and Tobias Distler. 2015. Towards Energy-

Proportional State-Machine Replication. In Proceedings of the 14th
Workshop on Adaptive and Reflective Middleware (ARM ’15). 19–24.

[63] Christopher Eibel, Thao-Nugyen Do, Robert Meißner, and Tobias Dis-

tler. 2018. Empya: An Energy-Aware Middleware Platform for Dynamic
Applications. Technical Report CS-2018-01. Friedrich-Alexander-

Universität Erlangen-Nürnberg.

[64] Christopher Eibel, Thao-Nguyen Do, Robert Meißner, and Tobias

Distler. 2018. Empya: Saving Energy in the Face of Varying Work-

loads. In Proceedings of the 6th International Conference on Cloud
Engineering (IC2E ’18). 134–140.

[65] Christopher Eibel, Christian Gulden, Wolfgang Schröder-Preikschat,

and Tobias Distler. 2018. Strome: Energy-Aware Data-Stream Process-

ing. In Proceedings of the 18th International Conference on Distributed
Applications and Interoperable Systems (DAIS ’18). 40–57.

[66] Christian Eichler, Tobias Distler, Peter Ulbrich, Peter Wägemann,

and Wolfgang Schröder-Preikschat. 2018. TASKers: A Whole-System

Generator for Benchmarking Real-Time-System Analyses. In Proceed-
ings of the 18th International Workshop on Worst-Case Execution Time
Analysis (WCET ’18). 6:1–6:12.

[67] Christian Eichler, Peter Wägemann, Tobias Distler, and Wolfgang

Schröder-Preikschat. 2017. Demo Abstract: Tooling Support for

Benchmarking Timing Analysis. In Proceedings of the 23rd Real-Time
and Embedded Technology and Applications Symposium (RTAS ’17).
159–160.

[68] Michael Eischer, Markus Büttner, and Tobias Distler. 2019. Deter-

ministic Fuzzy Checkpoints. In Proceedings of the 38th International
Symposium on Reliable Distributed Systems (SRDS ’19). 153–162.

[69] Michael Eischer and Tobias Distler. 2017. Scalable Byzantine Fault Tol-

erance on Heterogeneous Servers. In Proceedings of the 13th European
Dependable Computing Conference (EDCC ’17). 34–41.

[70] Michael Eischer and Tobias Distler. 2018. Latency-Aware Leader

Selection for Geo-Replicated Byzantine Fault-Tolerant Systems. In

Proceedings of the 1st Workshop on Byzantine Consensus and Resilient
Blockchains (BCRB ’18). 140–145.



[71] Michael Eischer and Tobias Distler. 2019. Efficient Checkpointing

in Byzantine Fault-Tolerant Systems. In Tagungsband des FB-SYS
Herbsttreffens 2019. 1–2.

[72] Michael Eischer and Tobias Distler. 2019. Scalable Byzantine Fault-

Tolerant State-Machine Replication on Heterogeneous Servers. Com-
puting 101, 2 (2019), 97–118.

[73] Michael Eischer and Tobias Distler. 2020. Resilient Cloud-based

Replication with Low Latency. In Proceedings of the 21st Middleware
Conference (Middleware ’20). 14–28.

[74] Michael Eischer, Benedikt Straßner, and Tobias Distler. 2020. Low-

Latency Geo-Replicated State Machines with Guaranteed Writes. In

Proceedings of the 7th Workshop on Principles and Practice of Consis-
tency for Distributed Data (PaPoC ’20). 13:1–13:8.

[75] Ian Aragon Escobar, Eduardo Alchieri, Fernando Luís Dotti, and Fer-

nando Pedone. 2019. Boosting Concurrency in Parallel State Machine

Replication. In Proceedings of the 20th International Middleware Con-
ference (Middleware ’19). 228–240.

