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Abstract
The use of a managed, type-safe language such as Java in real-
time and embedded systems offers productivity and, in particular,
safety and dependability benefits at a reasonable cost. It has been
shown for commodity systems that escape analysis (EA) enables
a set of useful optimization, and benefits from the properties of
a type-safe language. In this paper, we explore the application
of escape analysis in KESO [34], a Java ahead-of-time compiler
targeting (deeply) embedded real-time systems. We present specific
applications of EA for embedded programs that go beyond the
widely known stack-allocation and synchronization optimizations
such as extended remote procedure call support for software-isolated
applications, automated inference of immutable data or improved
upper space and time bounds for worst-case estimations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.3.3 [Programming Languages]:
Language Constructs and Features—Classes and Objects; D.4.7
[Operating Systems]: Organization and Design—Real-time Systems
and Embedded Systems

General Terms Memory Management, Design, Languages

1. Introduction
Java is a relatively uncommon language in (deeply) embedded real-
time systems, although it provides a series of advantages such as
memory safety [2]. Numerous projects [19, 22, 23, 26, 27] have
exhibited that it is possible to employ Java in embedded (real-time)
programming and that it is even feasible to write drivers in Java.
Anyway, Java still has the reputation of being unsuited for this
domain due to additional runtime overheads and increased code
sizes. The KESO JVM [33, 34] has demonstrated that static analyses
on Java applications on top of a static system setup allow to generate
memory-safe code that is competitive to native C programs in terms
of runtime results and footprint. Being a type-safe programming
language, Java provides the foundation for comprehensive program
analyses and runtime-system support, which can be very useful in
embedded systems. One of these static program analyses is escape
analysis, which is often employed in commodity systems for stack
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allocation of objects and for synchronization optimizations. For
embedded software, the results of escape analysis open up a number
of interesting optimization opportunities, which we will explore in
this paper.

Background. Embedded application software may be deployed
on several kinds of microcontroller units (MCU) and the MCU
landscape is rather heterogeneous in contrast to commodity systems:
They may vary in their hardware-specific properties such as, for
example, the kinds of memories available, their respective memory
layout, the existence of a memory protection unit (MPU) or the
frequency of occurring random transient errors. Also, applications
may differ in their need for certain non-functional properties such
as the real-time capability of the program. Escape analysis is one of
the essential analyses amongst other static analyses techniques to
make the best possible use of the underlying hardware and operating-
system (OS) features with respect to a specific application and its
non-functional requirements on the system software on a particular
embedded device. Escape analysis is one building block of the
cooperative memory management (CMM) framework [32] provided
by KESO: The application developer is assisted by the type-safe
middleware – comprising compiler analyses and runtime support –
while constructing safety-critical embedded systems. It is still up to
the developer and the system integrator to decide which compiler
back ends are most suitable under certain system requirements. To
achieve a resource-efficient solution, KESO respects characteristics
of the underlying operating system as well as the specification of
the hardware device. CMM provides the foundation to experiment
with particular system configurations to generate system code
that particularly fits to an application. We believe that in this
way embedded developers can benefit from the use of a modern
high-level language, automated memory management and memory
protection while still being able to directly influence system traits.

Contribution. Besides normal stack allocation, our implementa-
tion of escape analysis features a set of worthwhile optimization
back ends for (deeply) embedded safety-critical systems:

1. Extended remote-procedure-call support for software-isolated
applications

2. Extended stack scopes

3. Thread-local heaps and regional memory

4. Survivability: Support for the machine-independent space and
time bounds analyses of memory management

5. Assisted explicit memory management

6. Resource-efficient mitigation of transient errors

7. Automated inference of immutable data

8. Object inlining
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Figure 1: KESO’s architecture

We also give an insight into our current work on cycle-aware
reference counting.

Overview. Section 2 explains the relevant aspects of the embedded
KESO JVM, in which we implemented and evaluated our approach.
We quickly recap the outlines of Choi’s original algorithm for escape
analysis [10], which is the base for our own algorithm. Our EA back
ends for deeply embedded systems are presented in Section 3. We
evaluate the outcomes of our work in Section 4 on a microbenchmark
and on the open-source real-time Java benchmark Collision Detector
(CDx). The paper wraps up with a discussion on related work in
Section 5 and the conclusion as well as ideas for future work in
Section 6.

2. KESO and Escape Analysis: An Outline
This section describes the characteristics of the KESO JVM and
escape analysis. We only present those traits which are relevant for
the implementation of our back ends.

The KESO Runtime Environment KESO is a JVM for statically
configured embedded systems. In such systems, all relevant entities
of the (type-safe) application as well as the system software are
known ahead of time. Among others, these entities comprise the en-
tire code base of the application, and operating-system objects such
as threads and locks. Disallowing the application to dynamically
load new code or to create threads at runtime allows the creation
of a slim and efficient runtime environment for Java applications
in (deeply) embedded systems. This approach seems restrictive at
the first sight, however, static applications cover most traditional
embedded applications from the electronic control units found in
appliances to safety-critical tasks such as the electronic stability pro-
gram (ESP) and many other electronic functions found in modern
cars. The architecture of KESO is shown in Figure 1. KESO is a
multi-JVM, that is, applications can be isolated from each other by
placing them in so-called protection domains. Spatial isolation is
ensured constructively by the type-safe programming language and
the strict logical separation of all global data (e.g., heap, static class
fields) – providing memory safety even on low-end MCUs that lack
dedicated hardware support by means of a memory-protection unit
(MPU) or memory-management unit (MMU).

Moreover, KESO is able to support the OS to use available
hardware-based protection mechanisms by means of its control-
flow-sensitive reachability analysis, which physically groups the
domain data (i.e., the physically separated heaps and static fields) in
separate memory regions. When using type-unsafe languages, this
is usually performed manually by the programmer. In KESO, it is
also possible to offload runtime checks to an unutilized MPU [33].

For communication, an RPC-like mechanism (called Portal)
is available. To maintain software-based isolation, portals have to
make sure that object references are not illegally propagated between
domains: the portal mechanism initiates a deep copy of all objects
passed as arguments. To make communication more efficient, we
created a new optimization back end for our escape analysis (see
Section 3.1). The runtime system provides control-flow abstractions
such as threads (called tasks in AUTOSAR OS) and interrupt service
routines (ISRs) and their respective activation and synchronization
mechanisms such as alarms and synchronisation locks (called
resources). KESO applications benefit from Java features like type
safety, dynamic memory management and optionally a garbage
collector. The KESO’s ahead-of-time compiler jino generates ANSI-
C code from the application’s Java bytecode, plus a slim, tailored
runtime environment for that application. While most of the code
directly translates to plain C code, the Java thread API is mapped
onto the thread abstraction layer of an underlying OS. In the case of
KESO, that abstraction layer is normally provided by AUTOSAR
OS [3], however, KESO’s concepts can also be applied to any other
static OS. KESO optionally provides slack-based garbage collection
for applications that want to use it. The collectors are scheduled,
whenever a task blocks, i.e. at well-known invocations of AUTOSAR
OS’s system call waitEvent().

