Automatic Object Inlining in KESO

Bachelorarbeit im Fach Informatik

von

Christian Bay

Lehrstuhl fiir Informatik 4
Friedrich-Alexander Universitit Erlangen-Nirnberg

Betreut durch:

Dipl.-Inf. Christoph Erhardt
Dipl.-Inf. Isabella Stilkerich

Beginn der Arbeit: 01. Dezember 2014
Ende der Arbeit: 31. Mai 2015

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in
gleicher oder dhnlicher Form noch keiner anderen Priifungsbehorde vorgele-
gen hat und von dieser als Teil einer Priifungsleistung angenommen wurde.
Alle Ausfithrungen, die wortlich oder sinngeméaf§ iibernommen wurden, sind
als solche gekennzeichnet.

Erlangen, den 31.05.2015

Abstract

This thesis describes the design and implementation of co-allocation
in KESO, a JVM for static configured embedded systems, as a first
step to inline objects completely.

The realization of object inlining can serve many useful features like
saving another level of indirection and reducing the fragmentation in
memory.

Therefore the work presents how to determine suitable candidates for
inlining and defines a new object layout that, for example, cooperates
well with the polymorphic behavior of Java.

In the evaluation turns out that great improvements in runtime and
size are not achieved yet. Nevertheless the work serves as a basis for
complete object inlining.

Zusammenfassung

Diese Arbeit beschreibt einen Entwurf und eine Implementierung von
Koallokation in KESO, eine virtuelle Maschine fiir Java fiir statisch
konfigurierte eingebettete Systeme, als einen ersten Schritt um Objek-
te komplett zu inlinen.

Die Umsetzung von Objekt-Inlining kann viele niitzliche Eigenschaf-
ten hervorbringen wie Dereferenzierungen einzusparen und Fragmen-
tierung im Speicher zu reduzieren.

Dazu prasentiert die Arbeit wie man geeignete Kandidaten firs inli-
nen bestimmt und definiert ein ein neues Objekt Layout, dass zum
Beispiel mit der Polymorphie von Java gut kooperiert.

Die Auswertung der Arbeit ergab, dass bisher keine grofien Verbesse-
rungen in Laufzeit und Gréfle des Programms erzielt werden konnten.
Nichtsdestotrotz dient diese Arbeit als gute Basis um das inlinen von
Objekten zu vervollstdndigen.

Acknowledgments

[like to thank my advisers Isabella Stilkerich and Christoph Erhardt for their
great support while writing this thesis.
Special thanks goes to Ulrich, feni, Karin, Oskar, my girlfriend Kess, mum,

and finally my lovely cats, Farin and Susi.
Erlangen, May 2015

Contents

(1 _Introduction|

2 Related Workl

3 KESO — A Multi-JVM

B.14

SUMMATY| .« o o v v o v e e e e e

(3.2 Relevant Analyses Provided by KESO[.

B21

Method Inlining|

B.2.2

Dominance Analysis|

323

Escape Analysis|. o000

B.24

Control-Flow-Sensitive Analysis|

[4

Object Inline Analysis|

4.1 ayout

A1l

KESO Object Layout|.

Ai2

Object-Inline Layout|

Ai3

Layout in C Code|.

4.1.4

Conclusionl.

4.2 Candidates for Inliningf

4.3 Object

size|. . ..o

E3.1

Largest Dynamic Typel

132

Object Size With Union|

[4.3.2.1 Dynamic types|

4.4 Cycles in Inline Graph|

M5 Allocation Orded

6.1

12

14

18
18
18
19
20
20
20
20
21
21
25

26
26
26
27
29
31
31
31
33
35
36
37
39
42
43
46

[5.2.2 Dynamic Evaluation|

6 Conclusion and Future Work|

[7 Appendix|

11

1 Introduction

Whenever the alarm clock rings in the morning, the coffee machine starts its
grinder, the car tells us the current outdoor temperature and finally the watch
informs us about lateness at work, we recognize that embedded systems play
an important role in daily life.

Hardware, mostly microcontrollers, is built into every of the above mentioned
devices where an embedded system serves tasks by using different hardware
parts. The requirements on computer systems and a microcontroller differ
a lot depending on their intended use. In contrast to commodity systems,
microcontrollers tend to have processors with less power and smaller memory
while on the other hand the power consumption of per-unit costs is compara-
tively low [Erh11]. The use of these systems is not limited to uncritical tasks
but they are employed in safety-critical systems as well. Quite the contrary
is the case because they often have to fulfill safety-critical applications.

The requirements for embedded systems and notably real-time systems ini-
tiated the development of KESO, a Java Virtual Machine designed for mi-
crocontrollers. The main idea behind KESO is to write applications for em-
bedded systems in the type-safe language Java instead of C' or C'++, which
are common in this area.

The use of Java in this environment is quite rare, but the decision to use it
yields a set of features in contrast to other languages. Object-oriented pro-
gramming can increase productivity and problems can be solved on a higher
level. In addition to the design, also common programming mistakes that
lead to buffer overflows within manipulating return addresses or references
that point to a wrong position in memory are eliminated by Java’s type and
memory safety. These features prevent impacts of programming mistakes
and encourage stable software.

A difficult problem in embedded systems is the efficient handling of resources.
As a consequence it is essential to save memory with a smart management
of data structures. Especially in Java, data information may be scattered
in memory because the method of choice is by-reference semantics for field
instances (see Figure [2)), when information which belongs to each other is
connected.

In contrast to Java, the programming language C++, which does not offer a
strong type system concept, has generalized its object layout by leaving the
choice of storing object information to the programmer of the application.
The manual declaration of a field determines whether it is saved by-reference
or by-value (see Figure [1).

12

Vector3d |

x:float

w y:float
Aircraft -
position:Vector3d Q z:float

position:Vector3d

velocity:Vector3d
I’ Vector3d I
velocity:Vector3d x:float

y:float
z:float |

Figure 2: Aircraft has only by-
Figure 1: Fields position and reference fields containing the ad-
velocity were stored by-value dresses of the corresponding ob-
without a reference. jects.

Especially on embedded systems, it can make a big difference which con-
cept is chosen. Due to the fact that references introduce another level of
indirection, several aspects have to be pointed out. The access of a data
structure via a reference takes more time than the access without one. In-
creasing amount of runtime costs causes the requirement for better and more
expensive microcontroller.