[76] etcd. 2020. https://etcd.io/.
[77] Brad Fitzpatrick. 2004. Distributed Caching with memcached. Linux

Journal 2004, 124 (2004), 72–74.
[78] Stephanie Forrest, Anil Somayaji, and David H. Ackley. 1997. Building

Diverse Computer Systems. In Proceedings of the 6th Workshop on
Hot Topics in Operating Systems (HotOS ’97). 67–72.

[79] Roy Friedman and Robbert Van Renesse. 1997. Packing Messages as

a Tool for Boosting the Performance of Total Ordering Protocols. In

Proceedings of the 6th International Symposium on High Performance
Distributed Computing (HPDC ’97). 233–242.

[80] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael

Obelheiro. 2014. Analysis of Operating SystemDiversity for Intrusion

Tolerance. Software: Practice and Experience 44, 6 (2014), 735–770.
[81] Miguel Garcia, Alysson Bessani, and Nuno Neves. 2019. Lazarus:

Automatic Management of Diversity in BFT Systems. In Proceedings
of the 20th International Middleware Conference (Middleware ’19). 241–
254.

[82] Miguel Garcia, Alysson Neves Bessani, Ilir Gashi, Nuno Neves, and

Rafael Obelheiro. 2011. OS Diversity for Intrusion Tolerance: Myth

or Reality?. In Proceedings of the 41st International Conference on
Dependable Systems and Networks (DSN ’11). 383–394.

[83] Miguel Garcia, Nuno Neves, and Alysson Bessani. 2016. SieveQ: A

Layered BFT Protection System for Critical Services. IEEE Transac-
tions on Dependable and Secure Computing 15, 3 (2016), 511–525.

[84] Ilir Gashi, Peter Popov, Vladimir Stankovic, and Lorenzo Strigini. 2004.

On Designing Dependable Services with Diverse Off-the-Shelf SQL

Servers. In Architecting Dependable Systems II. Springer, 191–214.
[85] Google Compute Engine. 2020. Regions and Zones. https://cloud.

google.com/compute/docs/regions-zones/.
[86] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,

Benny Pinkas, Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir,

and Alin Tomescu. 2019. SBFT: A Scalable and Decentralized Trust

Infrastructure. In Proceedings of the 49th International Conference on
Dependable Systems and Networks (DSN ’19). 568–580.

[87] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou,

and Li Zhuang. 2014. Rex: Replication at the Speed of Multi-Core. In

Proceedings of the 9th European Conference on Computer Systems (Eu-
roSys ’14). Article 11, 14 pages.

[88] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad

Sadoghi. 2020. ResilientDB: Global Scale Resilient Blockchain Fabric.

Proceedings of the VLDB Endowment 13, 6 (2020), 868–883.
[89] Gerhard Habiger, Franz J. Hauck, Johannes Köstler, and Hans P. Reiser.

2018. Resource-Efficient State-Machine Replication with Multithread-

ing and Vertical Scaling. In Proceedings of the 14th European Depend-
able Computing Conference (EDCC ’18). 87–94.

[90] Robert B. Hagmann. 1986. A Crash Recovery Scheme for a Memory-

Resident Database System. IEEE Trans. Comput. 9 (1986), 839–843.

[91] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A

Correctness Condition for Concurrent Objects. ACM Transactions on
Programming Languages and Systems 12, 3 (1990), 463–492.

[92] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin

Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-scale

Systems. In Proceedings of the 2010 USENIX Annual Technical Confer-
ence (USENIX ATC ’10). 145–158.

[93] Intel Corporation. 2015. Intel 64 and IA-32 Architectures Software

Developer’s Manual Volume 3 (3A, 3B & 3C): System Programming

Guide.

[94] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. 2011.

Zab: High-Performance Broadcast for Primary-Backup Systems. In

Proceedings of 41st International Conference on Dependable Systems
and Networks (DSN ’11). 245–256.

[95] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Dis-

tler, Simon Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-

Preikschat, and Klaus Stengel. 2012. CheapBFT: Resource-efficient

Byzantine Fault Tolerance. In Proceedings of the 7th European Confer-
ence on Computer Systems (EuroSys ’12). 295–308.