Escape Analysis From a conceptual point of view, all Java objects
are allocated in heap memory. There is no dedicated language
support for the application developer to manually mark objects
for allocation on the stack, because this would have the potential to
break the soundness of the type system. As an example, allocating
an object that lives longer than its method of creation on the stack
of that method will lead to dangling references. However, due the
language’s strong type system, it is possible for the JVM’s compiler
to automatically categorize objects in terms of their lifetime: The
information collected by alias analysis and the computation of the
references’ reachability can be leveraged to determine if an object
escapes a method, i.e. if its lifetime exceeds that of the scope it was
created in. As a consequence, non-escaping objects can be allocated
on the stack and are not subject to the overhead entailed by heap
management. Stack allocation implicates a series of advantages as
has been presented by prior work [4, 5, 9, 10, 12, 21]:

• Allocation and deallocation are performed by moving the stack
pointer. These are low-cost and time-predictable operations on a
CPU register.

• Due to a reduction of the number of heap objects, the overhead of
the heap-management strategy, such as a garbage collector (GC),
is reduced. Incremental collectors do not need to synchronize
with the mutator (application) whenever a local stack object is
allocated or deallocated.

• Programs do not need to synchronize on objects known to be
(thread-)local, which contributes to lock elision.

Especially in the context of deeply embedded and safety-critical
embedded systems, the information collected by escape analysis
offers a lot more interesting optimization opportunities, which we
address in this paper. We implemented an improved ahead-of-time
version of Choi’s (control-)flow-sensitive algorithm in the KESO
JVM. Details on our modifications of the algorithm and on the
implementation in KESO to speed up and improve the quality
of results can be found in [16]. In a nutshell, alias information
is gathered from the application. The alias algorithm is divided
into a method-local (intraprocedural) and a global (interprocedural)
analysis. A dedicated data structure called connection graph (CG)
is built up to hold alias information. For each analyzed method,
the connection graph contains representations of local variables,
static class members, dynamic instance variables, array indices and



objects. Variables of non-reference types are ignored since they do
not contribute to alias information. A detailed description of the
original escape analysis algorithm can be found in Choi’s paper [10].

3. KESO’s Back Ends for Escape Analysis
The escape analysis implemented in KESO supports ordinary stack
allocation, which will not be described. This section presents
KESO’s additional back ends based on the analysis results.

3.1 Extended Remote-Procedure-Call Support

public void runDetectorInScope(final DScopeEntry d) {
// ...
FService srv =

(FService) PortalService.lookup("FrameService");
srv.setFrame(f);
// ...

}

Listing 1: A simplified example for portal communication in KESO ported
version of the CDx benchmark

Applications co-located on a single microcontroller often do not
execute completely independently from each other and need a way
to communicate. For this, KESO offers an RPC-like mechanism
referred to as portals, which offers service protection and maintains
spatial isolation.

Service Protection. Service protection inhibits the invocation of
services by unexpected client domains at runtime. A name service is
used in the client domain for retrieving the portal object and it return
a null reference in domains that did not import the service (i.e.,
ahead of time by static configuration). In the service domain the
name service will directly return the actual service object. Listing 1
gives an example for acquiring the portal for the FrameService. The
lookup method needs to be provided with a String constant and
this string does not exist at runtime. The actual lookup is compiled
into an array lookup.

Parameter Passing. In Java, primitive parameters of a method
invocation are passed by-value, whereas objects are passed by-
reference. This scheme could violate protection-domain boundaries:
Write operations of callees to object references of the caller, for
example, must never happen. As a consequence, references must
usually not be propagated to other protection domains. For this, a
deep copy of the objects has to be created in the callee domain’s
heap. For larger objects, this procedure can be very expensive in
space and time. Escape and alias analyses can help to determine if
the deep copy is actually needed, which is the case in two situations:

1. The object itself or any member of its object tree outlive the
portal call, that is, they have a global escape state in the callee’s
connection graph

2. Modification by the callee

To determine the escape state for method parameters in the first
scenario, the connection graph is used: Each parameter passed to the
portal call has a complement representation in the callee’s domain.
The complement of the regarded object and the members of its
object tree must not have a global escape state. This is computed
by using a work-list algorithm. The second condition is somewhat
more difficult to prove. The mapping between the connection-graph
representation of objects and the index of the portal-call argument
that brought them into the portal handler’s protection domain is
constructed. In all code reachable from the portal handler, the
operands of write operations are examined for the existence of
this mapping. In case a mapping does not exist, the modified object

was not brought into the domain by a portal but originated from the
portal handler’s domain. As a consequence, the object may freely
be modified. If a mapping is present and the currently processed
instruction modifies an object passed through a portal, the parameter
has to be copied: The argument whose index is obtained from the
mapping is marked as must-copy. If the code traversal encounters
method invocations that reference any of the candidate objects, the
mapping is extended and the method’s code is visited recursively.1

If no indications against copy removal are found after the traversal is
complete, the copy operation is omitted. Our implementation either
completely copies an object and its transitive closure or it does not
copy any part of the regarded portal object. While it is possible to
compute which descendants of an object are modified or escape
the callee, and only copy these parts rather than the entire object
tree, the additional runtime support and runtime representation of
the partial copy information made this a refinement not considered
worthwhile.

The approach may be perceived as a variation of the copy-on-
write technique. In addition to the copy-on-write trait, KESO’s
technique adds the copy-on-escape semantics and it is performed
ahead-of-time.

3.2 Stack Scope Extension
A standard pattern found in C programs is passing a buffer and
its size to a function which will write a computed result into the
given buffer. Since the location of the buffer is controlled by the
calling function, it can be allocated in stack memory. In Java, the
callee would instead allocate a new object on the heap and return
a reference to it to achieve the same. Using information from alias
and escape analysis, objects that escape their method of allocation
into the caller but no further can be automatically identified. Since
the lifetime of these objects can be statically determined, the need
for garbage collection can be avoided and the memory can be
automatically managed using compiler-generated code (for example,
but not limited to, using stack allocation). This further reduces the
load of the garbage-collection mechanism and can improve worst-
and average-case execution times of applications. This optimization
is called scope extension in the following.