Another underestimated aspect is the impact of bit flips in references on such
devices. Bit flips are in charge for 90 percent of software errors [MIR'11],
for instance caused through cosmic radiation [Mak06]. Corrupted references
can lead to fatal consequences and in the worst case the system might not
be able to continue its tasks and stops proceeding.

One approach to address the above mentioned problems is object inlining,
which tries to optimize the code by modifying the object layout through
storing the content of referenced objects directly in the owner object (as
depicted in Figure [1]) if possible.

Implementing automated object inlining, which is leveraged by the type-safe
language, can address the drawback of Java’s by-reference design by applying
the by-value approach. Discussing and implementing co-allocation in KESO,
which is a first step to automated object inlining, is the topic of this work.
This thesis is structured as follows: Related work is discussed in Chapter [2]
The composition of the KESO framework is presented in Chapter [3| focusing
on its compiler (Section and already implemented analysis (Section [3.2)).
It follows the implementation of object inlining in KESO (Chapter [4)) and
finally the evaluation (Chapter [5)).

13

2 Related Work

Java is a well-known programming language with an object-oriented concept.
Its design provides the opportunity to write complex software systems by
offering, for instance, generic interfaces and a modular API.

The software layout is responsible for an increasing disposition of informa-
tion which leads to a large number of small methods and objects. Data struc-
tures that logically belong together are distributed in memory and connected
through references. Because indirections slow down programs at run-time,
prior research projects advised that a reduction of references may reduce
footprint and runtime overheads.

Object inlining can be described as merging multiple objects with a parent-
child relationship. As a result a new object is created combining fields and
primitive values.

A very notable work in this context was published by Chien and Dolby
[JAQO]. For their research they take a language mixing the syntax of C++
and semantics of Java, called ICC++ [JASJ96]. They examined properties
of field references to allow the semantically correct inlining. Their idea is to
determine object pairs (o1,02) where:

a) ol owns a field £ pointing to o2.
b) Assignment ol.f = 02 is always the initialization of o1.f.

In conclusion, no other addresses are assigned to ol.f through its lifetime.
They named this pattern one-to-one field.

The fusion of the object pair implicates the creation of a new object contain-
ing all fields of o1 and 02. The beneficial effect of inlining can be seen by the
following valid substitutions that can be made in a program for any parent
object p, corresponding inlined field £ with the attribute n:

a) Field load: v = p.f > v = p
b) Attribute access via field load: p.f.n — p.n

As a result, one indirection layer can be omitted due to inlined objects.
When applying their analysis to several programs (e.g. xpdf, dict, otest)
it turns out that in average about 30% of the fields are inlinable. Further
measurements end up in the result that inlining has a great impact on runtime
costs. On average, execution time is improved by 14%. For instance, 28% of
the field reads and 58% of the object allocations are removed.

The work of Laud [P.01] describes object inlining in Java and uses the results
of [JAOO]. The conditions for a one-to-one field defined by Dolby and Chien

14

are changed a bit by Laud because of using different languages. A field £ is
allowed to point to more than only one child throughout its lifetime. On the
other side each child is only referenced by f.

Due to this modification, Laud focuses on how fields can be inlined which
can have different types at runtime. Hence different types of objects result
in different sizes, a calculation of size is done for each type.

The largest size then determines location and size for the inlined child.

Another related work concerning object inlining in Java was published by
Lhotak and Hendren [OL02]. They combined the ideas of [JA0O] and [P.01]
by specifying a set of properties for field references:

a) contains-unique The field £ points to only one object during its whole
lifetime. The lifetime begins with initialization of the field.

b) wunique-container-same-field No other field £ of any object points to
the contained object. But it is possible that another object field g
points to the contained object.

¢) unique-container-different-field Every object referred to field f is
never referred to another field diverse to £ by any object.

d) not-globally-reachable ~ None of the contained objects will ever be ref-
erenced, neither by an array nor by a static field.

In the research of [P.01] and [JAQQ] a constant object layout is applied. As a
consequence a field reference has to fulfill all properties of that approach to
become inlined. When a field violates any of those conditions it is marked
as not inlinable. These restrictions are lowered by introducing different ob-
ject layouts depending on the properties for field references defined by Lho-
tak /Hendren [OL02] (see itemization above). Precisely three different sets of
properties are formed. When a field reference can be inlined by more than
one strategy, the one with the most fulfilled requirements is chosen.

The three different layouts are the following:

a) A simply one-to-one field fulfills all conditions which are listed in the
itemization above. The field reference is eliminated and the two objects
are merged into one (see Figure [3)).

15

Before

B
After
B
f C
C

Figure 3: After the inlining procedure a new object is created, which con-
tains all information about B and C.

b) A so-called field specific one-to-one field does not fulfill the unique-
container-different-field constraint (see itemization above). As a con-
sequence the new valid layout is a product out of two inline procedures

(see Figure {4)).

Before
B C
il 8 After
C
D B
D

Figure 4: Object D is referenced by two objects different fields. The new
object is created by first inlining D into B and afterwards into C.

¢) The last presented case for object inlining occurs when an inlinable
field £ points to multiple objects during its lifetime and therefore does
not fulfill the contains-unique constraint. The resulting layout keeps
all involved parties alive. The container object inlines several objects
during its lifetime. Whenever a new object gets assigned to f, each
object information that belongs to the former object is deleted, while
the new object gets inlined (see Figure [5)).

16

After

Before
B
B ZD
f ‘ \
C D C D

Figure 5: The field reference f points to several objects during its life-
time. The inlining procedure keeps all objects and inlines information only
temporarily.

Hence it is possible for Lhotak/Hendren to inline the union of candidates
provided by [P.01] and [JAOO].

In contrast to the above presented related work, this thesis differs in some
points. The chosen object layout, which is explained in Section 4.1} can be
described as a co-allocation. The inlined object still exists as a object with
its header and can be treated as a usual object. Furthermore the object
inlining procedure is implemented in a framework, called KESO (introduced
in Chapter [3). While the related works only change bytecode of the lan-
guage own compiler, it is necessary to produce a compatible backend code in

KESO’s compiler jino (see Section |3.1.3] and [4.6)).

17

3 KESO — A Multi-JVM

The KESO system is a multi-JVM for statically configured embedded sys-
tems. The main idea behind KESO is to write applications for embedded
systems in Java. As a consequence of the type-safe language and the logi-
cal separation of the software components’ global data, memory protection
can be ensured constructively. Dedicated hardware support provided by the
microcontroller is not necessary [Waw(9].