[96] Rüdiger Kapitza, Matthias Schunter, Christian Cachin, Klaus Stengel,

and Tobias Distler. 2010. Storyboard: Optimistic Deterministic Multi-

threading. In Proceedings of the 6th Workshop on Hot Topics in System
Dependability (HotDep ’10). 1–6.

[97] Manos Kapritsos, YangWang, Vivien Quéma, Allen Clement, Lorenzo

Alvisi, and Mike Dahlin. 2012. All about Eve: Execute-Verify Replica-

tion for Multi-Core Servers. In Proceedings of the 10th Symposium on
Operating Systems Design and Implementation (OSDI ’12). 237–250.

[98] Jonathan Kirsch and Yair Amir. 2008. Paxos for System Builders:

An Overview. In Proceedings of the 2nd Workshop on Large-Scale
Distributed Systems and Middleware (LADIS ’08). 14–18.

[99] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement,

and Edmund Wong. 2009. Zyzzyva: Speculative Byzantine Fault

Tolerance. ACM Transactions on Computer Systems 27, 4, Article 7
(2009), 39 pages.

[100] Ramakrishna Kotla and Mike Dahlin. 2004. High Throughput Byzan-

tine Fault Tolerance. In Proceedings of the 34th International Conference
on Dependable Systems and Networks (DSN ’04). 575–584.

[101] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,

Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-

masamy, and Siddarth Taneja. 2015. TwitterHeron: Stream Process-

ing at Scale.. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15). 239–250.

[102] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat.

1992. Providing High Availability using Lazy Replication. ACM
Transactions on Computer Systems 10, 4 (1992), 360–391.

[103] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a

Distributed System. Commun. ACM 21, 7 (1978), 558–565.

[104] Leslie Lamport. 1998. The Part-time Parliament. ACM Transactions
on Computer Systems 16, 2 (1998), 133–169.

[105] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2010. Reconfiguring

a State Machine. SIGACT News 41, 1 (2010), 63–73.
[106] Leslie Lamport and Mike Massa. 2004. Cheap Paxos. In Proceed-

ings of the 34th International Conference on Dependable Systems and
Networks (DSN ’04). 307–314.

[107] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzan-

tine Generals Problem. ACM Transactions on Programming Languages
and Systems 4, 3 (1982), 382–401.

[108] Kfir Lev-Ari, Edward Bortnikov, Idit Keidar, and Alexander Shraer.

2016. Modular Composition of Coordination Services. In Proceedings
of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16).
251–264.

[109] Dave Levin, John R. Douceur, Jacob R. Lorch, and ThomasMoscibroda.

2009. TrInc: Small Trusted Hardware for Large Distributed Systems.

In Proceedings of the 6th Symposium on Networked Systems Design

https://etcd.io/
https://cloud.google.com/compute/docs/regions-zones/
https://cloud.google.com/compute/docs/regions-zones/


and Implementation (OSDI ’09). 1–14.
[110] Bijun Li, Nico Weichbrodt, Johannes Behl, Pierre-Louis Aublin, To-

bias Distler, and Rüdiger Kapitza. 2018. Troxy: Transparent Access

to Byzantine Fault-Tolerant Systems. In Proceedings of the 48th Inter-
national Conference on Dependable Systems and Networks (DSN ’18).
59–70.

[111] Bijun Li, Wenbo Xu, Muhammad Zeeshan Abid, Tobias Distler, and

Rüdiger Kapitza. 2016. SAREK: Optimistic Parallel Ordering in Byzan-

tine Fault Tolerance. In Proceedings of the 12th European Dependable
Computing Conference (EDCC ’16). 77–88.

[112] Hyeontaek Lim, DongsuHan, David G. Andersen, andMichael Kamin-

sky. 2014. MICA: A Holistic Approach to Fast In-Memory Key-Value

Storage. In Proceedings of the 11th Symposium on Networked Systems
Design and Implementation (NSDI ’14). 429–444.