Note that while only stack allocation is discussed as optimization
to manage objects with statically computed and bounded lifetimes,
it is not the only possibility, and may not be the best. Several
other approaches such as region-based methods, the automated
application of ScopedMemory specified in the RTSJ or explicit
deallocation operations come to mind. Depending on the nature
of the optimization used, their unbounded application may lead
to problems and can in fact worsen an application’s performance.
Nonetheless, stack allocation will serve as the default back end in
the code and the following description of the algorithms.

Listing 2 shows an example adapted from the source code of the
CDj benchmark where scope extension can be applied. The Builder
object allocated in Factory.getBuilder escapes its allocating method
into Simulation.run, but is no longer referenced after line 20. The
runtime of Simulation.run is thus an upper bound for the lifetime of
the object. Consequently, KESO does not have to rely on garbage
collection to reclaim the memory used by the object, but can instead
automatically manage the object’s memory. All examples discussed
so far deal with objects escaping their method of creation via a

1 As recursive calls in the application complicate the prediction of the stack
size, it is not recommended to make use of such calls in real-time systems.
Recursive invocations can be identified at compile time by jino and the
programmer is advised to check the real-time capability of the application
code. In case recursion shall be allowed, it must be bounded as the algorithm
for the revised RPC support may enter an infinite loop otherwise. The
existence of such upper bounds can also be determined by compile-time
analyses.



01 public class Factory {
02 class Builder {
03 // ...
04 }
05 protected Builder getBuilder() {
06 return new Builder();
07 }
08 }
09 class Simulation implements Runnable {
10 public void run() {
11 Factory f=new Factory();
12 while (true) {
13 Builder b=f.getBuilder();
14 for (Aircraft a : getAircraft()) {
15 b.addPosition(a, getPositionForAircraft(a));
16 }
17 // b’s last reference
18 SimFrame frame=b.makeFrame();
19 simulate(frame);
20 }
21 }
22 // ...
23 }

Listing 2: A simplified example taken from CDj .

return operation. Note that being returned is not the only way an
object can escape: storing references in a field of an object given as
parameter will also increase the escape state. This case is omitted in
all examples for simplicity, but always implied.

Any object in the method escape state partition of a method’s CG
is a candidate for optimization. The escape state of the object’s repre-
sentation in the method’s callers can be taken into account to decide
whether the object should be allocated by the caller. Note that since
there might be multiple callers and the optimization could be applied
multiple times (moving allocations up multiple levels in the call hier-
archy), considering the escape state of the object in the callers’ CGs
is not always a trivial task. For example, the object might escape
further in some of the callers but not in others. When using stack
allocation, even objects that are local in a calling method might still
not be eligible for optimization due to overlapping liveness regions.
KESO’s stack-allocation transformation avoids possibly unbounded
growth of stack usage by omitting the transformation into a stack
allocation if multiple objects allocated at the same allocation site
are in use simultaneously. When the optimization back end used
requires additional parameter passing across invocations, virtual
method calls need to be handled with special care to avoid breaking
their signatures: all candidates for a virtual method invocation need
to share the same signature before and after optimizing. Because
of the complexity involved in doing so, KESO’s implementation
does not take the escape state of object nodes’ equivalents in the
callers’ CGs into account. For each run of the optimization pass,
allocations are propagated at most a single level up against the di-
rection of the call hierarchy. Therefore, running the pass multiple
times will increase the maximum scope extension level. Note that it
is not necessarily beneficial to run the pass often, since it may lead
to undesirable results. The last part of this section also takes a closer
look at the problems of scope extension.

Non-Virtual Calls. Non-virtual call sites, i.e., call sites where the
invoked method is known at compile time, constitute the simple
cases of the analysis. Devirtualization performed by the KESO
compiler increases the number of such non-ambiguous invocations
where a single candidate can be deduced using static analysis. Each

a b

1 52 3 4

Figure 2: The call graph illustrates the complexity of scope extension for
virtual method calls. Green vertices mark methods that contain allocations
eligible for scope extension, orange vertices represent other methods. Solid
lines are method invocations. Assume that both a and b contain a single
virtual method invocation each, i.e., the possible callees are 1–3 for a and
3–5 for b. Dashed lines point from methods eligible for scope extension to
methods that must share their signature. Since this relation is transitive, nodes
1 through 5 and their invocation sites must be adjusted for each optimization
in 2, 3, and 4.

object node with a known allocation site (i.e., each non-phantom2

object node) and an escape state of method will be optimized in
KESO. When optimizing allocations of local objects using stack
allocation, the allocation instruction must be moved into all callers.
A reference to the allocated object is instead passed to the method
on invocation, which uses this reference instead of the reference
previously returned by the allocation instruction. Each allocation
that is optimized using scope extension is copied into all callers and
executed unconditionally, regardless of whether the allocation sites
were in mutually exclusive control flow-paths before optimization,
and hence could never be used at the same time. In some examples,
this causes a large number of allocations and new method parameters
even though only few of them are used simultaneously.

Virtual Calls. Virtual method invocations further complicate the
decision whether to apply scope extension to an allocation site.
Since all candidates of a virtual method invocation must share
the same signature (i.e., the same parameter and return types),
a method cannot be optimized individually without considering
its siblings when the optimization requires adjusting a method’s
signature (as is the case when using the default stack-allocation
back end). Figure 2 contains a graphical representation of this
problem. Interdependencies between methods cause them to form up
into groups sharing the same signature. Scope extension, however,
depends only on the code of the methods in these groups, which is
in general unrelated. A single method in such a group could cause
the modification of its invocations’ argument lists, which in turn
requires the same changes to all other candidates for the modified
method calls. Since the modifications are in general unnecessary
in all methods other than the one causing them, this increases the
runtime overhead and possibly allocates memory that is unused in
most candidates of a virtual invocation.

Because of the overhead and the complexity inherent to apply-
ing this optimization correctly in the presence of virtual method
calls, KESO does not currently perform scope extension across
virtual invocations. Note that some of the challenges are caused
by properties of the applied optimization. Intermediate-code trans-
formations that do not require changing a method’s signature can
simplify the problem. For example, instead of using stack memory,
a separate thread-local heap section with a simple bump-pointer
memory-management strategy could be used. Memory could be
allocated in the section corresponding to a calling method in these
thread-local heaps during a method’s prologue before creating a new
method frame. Objects allocated in this region would remain valid
until the calling method terminates.

2 For the representation of objects with unknown allocation sites – which
may have been passed as arguments, for example – special nodes called
phantom nodes are created according to [10].