Moreover KESO does not use just-in-time (JIT) compilation. The procedure
of a JIT compiler, also known as dynamic translation, can be very complex
because it compiles program code during execution time. Higher latencies
at runtime can be the consequence and are not recommended in embedded
systems.

Instead of a JIT, KESO offers ahead-of-time (AOT) compilation [Lan12] by
using the closed-world assumption, that the entire source code and configu-
ration of the application and system components are known at compile time.
Additionally the complete software configuration (e.g. size of the heap) is
performed at compile time. Hence it is possible to create a slim and efficient
runtime environment for Java applications. Thus, the compilation will be
performed only one time before execution. Therefore it is not possible to
load code dynamically or to use Java’s reflection mechanism.

3.1 Structure of JINO

Since KESO has a pass structure it is reasonable to implement object inlin-
ing as a pass, too. As a consequence the environment of passes in KESO
are explained. Before KESO’s own compiler jino starts its work, the Java
compiler javac translates Java sources into common Java byte code.

After that jino starts the translation from Java bytecode to C. As mentioned
in Erhardt’s work [Erh11] jino’s architecture is inspired by the design of state-
of-the-art compilers and comprises a frontend, intermediate code passes and
backends. These three modules are explained next.

3.1.1 Frontend

The frontend operates on Java bytecode. Depending on the resulting byte-
code an intermediate code representation will be created. Therefore every
.class file gets parsed to extract its contents and finally saving it in a pro-
vided class repository. Precisely each method is stored and is divided into
basic blocks. A basic block is a sequence of instructions without jump or
conditional instructions.

18

Each instruction type has a corresponding intermediate class type within its
properties and inheritance. For each occurrence of an instruction type, a new
object in the intermediate representation is generated.

Additionally, jino introduces stack slots for local variables. Each result of an
instruction will be saved in such a stack slot. The design of the rebuilt byte
code is a stack machine, where every assignment is saved into a syntax tree.
The nodes represent instructions and edges serve as intermediate results for
operands.

3.1.2 Middle End

The middle end in jino uses the intermediate code to analyze and transform
the code by applying passes. The quality of the optimization results profits
from high-level program information and the static nature of the system.

A few examples of passes already implemented and relevant for this thesis
are the following:

e Dominance Analysis: Section [3.2.2
e Escape Analysis: Section |3.2.3

e Control-Flow-Sensitive Analysis: Section

Every pass is located in an own class and either enabled or not. A pass
can be activated in the configuration or is automatically included due to
dependencies from other passes.

All passes are registered in the pass manager, which is inspired by the design
pattern of the Low-Level Virtual Machine (http://11lvm.org) [Erh1l].

The manager schedules an execution order of all passes. The execution order
is important for the following reasons [Erh11]:

e A pass often has dependencies to others, e.g. data structures or results
will be reused. As a consequence, these passes should be evaluated
before, e.g. the Escape analysis will need the Domination Tree analysis.

e An instance might run again when another pass transforms code in any
manner or, when an analysis yields new optimization potential. This
can be imagined as a fix-point iteration.

19

http://llvm.org

3.1.3 Backend

As the last step, jino translates the intermediate code to C and creates a
configuration file for building a custom kernel based on the chosen backend.
Producing C code allows to use existing C compilers to generate machine
code. Hence, KESO supports all machine architectures for which a compiler
exists by design. As a consequence jino creates memory-safe C code that
contains the entire runtime system suited for the translated Java application.
The concrete translation to C code begins with an iteration over all expression
trees in every basic block. Every node in that tree has a class type in the
intermediate code.

Therefore a specific translate method exist which emits suitable C code.
Depending on the options (enabled passes) the produced code will change.

3.1.4 Summary

For realizing the Object Inline analysis it is necessary to change code in the

middle end and the backend:

Middle end: New analysis pass has to be added for collecting necessary
information to determine when it is even possible to inline objects and mark
respective allocations in code.

Backend: An extension of the object layout is necessary and the code which
translates allocation instructions has to change.

3.2 Relevant Analyses Provided by KESO

KESO’s pass model is already introduced in Section [3.1.2 The mentioned
passes have a certain execution order because of existing dependencies to
each other.

This section points out analyses which affect the Object Inline analysis. Ei-
ther they offer reusable results or change the intermediate code in a certain
manner that affects the analysis in some way.

3.2.1 Method Inlining

As described in [Erh11], method inlining is a substitution of a method invo-
cation with its body. From a performance point of view it provides a speedup
by omitting the need of a method call overhead which results from writing
return address and parameters on the stack and the following cleanup. In
addition, method inlining supports other optimizations: When parameters

20

can be analyzed at compile time, for example by the use of constants, some
basic blocks that depend on a specific value of a given parameter cannot be
reached and are therefore removed. However, it is not always recommended
to inline methods. A naive realization would lead to a blowup in code size
especially if a method invocation appears in many code locations. Therefore
a heuristic decides when inlining is a suitable option. As a consequence of
method inlining whole classes can be inlined. Creating very few instances of
a class down to one makes constructor inlining more probable.

The Object Inline analysis has to deal with the behavior of method inlining,
which implicates a movement of methods and could furthermore cancel whole
classes in the backend representation. The consequences of method inlining
will be discussed in detail in Section 4.2l

3.2.2 Dominance Analysis

Section mentioned that methods are logically divided into basic blocks
by jino. A characteristic of a basic block is that it has only one entry and
one leaving point and in turn each basic block is either traversed completely
or just not entered. In some cases it is useful to know whether a certain basic
block A always gets traversed before another one B. If this evaluates to true,
a dominance is existent and thus A dominates B. Whenever the basic block
B is traversed, the basic block A has to be traversed to a former point either.
Depending on the flow graph of a method, the algorithm see [TET9] of this
analysis can assert whether a dominance is existent or not.

In Section 4.6| the question about the order of allocation is answered with the
help of the domination tree. The domination tree is characterized by mapping
all dominance relations between the basic blocks into a tree structure.

3.2.3 Escape Analysis

A very important pass the Object Inline analysis depends on is the Escape
Analysis, implemented by Clemens Lang in his bachelor thesis [Lan12]. It de-
termines if an object can be allocated on the stack. Because (de-)allocations
can be done much faster by stack allocations, its implementation is helpful.
A tracing garbage collector for heap objects that are not referenced by the
application anymore causes a higher runtime overhead.