[113] Jun-Lin Lin and Margaret H. Dunham. 1996. Segmented Fuzzy Check-

pointing for Main Memory Databases. In Proceedings of the 11th Sym-
posium on Applied Computing (SAC ’96). 158–165.

[114] Linux CPUFreq. 2020. https://www.kernel.org/doc/Documentation/
cpu-freq/governors.txt.

[115] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson,

Liuba Shrira, and Michael Williams. 1991. Replication in the Harp File

System. In Proceedings of the 13th Symposium on Operating Systems
Principles (SOSP ’91). 226–238.

[116] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and

Marko Vukolić. 2016. XFT: Practical Fault Tolerance beyond Crashes.

In Proceedings of the 12th Conference on Operating Systems Design and
Implementation (OSDI ’16). 485–500.

[117] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius:

Building Efficient Replicated State Machines forWANs. In Proceedings
of the 8th Symposium on Operating Systems Design and Implementa-
tion (OSDI ’08). 369–384.

[118] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2009. Towards

Low Latency State Machine Replication for Uncivil Wide-Area Net-

works. In Proceedings of the 5th Workshop on Hot Topics in System
Dependability (HotDep ’09). Article 9, 6 pages.

[119] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. 2012. Multi-

Ring Paxos. In Proceedings of the 42nd International Conference on
Dependable Systems and Networks (DSN ’12). 1–12.

[120] David Meisner, Brian T. Gold, and Thomas F. Wenisch. 2009. Power-

Nap: Eliminating Server Idle Power. In Proceedings of the 14th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’09). 205–216.

[121] Hein Meling and Leander Jehl. 2013. Tutorial Summary: Paxos Ex-

plained from Scratch. In Proceedings of the 17th International Confer-
ence on Principles of Distributed Systems (OPODIS ’13). 1–10.

[122] Microsoft Azure. 2020. Azure Regions. https://azure.microsoft.com/
en-us/global-infrastructure/regions/.

[123] Zarko Milosevic, Martin Biely, and André Schiper. 2013. Bounded

Delay in Byzantine-Tolerant State Machine Replication. In Proceed-
ings of the 32nd International Symposium on Reliable Distributed Sys-
tems (SRDS ’13). 61–70.

[124] IulianMoraru, David GAndersen, andMichael Kaminsky. 2013. There

is more Consensus in Egalitarian Parliaments. In Proceedings of the
24th Symposium on Operating Systems Principles (SOSP ’13). 358–372.

[125] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.

Technical Report.

[126] Bruce Jay Nelson. 1981. Remote Procedure Call. Ph.D. Dissertation.
Carnegie-Mellon University.

[127] André Nogueira, Miguel Garcia, Alysson Bessani, and Nuno Neves.

2018. On the Challenges of Building a BFT SCADA. In Proceedings
of the 48th International Conference on Dependable Systems and Net-
works (DSN ’18). 163–170.

[128] Michael A. Olson, Keith Bostic, and Margo Seltzer. 1999. Berke-

ley DB. In Proceedings of the 1999 USENIX Annual Technical Confer-

ence (USENIX ATC ’99). 183–191.
[129] Diego Ongaro and John Ousterhout. 2014. In Search of an Under-

standable Consensus Algorithm. In Proceedings of the 2014 USENIX
Annual Technical Conference (USENIX ATC ’14). 305–320.

[130] Zhonghong Ou, Hao Zhuang, Andrey Lukyanenko, Jukka K. Nur-

minen, Pan Hui, Vladimir Mazalov, and Antti Ylä-Jääski. 2013. Is

the Same Instance Type Created Equal? Exploiting Heterogeneity

of Public Clouds. IEEE Transactions on Cloud Computing 1, 2 (2013),

201–214.

[131] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,

Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry

Qin, Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and

Stephen Yang. 2015. The RAMCloud Storage System. ACM Transac-
tions on Computer Systems 33, 3, Article 7 (2015), 55 pages.

[132] Christos H. Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial
Optimization: Algorithms and Complexity. Dover Publications.