Problems and Limitations Applying scope extension to all can-
didates does not yield a better program in all cases. A number of
situations can actually decrease performance. Heuristics are neces-
sary to avoid these transformations. For example, suboptimal results
are generated for methods that allocate a large number of objects
that are eligible for the optimization. A particular specimen expos-
ing this behavior is a generated recursive-descent parser used in the
CDj benchmark: The method that shows the undesirable behavior
consists of a large distinction of cases where each case allocates and
returns an object. Applying scope extension creates a new parameter
for each object and adds the corresponding allocation to all callers.
Besides the overhead caused by passing a lot of parameters, this
example also exhibits two further problems. Firstly, since the control
flows in the switch statement of the optimized method are mutually
exclusive, at most a single object is allocated and returned in the
example. After scope extension, however, all objects are allocated
by the caller methods and references are passed for each one, even
though only one of the arguments is actually used. Thus, memory
usage is actually increased by the optimization. This problem could
be avoided by consolidating memory areas (and the corresponding
method parameters) that are used in mutually exclusive control flows.
Interference analysis is needed to determine this information. Good
results can probably be achieved using a modification of Sreedhar’s
φ congruence classes [28], which are already implemented in KESO
to remove unnecessary copies of variables in SSA deconstruction,
but are not used in scope extension yet. Since consolidated memory
areas might be used for objects of different types and sizes, garbage
collectors would have to support uninitialized chunks of memory
as method arguments. Summarizing so far, scope extension can in-
crease memory usage due to the allocation of unused objects and it
can cause sub-par performance when a large number of allocations
are optimized because of the increased overhead of the modified
method invocation.

3.3 Thread-Local Heaps and Regional Memory
Depending on the circumstances, turning heap allocations into stack
allocations for automatic memory management is not necessarily
the best solution. Especially in safety-critical embedded systems,
allocating objects and arrays on the stack could lead to increased
worst-case stack usage. Since the stack space needs to be reserved
for each thread even if it is not going to be used simultaneously,
the overall memory requirement can increase compared to a system
without escape analysis. This situation occurs when the sum of upper
bounds is larger than the upper bound of the sum. Furthermore, to
keep stack usage limited and simplify finding an upper bound of
stack usage, KESO does not turn allocations whose liveness regions
overlap into stack allocations. In order to address these shortcomings,
an alternative to stack memory is necessary. A special region can
be used for all objects that can be automatically managed by the
compiler. To provide a runtime advantage over the normal heap,
this region must be exempt from garbage-collector sweeps. There
should be one logical region for each method, while empty regions
(i.e., regions corresponding to methods without local objects) can
be omitted. At the end of the method, its associated region can be
reclaimed as a whole. To retain the semantics of stack allocations
and reclaim-on-return, these logical regions should be organized in a
stack-like manner. One possible implementation of these constraints
are small specialized heap regions local to each thread. The idea
has been proposed in prior work [11, 17]. Given these local heaps,
the logical regions are implemented similar to a stack in KESO:
Each thread-local heap has a fill marker and a maximum fill level.
At method entry, the fill marker is saved and necessary objects are
allocated by moving the fill marker. At method exit, the fill marker
is reset to its previous value. Saving the fill marker on the stack
can be avoided if the amount of memory that will be allocated

in a function and all alignment offcuts are known at compile
time, because this knowledge can be used to calculate the value
at method entry. The approach does not require any synchronization
for allocations, which constitutes another advantage over usual heap
allocation. Since object allocation on stack no longer occurs with
this method of region-based memory management enabled, finding
a tight upper bound for stack usage is simplified. With precise
and quick checks preventing thread-local heap overflows in place,
liveness-interference avoidance can be disabled, further reducing
garbage-collector load (possibly exceeding amounts proportional
to the number of affected allocations due to the use in loops). The
necessary size of these local heaps can be statically configured using
results from manual worst-case memory-usage analysis. Future work
could automate the process of determining the size of thread-local
heaps.

3.4 Assisted Explicit Memory Management
In the complete absence of a garbage collector, the region infor-
mation computed by escape analysis can be used to check manual
memory management for potential mistakes. In each location where
KESO would automatically place a reclaim operation, it can check
whether the programmer did write the expected instruction. If the
object in question is not explicitly returned into the memory pool,
leakage occurs and jino can print a warning. For this application,
running the scope extension pass multiple times can be beneficial,
because due to the lack of modifications, the code size does not in-
crease, but the number of objects whose lifetime can be inferred by
the compiler grows. This application of escape analysis can be seen
as a compiler-assisted approach to manual memory management
used in unmanaged languages, in which the compiler may advise
the programmer of possible mistakes. The approach supports a step-
wise migration from manual to automatic memory management in
legacy systems that rely on established code verification tools such
as Polyspace [24].

3.5 Survivability: Machine-independent Space and Time
Bounds Analyses

In real-time systems, the memory consumption and runtime has
to be predictable. Usually, the worst-case memory consumption
and execution time analyses consist of a machine-dependent and a
machine-independent part. In the machine-dependent part – which
can be handled by Absint’s aiT tool [1], for example – hardware-
specific information such as the execution times of basic blocks
containing the processor’s instructions, caching and pipelining ef-
fects are respected. The machine-independent part is performed
by static program analysis. In deeply embedded real-time systems,
dynamic memory management is still rarely used. In combination
with type-safe languages, however, fragmentation-tolerant garbage
collection as proposed by Pizlo et al. [23], for example, can effi-
ciently be employed when supported by escape analysis. Besides
the overall better throughput of garbage collection, EA can help to
improve the predicted upper space and time bounds for real-time
garbage collection as discussed by Stilkerich et al. [31] since the
overhead imposed by a GC depends on the number of surviving ob-
jects: The objects are put into categorization classes with respect to
their survivability, that is, if they are able or unable to outlive a GC
run. As jino performs whole-program analyses on type-safe code,
those categories and the objects belonging to them can automati-
cally be determined: On the one hand, objects may completely be
extracted from garbage collection according to their categorization
and will never contribute to the fragmentation issue. On the other
hand, due to the liveliness criterion and the knowledge of the points
in time the GC is scheduled, we derive the objects’ survivability
by means of a combination of escape analysis and call graph anal-
ysis to WaitEvent(), i.e. the incorporation of operating-system



knowledge. Thus, we can determine upper space bounds that are
considerably lower than those derived by commercial tools without
escape analysis on type-safe code and system-specific knowledge
at compile time. Furthermore the derived information can be used
to assist machine-dependent analysis tools that determine the exact
time bounds.