Since Java does not provide any keyword for explicit stack allocation[l], it is
necessary to figure out when a pointer, received via an allocation operation,
leaves the method context. For each object, that exists only in a method
context, stack allocation is done.

'Nevertheless stack allocation is sometimes done by the compiler itself.

21

For realizing this behavior, a data structure called the Connection Graph is
introduced. For each method, it stores alias information about references,
where alias information means memorizing all targets of references through
their lifetime. The internal data structure is a directed graph with the fol-
lowing attributes:

Vertices:

e An object node is illustrated by a vertex and represents an instance of
a class. It is very important to keep in mind that the Escape analysis
is a static and not a dynamic analysis. Therefore an object node is
created only for each allocation statement in the code instead of every
allocation made at runtime. For instance, if the same allocation is
called multiple times, the analysis does not create more than one object
node. An important subtype is the phantom node. That node is usually
created when a reference points to an object where the analysis cannot
determine where it is created. This happens mostly when it is created
out of the currently analyzed method. Ergo reference nodes with edges
to phantom nodes are not suitable for stack allocations.

e Reference nodes connect object nodes and represent the different kinds
of references:

— Local References: For instance, references saved in slots in Java
byte-code.

— Field References: For each non-primitive member variable a
field reference node is created. They are connected with a so-
called field edge. The field reference itself has an edge of type
points-to edge to another object node.

Edges:

Edges have also different types depending on their source and destination
node:

node type ‘ object node ‘ field reference node ‘ reference node

field edge -
deferred edge deferred edge

object node
reference node

points-to edge

Table 1: Edge types depending on source (downwards) and destination (side-
wards). This table is taken from [Lan12].

22

00 O Uik WK

DO DO DD = = = e e e e e e
N = O O© 001U W H—=OO

The results computed by Escape analysis are beneficial for object inlining,
since it is easy to figure out any kind of references with corresponding target.
With the connection graph it is possible to identify field references that are
stack-allocatable by traversing the connection graph of each method.

The concept of connection graphs is demonstrated by using the following
small example:

public class Test implements Runnable {
private E e;
public Test () {
e = new E();
}
public void run() { ... }
class E {
private final F f;
public E(){
this.f = new F();
}
}
class F {
}
}

Listing 1: Simple code example for connection graph

Relevant in Listing [1| are the two classes E, F and in particular the field
reference of E to F. This is actually an example where inlining the field e.f
is a good choice. The example is reused and explained in Section 4.2 A
fragment which skips relevant parts of the internal connection graph of the
constructor Test’s can be seen in Figure @

23

Figure 6: Connection graph corresponding to the constructor of class Test
in Listing [1}

Each edge has an index which officiates as a shortcut for the corresponding
edge type listed in Table[I] An edge marked with F stands for the existence
of a field reference which belongs to the source object node. Similarly P is a
shortcut for a points-to edge that illustrates the assigned object to the field
reference.

All field references of class E are registered, namely c16f1_f. Every points-to
edge emerged from a field reference node sticks to an assignment operation to
this field. These edges point to an object node which represents the dynamic
class type.

Additionally, it is worth mentioning the sense of a phantom node. It is usually
created whenever a reference is transferred by a parameter and the referenced
object is created before the method invocation. Besides those occurrences

24

each graph has at least one phantom node. It represents a class instance
which holds the current object. The node objO holds the corresponding
this reference.

3.2.4 Control-Flow-Sensitive Analysis

KESO’s Control-Flow-Sensitive Analysis is explained in [Erh11]. It gathers
a lot of information about the intermediate code and tweaks it with several
transformations, e.g.:

Constant Folding:

Tries to find variables that behave like a constant and substitute the variable
for that constant value. The folding expression bases upon the fact that one
substitution could cause other ones.

Virtual Method Invocation:

Whenever an object that invokes a method can have multiple types? at com-
pile time, a virtual call will be made by determining the object type at
runtime. This transformation tries to find out the concrete type at compile
time to convert virtual calls into non-virtual ones.

Dead Code Elimination:
Eliminates unused code pieces, e.g. by evaluating conditions of if-else clauses
and deleting branches which are never entered.

Analyses modify and optimize code in a continuous manner. For this reason
the final state of the Control-Flow-Sensitive analysis is determined either by
a maximum iteration time or by a fixed-point analysis.

By executing these transformations a lot of information is gathered about
every instruction node in the intermediate code. Besides value ranges of
primitive types every dynamic type for each field reference is determined as
specifically as possible.

In Section [4.5]the analysis helps to determine the basic block of an instruction
stored in the intermediate code.

2Typically named polymorphism.

25

4 Object Inline Analysis

In this section an algorithm to inline objects in KESO is presented. There-
fore, at first a new object layout (Section is established, followed by the
task to evaluate the new size of those objects (Section correctly. Later
on, it is shown that the object layout decision affects the allocation order
of inlined and containered objects. As a consequence it is necessary to take
care of the allocation order (Section [4.9)).

The field properties to fulfill to become a candidate for inlining are presented
(Section as well as the decision to leave mutually exclusive objects un-
touched (Section [4.4).

To complete the analysis, the translation of allocations is presented as the
last step in Section [£.6] Besides final solutions, neglected ideas are also
mentioned in this chapter, because they belong to the process of writing the
implementation.

Definition: Inline (field) reference

Each reference field that points to an inlinable object is called inline field
reference in this thesis.

4.1 Layout

As seen in Section [2, a part of the object inlining process is re-engineering
the object layout. It is important to change it in a manner to keep variable
code constructions compatible.

Therefore, KESO’s current object layout is scrutinized. In the aftermath its
representation in C and diversification of both levels, in case of inlining a
field, are examined.

4.1.1 KESO Object Layout

The current structure of a KESO object, which is depicted in Figure [7] is
classified into three different sections:

e Object header: Contains a class id and further object-specific infor-
mation, and separates field references from the primitive values.

e Field references: Pointers to other objects.

e Primitive values: Those types are no objects and are stored directly
without any indirection (e.g. float, int, char ...).

26

Field references

Object Header| class id

Primitives

Figure 7: KESQO'’s object layout separates all field references from the prim-
itive values while the object header is stored in between.