[133] Jehan-Francois Pâris. 1986. Voting with Witnesses: A Consistency

Scheme for Replicated Files. In Proceedings of the 6th International
Conference on Distributed Computing Systems (ICDCS ’06). 606–612.

[134] Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching

Agreement in the Presence of Faults. J. ACM 27, 2 (1980), 228–234.

[135] Marco Platania, Daniel Obenshain, Thomas Tantillo, Yair Amir, and

Neeraj Suri. 2016. On Choosing Server- or Client-Side Solutions for

BFT. Comput. Surveys 48, 4, Article 61 (2016), 30 pages.
[136] Marco Platania, Daniel Obenshain, Thomas Tantillo, Ricky Sharma,

and Yair Amir. 2014. Towards a Practical Survivable Intrusion Tol-

erant Replication System. In Proceedings of the 33rd International
Symposium on Reliable Distributed Systems (SRDS ’14). 242–252.

[137] Daniel Porto, João Leitão, Cheng Li, Allen Clement, Aniket Kate,

Flavio Junqueira, and Rodrigo Rodrigues. 2015. Visigoth Fault Tol-

erance. In Proceedings of the 10th European Conference on Computer
Systems (EuroSys ’15). Article 8, 14 pages.

[138] Michel Raynal, Gérard Thia-Kime, andMustaque Ahamad. 1997. From

Serializable to Causal Transactions for Collaborative Applications.

In Proceedings of the 23rd EUROMICRO Conference (EUROMICRO ’97).
314–321.

[139] Hans P. Reiser, Tobias Distler, and Rüdiger Kapitza. 2009. Functional

Decomposition and Interactions in Hybrid Intrusion-Tolerant Sys-

tems. In Proceedings of the 3rd Workshop on Middleware-Application
Interaction (MAI ’09). 7–12.

[140] Sean C. Rhea, Patrick R. Eaton, Dennis Geels, Hakim Weatherspoon,

Ben Y. Zhao, and John Kubiatowicz. 2003. Pond: The OceanStore

Prototype. In Proceedings of the 2nd Conference on File and Storage
Technologies (FAST ’03). 1–14.

[141] Ronald L Rivest, Adi Shamir, and Leonard Adleman. 1978. A Method

for Obtaining Digital Signatures and Public-Key Cryptosystems. Com-
mun. ACM 21, 2 (1978), 120–126.

[142] Rodrigo Rodrigues, Barbara Liskov, Kathryn Chen, Moses Liskov,

and David Schultz. 2012. Automatic Reconfiguration for Large-Scale

Reliable Storage Systems. IEEE Transactions on Dependable and Secure
Computing 9, 2 (2012), 146–158.

[143] Tom Roeder and Fred B. Schneider. 2010. Proactive Obfuscation. ACM
Transactions on Computer Systems 28, 2, Article 4 (2010), 54 pages.

[144] Kenneth Salem and Hector Garcia-Molina. 1989. Checkpointing

Memory-Resident Databases. In Proceedings of the 5th International
Conference on Data Engineering (ICDE ’89). 452–462.

[145] Nuno Santos and André Schiper. 2013. Achieving High-Throughput

State Machine Replication in Multi-core Systems. In Proceedings
of the 33rd International Conference on Distributed Computing Sys-
tems (ICDCS ’13). 266–275.

[146] Rainer Schiekofer, Johannes Behl, and Tobias Distler. 2017. Agora: A

Dependable High-Performance Coordination Service for Multi-Cores.

In Proceedings of the 47th International Conference on Dependable
Systems and Networks (DSN ’17). 333–344.

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://azure.microsoft.com/en-us/global-infrastructure/regions/
https://azure.microsoft.com/en-us/global-infrastructure/regions/


[147] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using

the State Machine Approach: A Tutorial. Comput. Surveys 22, 4 (1990),
299–319.