3.6 Resource-efficient Mitigation of Soft Errors
Soft errors (also called transient errors) happen as a consequence of
shrinking structures sizes in CPUs [7], low supply voltages, aging
or radiation effects [35] and manifest themselves as bit flips. Such
errors can be handled via hardware-based, software-based fault
detection/tolerance techniques or a combination of both. In the
following, we focus on a software-based measure that is supported
by escape analysis, however, it should be noted that the KESO
framework also allows the combination of both techniques.

Isolated Replication: We extended KESO to provide automated
homogeneous redundancy for applications that need it. Triple-
modular redundancy (TMR) of critical software parts is a com-
mon software-based technique, where three instances of that
software are executed with identical input data and a major-
ity voter detects sane and faulty replicas. While this technique
has been subject to numerous research projects, the KESO’s
multi-JVM architecture provides the infrastructure to deal with a
replication in a fully automated way: The isolated protection do-
main with fully separated data, the portal mechanism and clearly
defined external interfaces forge a suitable unit for replication
and recovery which is facilitated by Java: The type-safe program-
ming language simplifies the inspection of runtime structural
information. However, replication is costly in space and time.
A scrutinizing compile-time inspection of the application helps
to keep the overhead reasonably low. The size of a domain is
partly attributed to the size of the heap and escape analysis can
significantly lower heap pressure. The extent of this decrease
depends on the application. As an example, EA diminishes the
heap usage of the CDj benchmark by around 43%, which con-
tributes to a considerable reduction of the replication domain’s
heap size.
KESO’s portal mechanism is used as a transition point between
the single and replicated execution. Usually, the object including
its transitive closure passed into the portal is copied for each
portal handler, which happens three times assuming TMR,
for instance. With the special remote-procedure-call support
provided by our EA implementation, the third copy can be
omitted if required by the system configuration.

Improved Reference Checking: Closely related to the aforemen-
tioned topic is the revised support of reference validation by
means of load-reference checks (LRC) and dereference checks
(DRC), which have been proposed by [30]. In a nutshell, these
checks are employed to confine the forging of wild references
anticipating soft errors, that is the reference integrity can be
verified, whenever it is either loaded from memory (LRC) or
on dereference operations (DRC). In this way, software-based
isolation is retained in the presence of soft errors. The overhead
of protecting garbage collection against those errors is reduced
significantly as – in addition to heap references – only the lo-
cal references present in the stacks of blocked tasks need to be
safeguarded during the GC execution.

3.7 Handling Immutable Data
Java has insufficient support for immutable data: There are situations
in which Java’s final keyword is not expressive enough to be mark
certain data as truly constant or unmodifiable during runtime:

• It simply not possible to mark objects such as fields constant.
Regarding final references or arrays, the content of the ref-
erenced object can still be altered, only the object or array to
which they are referring must not be changed.

• Final fields not being tagged accordingly by an oblivious pro-
grammer may result in missed optimizations

• In case of configurable software for embedded control systems,
there is usually specialized configuration for a particular code
variant deployed on the microcontroller. The variability points
may only be present at the program’s design level or the ini-
tialization phase of the program (e.g. constructors), but are fix
during the actual execution. Such data cannot be tagged accord-
ingly in ordinary Java systems.

In KESO we use the alias information collected by our escape
analysis to address the aforementioned issues and compute the
program’s immortal objects and effectively-final fields:

Immortal Objects: Regarding final references or arrays, the
contents of the referenced object can still be manipulated, only
the reference itself must not change. As a consequence, the code
size, runtime as well runtime memory footprint are unnecessarily
high. Also, the use of read-only memory (ROM) such as flash
memory for the placement of constant data is very important,
as a ROM unit is significantly cheaper than SRAM and should
not be underused, if it is available. Such automatically derived
constant data is similar to manual ImmortalMemory specified
in the Real-Time Specification for Java (RTSJ) [6].

Effectively-final Fields: Fields with final properties allow the
compiler to perform optimizations more aggressively than on
regular fields: The fields are initialized and in case of a reference
field, the compiler can elide the null-check without endangering
the memory safety of the program. As the field is only written
once, the initialization value can be propagated to all reads and in
case the propagated values can be folded, this possibly supports
other optimizations.

3.8 Object Inlining
Java usually does not store field instances by value but rather by
reference in contrast to the C++ language that always embeds such
instances and only uses the by-reference semantics if requested by
the programmer. This can result in higher overheads at runtime
imposed by pointer indirections, allocation code and the need to
store both the field and object header [18]. The results computed
by escape and effectively-final analysis can be employed to identify
candidates for object inlining: Such objects do not grow and do not
exceed the lifetime of their parent object. Hence, increased memory
consumption by inlining applied too aggressively is not an issue in
KESO. The information about the embedded object is cross-checked
with the statically configured threads’ stack sizes to prohibit stack
overflows. Runtime stack checks are thus not necessary.

Embedded objects also do not need to be scanned by the GC
and the memory of the embedded and surrounding object can
be reclaimed as a whole. A moderate increase in memory usage
due to deferred memory reclamation may also acceptable in soft-
error-prone systems using LRC and DRC to protect references.
As embedded objects are not referenced, the performance of such
systems is better. The best possible trade-off is application-specific
and has to be selected on per-case base.

3.9 Cycle-Aware Reference Counting
Automatic reference counting as a method of compiler-assisted mem-
ory management that does not require tracing garbage collection
has been gaining popularity lately. For example, Apple’s Objective-
C used on iOS and OS X employs compiler-generated reference
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Figure 3: Self-referential data structure (a-c) using a cycle descriptor.

counting. Unfortunately, it is a well-known limitation of reference
counting that it cannot automatically reclaim self-referential (i.e.,
cyclic) data structures. Cyclic data structures either require the addi-
tional use of a tracing garbage collector, or the use of special pointer
types called weak pointers that do not increase the reference count
of objects to break the cyclic structure. Using the connection graphs
constructed in alias and escape analysis, cyclic structures, their
components and corresponding allocation sites can be computed at
compile time. Using this information, cycles could be automatically
managed by assigning a cycle descriptor to each object that is part
of a cyclic structure and keeping a reference count for the whole
structure in the cycle descriptor. Once this reference count drops to
zero due to the release of an object that references the structure, the
whole cycle can be reclaimed.

Figure 3 illustrates the approach. The structure consisting of the
three nodes a-c is identified as self-referential at compile time. A
cycle descriptor is allocated with the first object of the cycle, and
each object’s header references the cycle descriptor. Adding the
reference from d to a increases the cycle’s reference count. When
the cycle reference count drops to zero, the complete cycle must be
unreferenced and can be reclaimed.