The set of object members is split into field references and primitive values.
Those two fractions are placed in the order of their class membership, de-
scending in the class hierarchy. As a result, members which belong to upper
classes are always placed nearer to the object header in comparison to sub-
class members. Such a decision enables the possibility to use the same object
header in an upper class context.

Pointers always direct to an object header instead of its de facto beginning.
For holding type information of an object, its header owns a unique type id,
which is also called class id. The id is used as an index in a global class store,
which holds information about each class’s object size, interface and number
of field references which are important to know to access the beginning of an
object.

4.1.2 Object-Inline Layout

At first the properties for a new object layout have to be determined so that
it works fine in the KESO environment.

The layout should still work harmonically with the usual layout and not
violate the partition schema of field references, object header and primitives.
On the other hand, the object layout should consider Java-specific features
such as inheritance especially if an inlined field could have multiple dynamic
types.

Every modification of the object layout needs an equal representation in the
generated C code.

As a consequence, the decision was made to keep the inlined objects’ header

27

rather than to erase the header and to embed only the object’s content (see

Figure .

Field references
ref to_inline_obj

Object Header

er Object

Primitives

Object Header
Inlined Object

Figure 8: The layout of objects with inlined fields changes neither the size of
the container nor of the inlined object. Instead, the inlined object is placed
directly behind its container object, whose inlined field stores the address.

It is more like gluing objects together than actually inlining into each other.
The inlined object with all of its members is placed behind the container
object while keeping its structure. Over the field reference the inlined object
is still reachable. Compared to other inlining strategies the container object
still has the same size thus only one field reference address has changed. The
preservation of the header spares out the task to create new class ids.
There are a few more reasons why this way was favored.

As mentioned earlier, jino is an ahead-of-time Java to C compiler. Jino
optimizes code on a high level, while the low-level compilation task is done
by a C compiler and therefore jino’s last translation step produces ordinary
C Code (see Section where a Java class is represented as a C structure.
By keeping the child object alive, it is not necessary to create new class ids
for the container object. An id for a class variant with and without inlining
would be necessary instead.

28

ST W N

Furthermore the copy-in approach increases the object size for the complete
amount of its lifetime, because it might be difficult to determine how long the
child object was referenced before. Usually the garbage collector recognizes
when no reference to an object exists anymore, but when inlining the object
completely and removing its header this opportunity is missing. Since the
child object in our approach still exists collecting it is not difficult.

4.1.3 Layout in C Code

Object instances, including inlined ones, are translated to equivalent C code.

For each class a header file is created including a C structure with its mem-
bers. In Listing [2[such a struct construct is displayed. The original class in
Java has three attributes including two pointers and one primitive value. In
Java, the class definition works as a stencil for each object, which is exactly
the same behavior represented by the resulting backend struct in C.

typedef struct {
object_pointer c¢2bl_b;
object_pointer c3cl_c;
OBJECT HEADER
jfloat clal;

} el A t;

Listing 2: Common layout produced by KESO’s backend. Tripartite
design by splitting references, object header and primitives. The macro
OBJECT_HEADER defines the header.

According to the object header presented in Figure 8| the new concept for the
backend has to be constructed by holding information about both objects,
that is the container and the inlined object.

A little example with two classes is displayed in Figure [9] Class Circle
has an inlinable field reference to an object of class Point representing the
midpoint of the circle.

29

0 O Uik Wi

Point Circle

coord x : int mldpomt radius :: float
coord_y : int N

1 1

Figure 9: A simple class diagram which demonstrates a typical use case
for inlining. The Circle class acts as a container object because its field
reference radius holds a unique object.

The expanded layout in Listing [3] first itemizes the struct of both classed]
Then the final layout is created which contains an attribute of each struct.
This placement implicates the desired order of the former declared object
layout.

typedef struct {
object_pointer midpoint;
OBJECT_ HEADER
jfloat radius;

} circle_t;

typedef struct {
OBJECT HEADER
jint coord_x;
jint coord_y;
} point_t;

typedef struct {
circle_t circle;
point_t point;

} circle_inlines_point_t;

Listing 3: The layout represented in the backend code when inlining was
done referring to the class diagram from Figure [0} Therefore a new struct
is introduced that holds the struct of Circle and Point and serves as a
new draft for the Circle class.

3Since Point has no field references, the first entry in its C structure is the object
header.

30

4.1.4 Conclusion

The chosen layout refuses to remove the object header of the inlined object
and inserting its values in the container object. Instead a co-allocation ap-
proach is done by ordering, whenever inlining is possible, the object pairs
successive in memory.

4.2 Candidates for Inlining

It is still unanswered how the concrete candidates for inlining get identified
and how the information will be saved in a sensible manner.

Firstly, the properties of field references for inlining have to be formulated.
An important requirement on a field reference, whose object is a possible
candidate for inlining is, that it must not point to any other object than
the inlined object. Otherwise object inlining would make no sense since the
reference points to various objects during its lifetime. That would corrupt
the complete design.

Fortunately, Java offers the keyword final in its syntax. Marking a reference
final causes the reference to point to the same object forever. Therefore
it is a condition for any reference, which is about to be inlined, that it is
declared as final. The collected final references pose as the initial set to
which the analysis is applied.

It does not matter if multiple references point to an inlined object as long as
multiple inlining does not cause problems, as can be seen in Section [4.4]

4.2.1 Relevant Methods

Next, it is necessary to find all methods that contain assignments to inline
references. This knowledge is essential for the evaluation of the corresponding
connection graphs as can be seen in Section [4.3.2.1]

The precondition that references are marked as final facilitates the search.
Those references become one-time initialized in the constructor and never
change throughout the program’s lifetime. Method inlining complicates the
search (see Section [3.2.1)) because methods can inline constructors and conse-
quently hold the assignments to inline references, which are originally stored
in the constructor method. This behavior forces to expand the search in each
method that invokes a constructor. As a consequence every method of every
class has to be visited.

For filtering out each method that assigns an address to an inline reference
it is necessary to traverse all methods with their basic blocks and expres-
sion trees. The storage instruction which stores a value into an inline field

31

reference serves as an indicator for a successful search.

In addition a relevant method must hold at least one allocation operation
whose result must be assigned to a candidate. As a consequence the connec-
tion graph referring to this method must not include a phantom, that has a
field reference node, which is also a candidate as predecessor.

Some candidates (see Figure point to a phantom node and this causes
disqualification for inlining. Whenever a field node has a phantom node as
successor it indicates that the assigned object is already created in an existing
method context.