[148] João Sousa and Alysson Bessani. 2015. Separating the WHEAT from

the Chaff: An Empirical Design for Geo-Replicated State Machines. In

Proceedings of the 34th International Symposium on Reliable Distributed
Systems (SRDS ’15). 146–155.

[149] João Sousa, Alysson Bessani, and Marko Vukolić. 2018. A Byzan-

tine Fault-Tolerant Ordering Service for the Hyperledger Fabric

Blockchain Platform. In Proceedings of the 48th International Con-
ference on Dependable Systems and Networks (DSN ’18). 51–58.

[150] Paulo Sousa, Alysson Neves Bessani, and Rafael R. Obelheiro. 2008.

The FOREVER Service for Fault/Intrusion Removal. In Proceedings
of the 2nd Workshop on Recent Advances on Intrusion-Tolerant Sys-
tems (WRAITS ’08). 1–6.

[151] Doug Terry. 2013. Replicated Data Consistency Explained Through

Baseball. Commun. ACM 56, 12 (2013), 82–89.

[152] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Ma-

hesh Balakrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh.

2013. Consistency-based Service Level Agreements for Cloud Storage.

In Proceedings of the 24th Symposium on Operating Systems Princi-
ples (SOSP ’13). 309–324.

[153] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos Made Mod-

erately Complex. Comput. Surveys 47, 3, Article 42 (2015), 36 pages.
[154] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden.

2007. Tolerating Byzantine Faults in Transaction Processing Sys-

tems Using Commit Barrier Scheduling. In Proceedings of the 21st
Symposium on Operating Systems Principles (SOSP ’07). 59–72.

[155] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,

and Lau Cheuk Lung. 2009. Spin One’sWheels? Byzantine Fault Toler-

ance with a Spinning Primary. In Proceedings of the 28th International
Symposium on Reliable Distributed Systems (SRDS ’09). 135–144.

[156] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,

and Lau Cheuk Lung. 2010. EBAWA: Efficient Byzantine Agreement

for Wide-Area Networks. In Proceedings of the 12th Symposium on
High-Assurance Systems Engineering (HASE ’10). 10–19.

[157] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani,

Lau Cheuk Lung, and Paulo Veríssimo. 2013. Efficient Byzantine

Fault-Tolerance. IEEE Trans. Comput. 62, 1 (2013), 16–30.
[158] Marko Vukolić. 2015. The Quest for Scalable Blockchain Fabric:

Proof-of-Work vs. BFT Replication. In Proceedings of the International
Workshop on Open Problems in Network Security (iNetSec ’15). 112–
125.

[159] Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich,

andWolfgang Schröder-Preikschat. 2018. Whole-SystemWCECAnal-

ysis for Energy-Constrained Real-Time Systems (Artifact). Dagstuhl
Artifacts Series (2018), 7:1–7:4.

[160] Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich,

and Wolfgang Schröder-Preikschat. 2018. Whole-System Worst-Case

Energy-Consumption Analysis for Energy-Constrained Real-Time

Systems. In Proceedings of the 30th Euromicro Conference on Real-Time
Systems (ECRTS ’18). 24:1–24:25.

[161] Peter Wägemann, Tobias Distler, Christian Eichler, and Wolfgang

Schröder-Preikschat. 2017. Benchmark Generation for Timing Anal-

ysis. In Proceedings of the 23rd Real-Time and Embedded Technology
and Applications Symposium (RTAS ’17). 319–330.

[162] Peter Wägemann, Tobias Distler, Timo Hönig, Heiko Janker, Rüdiger

Kapitza, andWolfgang Schröder-Preikschat. 2015. Worst-Case Energy

Consumption Analysis for Energy-Constrained Embedded Systems.

In Proceedings of the 27th Euromicro Conference on Real-Time Systems
(ECRTS ’15). 105–114.