Unfortunately the representation of the alias information in
jino makes it difficult to apply this idea, because the CG of a
method is independent of its calling contexts (which is one of the
significant contributions of Choi et al. in [10]). Cycles in connection
graphs can be identified, but are useless when containing phantom
representations of nodes passed into a method from a caller. Because
a single static representation exists for multiple instances of cycles,
the approach is unlikely to perform well: For example, when used
on KESO’s current alias analysis results, all objects stored in a
doubly linked list (which is a cyclic data structure) can only ever
be reclaimed on the whole, even if the lists are completely separate.
The approach might work reasonably well given a global points-to
graph, but this implementation is currently in progress.

4. Evaluation
To illustrate the effectiveness of our optimizations for escape
analysis, we selected the following back ends for evaluation:

• Extended remote-procedure-call support
• Stack scope extension and thread-local heaps
• Automated inference of immutable data

Due to space limitation we cannot present the results for all
implemented back ends proposed in this paper. We performed a
microbenchmark for KESO’s portal mechanism. Furthermore, we
examine the footprint, runtime and heap usage of selected KESO
configurations. For this, we employ the Java version of the real-
time Collision Detector (CDx) benchmark, which is available in
a C (CDc) and a Java (CDj) version. For KESO, we use CDj

in the onthegoFrame variant, deployed on the Infineon TriCore
TC1796 device (150 MHz CPU clock, 75 MHz system clock, 1 MiB
external SRAM, 2 MiB internal flash). The application is translated
to ANSI-C code using KESO. The generated code is bundled with

Call Type Execution Time
portal call 3.76 µs
regular virtual method call 3.09 µs
AUTOSAR non-trusted function 32.91 µs
portal call (2 int params) 4.17 µs
portal call (3 int params) 4.70 µs
portal call (1 element linked list) 31.47 µs
portal call (2 element linked list) 56.08 µs
portal call (3 element linked list) 84.37 µs
portal call (escape analysis, 1 element linked list) 3.99 µs
portal call (escape analysis, 2 element linked list) 4.19 µs
portal call (escape analysis, 3 element linked list) 4.65 µs

Figure 4: Execution Time for Portals

an AUTOSAR OS implementation and compiled with GCC (version
4.5.2). Code and constant data is located in internal flash. The
heap size is set to 600 KiB that is managed by a mark-and-sweep
garbage collector. Section 4.1 presents the results for portal services
assisted by escape analysis, while Section 4.2 introduces the CDj

benchmark and the evaluation of the latter two back ends on top of
CDj . A software-partitioned version of CDj using portals exists,
however, this fully-fledged variant does not fit on the TriCore device
(neither in the C version with hardware-based protection nor the
Java versions (hardware- and software-based memory protection)).
We also believe, the microbenchmark scenario best visualizes the
various types of inter-domain communication.

4.1 Remote-Procedure-Call Support
An essential evaluation is that of inter-domain communication as it
determines the extent to which developers will actually place soft-
ware in different protection domains. We perform microbenchmarks
on the cost of different variants of portal calls and compare them
to the cost of a regular virtual method call (i.e., without spatially
isolated components) and also a non-trusted function call in an
AUTOSAR OS implementation (i.e. spatial isolation enforced by
region-based hardware protection). Figure 4 shows the results. The
method bodies of all target methods are empty (i.e. portal parameters
are not modified and do not escape). Hence, we only measure the
cost of the protection domain context switch that is performed on a
portal call.

Types of Protection. For comparing the cost of a portal call to the
cases of no spatial isolation and hardware-based spatial isolation,
we use the simplest form of a function that does not take any
parameters and not return a value. The portal call introduces an
overhead of 22% over the regular virtual method call. The overhead
is attributed to service protection (i.e., the check, if the calling
domain is a valid client to the service) and the change of the
running task’s effective domain. For comparison, we have also
included the cost of a comparable non-trusted function call in an
AUTOSAR operating system, which is comparable to a portal call
but with domains isolated by hardware-based memory protection
rather than constructive software-based memory protection. This
measurement shows that the cost of a software-protection context
switch is significantly less than that of an MPU reconfiguration that
is needed in the case of AUTOSAR OS.

Portal Calls with Parameters. We also measured the time needed
for portal calls with both primitive and reference parameters. In
the case of primitive parameters, the added cost is the same as for
any regular function that is expanded with parameters. The cost
depends on the actions that the C compiler needs to take in order
to prepare the parameters according to the ABI. The measured
overhead therefore mainly depends on the C compiler and the ABI
and is not caused by the portal mechanism. For portal calls with
reference parameters lacking the escape analysis support presented
in Section 3.1, we passed the head pointer of a linked list of size 1–3.



During the portal call, a complex routine that copies the referenced
object and all transitively reachable objects to the heap of the target
domain is invoked. The cost of the call is dominated by this operation
and increased by an order of magnitude compared to the portal calls
with only primitive parameters.

Activating the escape analysis support improves the portal
mechanism significantly. To fortify the validity of this evaluation, we
enriched the method bodies of the target methods with code, which
does not modify, modifies or causes the portal parameters to escape,
confirms the effectiveness of legally removing the copy of portal
parameters by escape analysis while still retaining software-based
memory protection.

4.2 The CDx Benchmark
The core of the CDx application is a periodic thread that detects
potential aircraft collisions from simulated radar frames. A collision
is assumed whenever the distance between two aircraft is below
a configured proximity radius. The detection is performed in two
stages: In the first stage (reducer phase), suspected collisions are
identified in the 2D space ignoring the z-coordinate (altitude)
to reduce the complexity for the second stage (detector phase),
in which a full 3D collision detection is performed (detected
collisions). A detailed description of the benchmark is available
in a separate paper [15]. Since CDj allocates temporary objects
and uses collection classes of the Java library, it requires the use
of dynamic memory management. We evaluated escape analysis in
combination with a throughput-optimized GC variant available in
our KESO JVM.

4.2.1 Stack Scope Extension and Thread-Local Heaps
In this evaluation section, ordinary stack allocation is contrasted to
scope extension and thread-local heaps to determine the impact of
these back ends.