C I <phantom> !
|

I <phantom> !
|

Figure 10: The connection graph of a method holding two field references
that point to a phantom node instead of a normal object node.

Naturally, it is not sensible to inline such a field, because the referenced
object is already stored in memory.

The yet performed steps to identify inlinable objects summarized: At the
beginning of the Object Inline analysis all final references are collected. Af-

32

terwards all methods with an assignment to these references are searched for.
For each method a corresponding connection graph exists. With these con-
nection graphs it is possible to determine all dynamic types of the references.
Finally the gathered information is saved in the owner class of the reference.
In more detail every instance of IMClass saves its inlinable fields in a map.
Every field maps to a set of classes. Each class possibly poses a dynamic
type that is determined by the connection graph. Algorithm [I| displays the
coarse-grained procedure.

Algorithm 1: Gather information about inlinable field references
Input : All classes of a program containing final references
Result: Storage of inline candidates with possible types in class

findInlineRefWithType(clazzes :
All classes used in program, finalRefs :
All references marked as final)

[y

2 begin
3 // Find for every field reference corresponding method with
assignment
4 Map < IMFieldReference, IM Method > fieldsAssigned =
find AllAssigningMethods(finalRefs);

5 foreach entry € fieldsAssigned do

6 field = entry. getKey();

7 method = entry. getValue();

8 // Get corresponding connection graph

9 cg = method. getCG();

10 // Traverse connection graph for dynamic types
11 types = cg. findDynTypesInCG(field);

12 // Add field with its type to holding class
13 field. getClass(). addInlinedFieldWithType(field, types);

The next Chapter deals in detail with the question of how to determine
the size of an inlined object while considering its polymorphic behavior /char-
acteristics.

4.3 Object size

Listing |3| points out that inlining works by concatenating two or more struc-
tures to a single new one. This requires determining the concrete type of
the inlined object. One of Java’s strengths is the inheriting principle. Class
hierarchies are built from generic to ever more specialized classes. Thus it

33

is common to declare more general types of references because any subtype
can be assigned to it.

The class diagram depicted in Figure[J]illustrates that whenever an additional
subclass is included it is necessary to determine the correct dynamic type as

is illustrated in Figure [I1]

coord_x :: int mldeIh<>
coord y : int 1 L
3D Point

coord_z : int

Figure 11: Expansion of the former class diagram (depicted in Figure E[)
by an additional subclass of the Point class. Thus the inlined field reference
can point to different types.

The problem arises when considering a typical initialization procedure via
a constructor: Static analysis cannot figure out which object type the field
will have. For situations such as illustrated in Listing [4] it is quite difficult
to obtain all necessary information to know the right instruction path and
consequently the correct size of the inlined object. Subclasses can be larger
than their corresponding upper class tree, because of holding additional fields
and primitive values.

34

— =

— O © 00O Uk Wi+

class Circle{
private Point midpoint;

public Circle (boolean is2D){
if (is2D){
midpoint = new Point2D (0,0) ;
} else {
midpoint = new Point3D (0,0,0);
}

}

Listing 4: Upper class has multiple constructor paths. In an AOT compiler
it is mostly hard to determine which path will be chosen, except the value of
the condition can be figured out at compile time, e.g. when it is a constant
value.

To still allow such a situation and not decrease the number of possible candi-
dates for inlining it is a suitable idea to handle the unsafe size by determining
the maximum size of an object.

It is trivial to determine the static type of an inlinable field but much more
difficult to figure out the dynamic type and its size.

4.3.1 Largest Dynamic Type

A naive approach is to simply compute the size of all dynamic types by
traversing the type of the field and its subclasses. But this idea is not rec-
ommended because it is very hard for jino to figure out the correct object
size at compile time. The GCC compiler could figure it out because of its
just-in-time compilation procedure.

The following two arguments emphasize this rating:

1. The size of the object header is not necessarily fixed at compile time.
Many components can increase its size, e.g. when more bits for class
ids are necessary.

2. Even object inlining itself is an uncertain factor. When any (sub)class
owns a field which can be inlined, the size of the field cannot be deter-
mined. In a gradual manner fix-point iteration would help.

This algorithm will allocate mostly too much space and the implementation
seems very complicated.

35

0O Ui Wi =

4.3.2 Object Size With Union

Instead of summing up the different sizes, it is possible to make use of the
union construct in C. Unions can store multiple values with different types
in one field where only one of them will actually be saved. The compiler de-
termines which field is the largest one and allocates that amount of memory.
For the object size purpose it is the perfect feature to create for every inlined
object a union construct which lists all different possible types (see Listing

o).

typedef struct {
object_pointer clcl_B;
object_pointer clcl_C;

OBJECT_HEADER
jfloat clal;

} el A t;

typedef struct {
cl_A_t cl_A;
union {
¢3.C_t ¢2.B;
cd_D_t c4.D;
} c¢lel_C_.inline;
} cl_A_inline_t;

Listing 5: Layout of structs holding an inlined object. A new struct
is introduced storing the struct of the container object and the union
construct with set of dynamic class types.

The backend must be adjusted in IMClass and DefaultObjectLayout. IMClass

stores class-specific information, for example methods, fields and primitive

values but also a translate method which emits C code. The DefaultObjectLayout

defines the outgoing layout of objects in C depending on interactions of given
options and is the place to implement the new struct. Possible options are
for instance a modification of the object header or swapping fields to the
stack.

When the backend translates a class, it adds in the header file additional
include instructions for each possible dynamic type of the classes’ inline
objects.

While the union takes care of the correct size of each dynamic type it does not
fix the problem that too much space is reserved. Referring to Listing [5] still
the largest possible dynamic type will be chosen even if no object instance of
that type is assigned to the field. To fix this issue it is necessary to register
which object types are actually assigned to the field.

36

=

O © 00O Uk W -

4.3.2.1 Dynamic types

To examine the problem of different types and corresponding object sizes a
little class diagram is introduced in Figure [12] which holds a typical initial-
ization pattern (see Listing [6]).

A
pAY V\
E
B
7 D
C

Figure 12: The figure shows a generic class hierarchy. References of type A
can obtain an assignment of every type listed in the hierarchy.

final A a;
public Class () {
if (condition){
a = new B();
} else {
a = new E();
}

Listing 6: Displaying a part of a constructor method. The field reference a
can have two dynamic types.