[163] Peter Wägemann, Tobias Distler, Timo Hönig, Volkmar Sieh, and

Wolfgang Schröder-Preikschat. 2015. GenE: A Benchmark Generator

for WCET Analysis. In Proceedings of the 15th International Workshop

on Worst-Case Execution Time Analysis (WCET ’15). 31–40.
[164] Peter Wägemann, Tobias Distler, Heiko Janker, Phillip Raffeck, and

Volkmar Sieh. 2016. A Kernel for Energy-Neutral Real-Time Systems

with Mixed Criticalities. In Proceedings of the 22nd Real-Time and
Embedded Technology and Applications Symposium (RTAS ’16). 25–36.

[165] Peter Wägemann, Tobias Distler, Heiko Janker, Phillip Raffeck, Volk-

mar Sieh, andWolfgang Schröder-Preikschat. 2017. Operating Energy-

Neutral Real-Time Systems. ACM Transactions on Embedded Com-
puting Systems 17, 1 (2017), 11:1–11:25.

[166] Peter Wägemann, Tobias Distler, Phillip Raffeck, and Wolfgang

Schröder-Preikschat. 2016. Poster Abstract: Towards CodeMetrics for

Benchmarking Timing Analysis. In Proceedings of the 37th Real-Time
Systems Symposium (RTSS ’16). 369.

[167] Peter Wägemann, Tobias Distler, Phillip Raffeck, and Wolfgang

Schröder-Preikschat. 2016. Towards Code Metrics for Benchmark-

ing Timing Analysis. In Proceedings of the 37th Real-Time Systems
Symposium Work-in-Progress Session (RTSS WiP ’16). 1–4.

[168] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architec-

ture for Well-conditioned, Scalable Internet Services. In Proceedings
of the 18th Symposium on Operating Systems Principles (SOSP ’01).
230–243.

[169] Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy,

and Emmanuel Cecchet. 2011. ZZ and the Art of Practical BFT Ex-

ecution. In Proceedings of the 6th European Conference on Computer
Conference (EuroSys ’11). 123–138.

[170] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun

Jin, Sanjeev Kumar, Bin Li, Justin Meza, and Yee Jiun Song. 2016.

Dynamo: Facebook’s Data Center-Wide Power Management Sys-

tem. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA ’16). 469–480.

[171] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi,

and Mike Dahlin. 2003. Separating Agreement from Execution for

Byzantine Fault Tolerant Services. In Proceedings of the 19th Sympo-
sium on Operating Systems Principles (SOSP ’03). 253–267.

[172] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and

Ittai Abraham. 2019. HotStuff: BFT Consensus with Linearity and

Responsiveness. In Proceedings of the 38th Symposium on Principles
of Distributed Computing (PODC ’19). 347–356.

[173] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing. In Proceedings of
the 9th Symposium on Networked Systems Design and Implementa-
tion (NSDI ’12). 15–28.


	Abstract
	1 Introduction
	1.1 System Support for Replication-based Fault Tolerance
	1.2 Contributions
	1.3 Papers of this Treatise
	1.4 Structure of this Treatise

	2 System Software for Replicated Services
	2.1 Replication System Software
	2.2 Variety in Replication Protocols
	2.3 Research Challenge 1: Parallelization
	2.4 Research Challenge 2: Resource Efficiency
	2.5 Research Challenge 3: Application-Specific Requirements
	2.6 Main Paper

	3 Effective and Efficient Use of Multi-Cores
	3.1 State of the Art
	3.2 Approach: Consensus-Oriented Parallelization
	3.3 Results
	3.4 Main Papers

	4 Energy-Aware Adaptation to Varying Workloads
	4.1 State of the Art
	4.2 Approach: Energy-Aware Reconfigurations
	4.3 Results
	4.4 Main Papers

	5 Techniques Tailored to Specific Use Cases
	5.1 Services in Heterogeneous Environments
	5.2 Services with Large States
	5.3 Geo-Replicated Services
	5.4 Main Papers

	6 Conclusion
	6.1 Summary of Contributions
	6.2 Compatibility of Approaches
	6.3 Applicability to Permissioned Blockchains
	6.4 Open Challenges
	6.5 Concluding Remarks

	A Publications
	B Paper Reprints
	References