Allocation Sites. The share of optimized allocations can be used
as a compile-time criterion of KESO’s optimizations. The higher the
number of objects managed by compiler-assisted memory manage-
ment, the lower the GC’s heap load, which may reduce the garbage
collection workload. For the number of stack allocations without
using scope extension, 44 of 146 (30.1%) allocations are eligible
for stack allocation. Using task-local heaps instead of stack alloca-
tion increases the percentage of optimized allocation sites to 39.0%.
The 13 additional optimizations are local objects with overlapping
liveness regions that are left unmodified in stack allocation to avoid
unbounded growth of stack usage. Enabling scope extension in the
same measurement adds another 28 allocations created by copying
allocation bytecode instructions into multiple callers. This will likely
also increase code size. The 28 additional allocations are created
instead of 12 allocation sites that are eligible for scope extension.
Each of the dozen allocations is thus propagated into 3.333 callers
on average. The number of stack allocations increases by 32 from
44 (30.1%) to 76 (43.7%). Note that these are statically determined
numbers, i.e., the actual number of objects allocated at runtime
does not change despite the increase in allocation instructions. The
number of allocations not converted into stack allocations due to
overlapping liveness regions of the allocated objects stays the same.
Consequently, the number of allocations using task-local heaps stays
at the same margin to stack-allocated ones in comparison to the mea-
surement without scope extension.

Footprint. Stack allocation and thread-local heap allocation in-
crease the size of the code. This increase is caused by inlining the
code that initializes an object’s header data. Previously, this initial-
ization was only present in a single place (the allocation function)

3 ((174-(146-12))/12)

Figure 5: Heap memory usage of the on-the-go variant of the CDj benchmark
with (a) scope extension and stack allocation (SE+stack), and (b) scope
extension with task-local heaps (SE+TLH) relative to a run without escape
analysis-based optimizations (plain). For comparison, heap memory usage
for escape analysis and stack allocation (EA+stack) is also shown.

Figure 6: Runtime of the on-the-go variant of the CDj benchmark using
(a) escape analysis with stack allocation (EA+stack), (b) escape analysis
with task-local heaps (EA+TLH), (c) scope extension with stack allo- cation
(SE+stack), and (d) scope extension with task-local heaps (SE+TLH) relative
to a run without escape analysis-based optimizations (plain). Times are
measured in the application by reading from a high-resolution timer before
and after each collision detector run. The difference is computed and shown.

in the binary. Because stack allocations have been added in multiple
places, this initialization code is replicated and increases the binary
size. Additional runtime code further increases the code size. New
runtime functions and the explicit creation and destruction of regions
at entry and exit points of methods increase the text-segment size
when thread-local heaps are used. Scope extension further increases
the size of the code unless methods with candidates for the opti-
mization only have a single caller. Since the onthegoFrame variant
extends variable scope into 3.33 callers on average, growth of the
text segment is expected. Overall, the text segment’s size increases
only moderately to a maximum of 104.0% compared to the smallest
selection. The data-segment size does not change for stack alloca-
tion. When using thread-local heaps, each configured thread-local
heap adds two additional pointers to the data segment. The size of
the data section grows by 24 bytes (the size of two pointers on the
32-bit TriCore target times three thread-local heaps).

Heap Usage. The median heap usage for escape analysis with the
stack-allocation optimization back end is depicted in Figure 5 is only
50.7% relative to a run without optimizations based on escape anal-
ysis. When using thread-local heaps instead of stack allocation, the
median heap usage drops to 50.1% due to the added optimizations
of allocations that create objects with overlapping liveness regions.
Other than expected, the impact of those allocations is small, even



though they can be executed multiple times because they are in
loops. When enabling scope extension, fluctuations in heap-memory
usage present are smoothed in contrast to configurations without
scope extension. The median heap usage is reduced to 50.4%. When
using thread-local heaps, the number again is similar to stack alloca-
tion but a little lower: The median heap usage is 49.8%. The lower
variance is caused by invocations that only occur in some of the
collision-detector iterations. The invoked methods allocate objects
in heap memory. These allocations seem to be candidates for scope
extension and are hence no longer allocated in the heap.

Execution Time. In terms of execution time (illustrated in Fig-
ure 6), escape analysis and stack allocation perform significantly
better with a median of 81.1% relative to the baseline stated by the
same KESO configuration without this optimization. As expected
due to the additional instructions managing regions in thread-local
heaps on method entry and exit, stack allocation is faster than the
code generated by the thread-local-heap allocation back end. The
median runtime improvement for thread-local heaps is 13.7% com-
pared to 18.7% for stack allocation. It should be noted that CDj

on top of KESO using a throughput-optimized GC variant, escape
analysis and stack allocation is faster than the native CDc

4 in the me-
dian execution time, despite the overhead of runtime checks, virtual
method calls and overhead to maintain the runtime data structures of
the runtime environment. A detailed evaluation of CDc and CDj on
top of KESO can be found in a separate paper [34]. While enabling
scope extension further reduces the heap memory usage, the same is
not necessarily true for execution time. For the stack allocation back
end, enabling scope extension slows down the median time needed
by the collision detector by 1.14 percentage points to 82.3%. The
thread-local heap back end, on the other hand, speeds up with scope
extension by 0.59 percentage points to a median value of 85.5%.
The increased time requirements with stack allocation might be
another effect caused by over-optimization of pathologic examples
as discussed in Section 3.2.

Conclusion Overall, enabling escape analysis considerably im-
proves performance and reduces the heap memory requirements.
Thus, it is recommended to enable escape analysis and one of its
optimization back ends for all applications. A similar suggestion
can, however, not be given for scope extension. While it does reduce
heap memory usage a little and reduces the variance between the
collision-detector iterations, this optimization comes at the price of
slower execution speeds in some configurations. Some of the exam-
ples tested expose at least some of the erratic behavior predicted in
Section 3.2, for example by significantly increasing the code size.
For some applications, the decreased variance of the benchmark
when scope extension was activated might increase the predictabil-
ity of the application. In real-time systems, this might make the
optimization worthwhile. Whether scope extension improves an ap-
plication’s behavior should be determined on a case-by-case basis.

4.2.2 Automated Inference of Immutable Data
The effectively-final analysis reduces the data segment size by
44% and the text segment by 14%. This is attributed to constant
folding and folding of conditional branches and the resulting dead
basic blocks. Also, lots of reference fields are known to be initialized
and do not have to be checked upon access: The number of null
pointer checks emitted has been reduced by 30%, which contributed
to the code size reduction. The effectively-final analysis reduced
the execution time of the overall CDx application by 10% due
to dead code removal and runtime check elimination. Afterwards,
placing constant data in ROM instead of RAM increased the CDj’s
runtime by 6% in turn due to higher access times to flash memory.

4 deployed under the same setup mentioned in Section 4

Thus, the overall execution time with constant data placed in ROM is
still better than a KESO variant without effectively-final analysis.

CDj does not contain constant arrays, but 1 KiB of string con-
stants, which can be moved to flash memory. Hence, the influence
of the immortal object analysis is marginal for this benchmark.