The Control-Flow-Sensitive analysis preserves dynamic type information for
each field. In detail it saves one dynamic type for each field that fits for
all possible assignments. All objects of a dynamic type could successfully
perform an instanceof operation to the type evaluated by the Control-
Flow-Sensitive analysis.

Referring to the example given in Listing [0] the analysis notices two assign-
ments to the field reference a and deduces the most general type: A.

37

As a consequence this proceeding is still not satisfying. In some cases it will
perform well unless more than one type will be assigned to the target field.
The concrete dynamic types cannot be figured out (see Figure .

T
A

)

Figure 13: Possible types for field reference a (see Listing @ based on
Control-Flow-Sensitive analysis are marked with green ovals.

A better means to solve the problem is the connection graph derived from Es-
cape analysis (compare Section . Whenever a new instruction appears
in code and the created object is assigned to a field reference, the connec-
tion graph adds an edge from the field to an object node with the dynamic
type. The intermediate code representation of allocations holds the type
information. As shown in Figure [14] only the concrete types are extracted.

Figure 14: Possible types for field reference a (see Listing @ based on a
connection graph are marked with green ovals.

38

The connection graphs containing the alias information are already known.
Each graph belongs to a method which is represented by it. Therefore it is
necessary to make all relevant methods available that make an assignment
to an inline reference. In Section this procedure has been presented.

Since every possible dynamic type is known, only their header files are in-

cluded. Furthermore the members of each union can be reduced by contain-
ing only these types.

4.4 Cycles in Inline Graph

Definition: Inline graph

Describes a directed graph whose edges represent inline references. The
vertices are classes which either hold the reference (source of edge) or can
be inlined (destination of edge). Outgoing edges mean that the source
class has at least one reference with the dynamic type of the destination
class.

A possible problem are cycles within the inlined object references. Cycles
are created by the object layout and the permission to share inlined object
references. The scan for phantom nodes in the connection graph should avoid
cycles except for the case when method inlining falsifies the graph.

Hence through unfortunate constructions, classes could cyclically inline each
other. An example for cyclic inlining is represented in Figure [I5] Without
any adjustment member objects of such a circle would allocate endless space
at runtime, because the new object layout leads to a co-allocation of inlined
objects. When every inlined object has itself as an inlined field reference, it
results in an endless memory requirement.

39

Figure 15: The directed graph represents the dependencies between classes
based on the references that can be inlined. Every directed edge symbols
that the source holds a reference to the destination with the ability to be
inlined.

To prevent false inlining, all cycles must be dissolved by declaring specific
references as not inlinable. Therefore an inline graph is calculated as in
Figure The results of Algorithm [I] can be used to create this inline
graph.

To create the inline graph it is necessary to check each class’s inline references
and add an edge from the container class, which holds this reference, to each
possible dynamic type class. This procedure is illustrated in Algorithm [2]

Algorithm 2: The procedure of building directed graph for inline ref-
erences

Input : Class storage that holds all classes

Result: Directed graph for cycle finding

buildDG(classStore :

Repository that holds all classes of program, dg :
Directed graph instance)

2 begin

3 foreach clazz € classStore do

4 foreach inlineRef € clazz. getInlineRefs() do

5 dynTypes = clazz. getDynTypes(inlineRef);
6

7

=

foreach dType € dynTypes do
L dg. addEdge(clazz, dType);

40

Before concrete cyclic problems can be solved, all strongly connected compo-
nents must be extracted. All vertices in a strongly connected component are
reachable from each other vertex. An algorithm invented by Tarjan [Rob74]
is used to filter out all components.

With this set of components in hand, an algorithm can be formulated to
remove edges from the graph wisely. Cycles are detected with a depth first
search (DFS). Whenever an edge will close a circle, it will be removed in the
graph. Thus all references of the class which are responsible for the edge,
become marked as not inlinable.

Depending on the selected starting position, the results of the algorithm will
vary. When, as illustrated in Figure [I6], C is chosen as a consequence two
edges are removed from the graph.

Starting point

Figure 16: Choosing the starting point randomly implicates a non-optimal
result. Then, the search with DFS deletes edges that causes cycles. As a
consequence two edges get removed: A—C and B—C.

To minimize the number of edges to be removed, a heuristic is introduced.
As a starting point the vertex with the most outgoing edges is selected. This
heuristic is applied on the same example and delivers a correct graph by
deleting one edge (see Figure instead of two.

41

Starting point

4 A 1
D B
2
3 C

Figure 17: Choosing the starting point depending on the vertex which has
the most outgoing edges. The search traverses the graph again with DFS
and delete edges that close cycles. Here only one edge, D—A, is removed.

4.5 Allocation Order

Method inlining bothers the evolving of cycles as well as it is in charge when
a connection graph does not notice that the assigned object to an inline field
references is created in outer context.

As a consequence, the connection graph creates a regular object node instead
of a phantom node. In any case it is not possible to inline an object when
it is created before its container object. This is reasoned by the nature of
the object layout. At first the container object needs to be created with
enough place for the inlined objects. Later on, the inlined objects are placed
in memory behind the container object. Therefore it is essential to verify the
correct order of allocations of the container and inlined object.

The examination of the allocation order begins by searching all allocations
of objects in charge for creating the container object holding the inline field
reference and the object referenced by the inlined reference.

These allocations are represented in the intermediate code through appro-
priate objects including the basic block they live in.

It can be determined if a basic block dominates another one by using the
Dominance analysis that is explained in Section [3.2.2l Thus the correct
allocation order can be verified by checking if the basic block of then container
object allocation dominates the other one.

To find each relevant allocation pair it helps to rescan the set of connection
graphs explained in Section [£.2.1] The characterizations of these graphs are
that their corresponding methods initialize any reference marked as inlinable.

42

Therefore each connection graph holds at least one pattern such as depicted
in Figure

Figure 18: A part out of a connection graph. Class A holds a field reference
which points to an object of type B. Objects created by the allocation behind
A will inline an object of type B.

The inline field references of each graph are already identified (see Sec-
tion as well). Next, the preceding and succeeding object node is col-
lected. The object nodes are very helpful because each one represents a
required new operation, which was already pointed out in Section [3.2.3]

To determine the basic block of any instruction the Control-Flow-Sensitive
analysis can be used again because it stores for each instruction the corre-
sponding basic block.