5. Related Work
The approach used in KESO’s alias and escape analysis is based
on the work of Choi [10]. Thus, behavior, results, and features of
the analysis for stack allocation are similar. Unlike their work, jino
avoids resizing a method’s stack frame at runtime and provides a
series optimization back ends such as improved remote procedure
call support for software-isolated components or the determination
of object survivability for real-time systems in addition to stack
allocation. KESO’s alias-analysis features a modification that con-
siderably reduces compile times for large specimen by merging
sibling nodes. This compression technique is inspired by ideas from
Steensgaard’s almost-linear-time points-to analysis [29]. Different
from Steensgaard’s work, KESO’s analysis does not necessarily
compress all sibling nodes pointed to by a common ancestor, but
only merges nodes with the same escape state to avoid deteriorating
the quality of escape-analysis results. Object nodes that represent an
allocation site are not compressed either to preserve the one-to-one
mapping between allocation instructions in the intermediate code
and their corresponding object nodes in the connection graphs.

Except for automated memory management and synchronization,
we are not aware of any related work of alternative applications of
escape analysis results. Using escape analysis for automatic mem-
ory management solves the same problem as region inference. First
published by Tofte et al. [36], region inference has seen widespread
adaption in later work: Different from Grossman [13], KESO’s es-
cape analysis is fully automatic and does not require source-code
modifications or developer interaction. Similar to Hallenberg [14],
the system implemented in this thesis co-exists with garbage col-
lection. The work of Chin [8] only supports a subset of Java called
Core-Java for their analysis, while KESO does not impose limita-
tions of the source-language features. Experimental results provided
by Chin et al. are small: The largest example has only 170 lines
of source code. CACAO JVM [20] proposes stack allocation using
escape analysis and uses a Steensgaard-based method for escape
analysis. Different from KESO’s design, their virtual machine uses
just-in-time compilation, and escape analysis is done at runtime.
They do not support stack allocation of arrays and do not have a
generic method to encode the escape information of objects passed
to native methods.

6. Conclusion and Future Work
In this paper, we presented our application back ends for escape
analysis in (deeply) embedded real-time systems. We evaluated a
fast RPC mechanism for software-isolated components with a mi-
crobenchmark and measured the effects of two further selected back
ends in the context of the comprehensive real-time CDx benchmark.
We believe that these optimizations open up new possibilities for
Java in the safety-critical embedded domain. The characteristics of
type-safe languages in combination with a static system setup and
static analyses in general affect embedded development positively:
Besides safety and security benefits as well as increased produc-
tivity, the evaluation shows that Java programs are competitive to
C programs in terms of performance and memory footprint. Our
design is not limited to the Java language, but can be applied in any
system featuring a type-safe language incorporating system-specific
knowledge that is available ahead-of-time.



Particularly for escape analysis, there are more application
opportunities in our domain and we would like to present two of
them for future work:

Synchronization in KESO. The information computed in escape
analysis and stored in the CGs can be used to remove unneeded
synchronization operations. Objects that are only reachable from a
single thread and are used for synchronization will never have to
wait for a lock. Blocking can only occur when a different thread
currently holds the lock of the object, but this is not possible if
the object is not reachable from within more than one thread. The
connection graph can be used to determine whether objects are local
in a thread using the escape state. An escape state of method or
lower implies that the object does not escape its thread of creation.

Since KESO does currently not synchronize at objects but uses
AUTOSAR OS’s resource abstraction (i.e. priority ceiling) for
mutual exclusion, this optimization’s potential for performance
improvement and code size reduction is likely to be low, and it
has not been implemented in KESO. However, other situations
that require synchronization in KESO could still benefit from the
information. On target platforms with small word sizes, such as
AVR microcontrollers, KESO ensures multi-word data writes are
not interrupted by disabling interrupts for the duration of the write
operation. If the written objects are task-local, this safety precaution
is not necessary, because the modified object cannot be read in an
inconsistent state by other tasks. Once execution of the interrupted
task resumes, the write operation will continue and bring the multi-
word data field into a consistent state.

Also for multiprocessor support, the synchronization optimiza-
tion might be worthwhile as multiprocessor priority ceiling protocols
make use of locking mechanisms and lock elision can contribute to
an overall better throughput of parallel programs.

Selective Use of Memories. With the evolving technology for
hardware platforms even in deeply embedded system, virtual mem-
ory becomes increasingly interesting. As escape analysis can be
leveraged to determine the objects’ lifetimes, we propose to employ
it in combination with KESO’s cooperative memory management
approach to improve the handling and efficiency of virtual memory.
Upcoming non-volatile memories have a higher density and are
more energy-efficient while some of them have, for example, high
write latencies and only allow for a limited amount of write opera-
tions. Traditional virtual memory is unaware of the characteristics of
these new memory technologies. Hybrid solutions exist to address
the problem, however, they require special hardware and induce
significant overheads. Roy et al. [25] presented a software-based
virtual memory design for new embedded memory architectures,
which does not rely on specialized hardware. They provide a static
analysis to identify and allocate data with certain read and write
affinities and hence reduces write operations to non-volatile memory.
Moreover, the programmer’s interface is extended and the program-
mer manually annotates read and write intensive heap memory by
using these functions.

Due to its whole-program analyses on type-safe code being able
to incorporate operating-system- and hardware-specific information,
KESO is aware of all read and write operations and data lifetimes
by design. From a conceptual point of view, all objects are allocated
on the heap, the programmer does not have to have a particular
memory interface. jino is able to determine the placement of the
data: By means of the memory specification, collected read and
write behavior and the results of our flow-sensitive escape analysis,
which provides the knowledge of the objects’ lifetimes and which is
aware of their sizes, the memory hierarchy can be used optimally.
Statically-allocated data (i.e., the needed space is reserved ahead-of-
runtime), and dynamic short-living objects in either stack memory
or smaller regions can automatically be clustered due to the read and

write affinity and arranged in the memory hierarchy as proposed by
Roy. For dynamically-allocated heap memory, we apply the concept
of survivability for real-time systems from Section 3.5, that is we
know at compile-time, which objects will be dead after the garbage
collector’s sweep phase and which portion will contribute to write
operations in case of generational collection. Bounded loops and
fixed allocation rates5 are beneficial in real-time systems anyway.
However, it is possible annotate such sensitivity points to allow for a
broader field of application. Annotation points, that is code locations
at which the programmer has to provide further information about
upper boundaries, are reported by jino to the programmer for
assistance purposes. In contrast to Roy, the programmer is supported
by the runtime system and does not have to be aware of the actual
data location in either stack, regional or heap memory. However,
the programmer can acquire the information for analysis purposes.
Paging algorithms may also profit from the computed program
information and may thus be applied with acceptable overhead
while being able to support a series of virtual address spaces in
small embedded systems.
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