Finally the Dominance analysis validates to true if a domination between
these allocations exists. In the corner case of receiving two times, the same
basic blocks the instructions must be traversed in serial order until the first
allocation occurs. Therefore it is not necessary to use the Dominance analy-
sis, because the same basic blocks dominates always itself.

Through introducing the constraint that allocation pairs must be allocated
in the right order, it is not essential to look for inlining circles. Circles can
only occur when at some point in the code the order gets violated. This is
quite reasonable because for closing such a circle it is necessary that at least
one inline field reference points to an object from outer context.

4.6 Translate Allocations

Until now each field reference with the option to be inlined is known. In addi-
tion each allocation responsible for container and inlined object is identified.

43

At next a translation for the backend must be formulated that produces
equivalent C code. When object allocations are translated they look usually
as displayed in Listing[7] A macro hides the concrete allocation process and
returns the address of the object header.

This result is then saved into a variable respectively a stack slot. Definitions
for these macros are placed in the header files of the corresponding class type.
The macro statements themselves are emitted by the translate method of
the allocation instruction. In order to change the behavior for object inlining
purposes it is, on the one hand, essential to modify the backend code provided
by translate methods, and on the other hand, to introduce new macros that
fit for the requirements of object inlining.

obj0 = KESOALLOCCXY_A(); // Allocate object of type A

Listing 7: This Listing exemplifies the common procedure of allocations in
the backend code.

When object inlining can be adopted to an object pair the original code
looks likewise to Listing [§] At first memory for the prospective container
and inlined object are allocated. Afterwards a field reference simply connects
both objects. The result of the whole procedure is illustrated in Figure [19]

44

obj0
[]
Header 4
11]// Step 1
5 2 | 0bj0 = KESO_ALLOC_CI_A () ;
2 30...
4 |// Step 2
5 [objl = KESO_ALLOC.C2.B () ;
} Header 6 |...
/ 71// Step 3
obj1 8 | (ACCFIELD_C1_A Refl (0bj0)) =
objl;

Figure 19: The results on memory
level of Listing [§] are represented
here. At first an instance of class
A is allocated and assigned to field
reference objO0. In an analogous
manner an instance of B is assigned
to objl. In a third step a reference

Listing 8 Whenever inlining is
possible, the original code pattern
include these three instructions.
Two objects get allocated (Step 1
and 2) and afterwards the second
one is assigned to a field reference
of the first object. Figure

visualizes the behavior.

of objO points to obj1.

a)

Container: Each allocation for a container object can still use the
KESO_ALLOC macro. Instead of allocation space for the container object
only, the presented solution allocates memory for all inlinable objects
as is pointed out in Section . As a consequence the new macro,
which is called KESO_ALLOC_INLINE (see in Figure Step 1), transfers
the computed size to the KESO_ALLOC macro.

Whenever this new macro is written into the backend, its slot name,
which stores the returning address, is communicated to each inlined
object via a map.

Inlined object: As shown in Listing |5 every new created struct
for a container object has a (union) member for each inlined object.
Depending on the member and slot name the address is transferred to
the new macro KESO_O0BJECT_INLINE. The macro itself evaluates merely
the position of the object header and returns it (see in Figure 20| and
Listing [9] Step 2).

45

cl A inline_t

o)

' cl1_f1_b_inline
¥ Header
obj0 e |
1|// Step 1
2 |obj0 = KESO_ALLOC_INLINE_C1_A
()
3 31|// Step 2
@ 4 |objl =
KESO_OBJECT_INLINE_C2_B(
5 &(((cl-A_inline_t =x)
Header CL-A-OBJ(0bj0))—>
clfl_b_inline)
L 6|);
objl 7|// Step 3
8 | (ACCFIELD_C1.A_C2.B(0bj0)) =
objl;
Figure 20: The figure illustrates Tisting 9: This backend code

the stepwise procedure of Listing[J]
in case of object inlining. In step 1
(yellow shape) space get allocated
for both objects. Next, the inlined
object get stored in it (red shape)
and the resulting reference address
points on its header. The last step
implies again the assignment of the
inlined object to a field reference of
the container one.

shows the result of Listing [§] after
modification for object inlining.
The first step is similar except
that the new macro allocates more
space for both objects. In step 2
no new object is created, instead
the associated place for it in the
former object get assigned. Step 3
has not changed.

4.6.1 Combination of Stack Allocation and Object Inlining

The thesis of Lang [Lan12] is about allocating objects on the stack whenever
possible instead of bothering the heap. There is no reason to omit any of the
analysis in favor of the other one because they can be combined.

Therefore it must be verified that the container object is stack allocatable as
well as the inlined objects. When the allocation statement that corresponds
to container object is translated by jino, the compiler checks that for each
inline statement if the corresponding object is stack-allocatable, too.

If every child object can allocated on the stack, the same translation proce-
dure, which is described in Section can be used. Instead of storing the
container object on the heap, as is depicted in Listing [7} it is placed on top

46

of the stack. The only difference to the normal co-allocation is, that a stack
address is saved in the corresponding slot.

The constraint that all members have to be stack-allocatable is essential.
Otherwise it might happen that an inlined object tries to access an invalid
stack address.

47

5 Evaluation

After presenting the implementation of object inlining, the evaluation of it
follows. Therefore two benchmarks are compared with the analysis enabled
and disabled. With these results at hand, it is possible to conclude how
effective the analysis is in term of memory footprint and runtime costs.

At first the benchmarks used for evaluation are introduced.

5.1 Benchmarks
5.1.1 CDx

CDzx is "an open source application benchmark suite that targets different
hard and soft real-time virtual machines.” [KHPT09]. The benchmark was
developed for providing a Java application for tests on microcontrollers and
embedded systems. It "models a hard real-time aircraft collision detection
application” [KHP™09]. In detail the program is divided in two parts. A
radar simulator scans the aircraft traffic in certain time frames. These results
are transferred to the collision detector. It figures out for each frame if a
collision happens between any aircraft pair and displays the collision point
in a 3-D vector space.

5.1.2 Snooker

The Snooker benchmark is developed for the purpose of testing object inlin-
ing. It generates a set of balls, settled in a 2-D vector space, with a certain
velocity and direction. In each time frame it is checked for a collision between
any of the balls plus determining the collision point.

‘ Benchmark H Classes ‘ Ref-Fields ‘

CDx on-the-go 131 52
Snooker 8 38

Table 2: Class and field information.

Both benchmarks are tested on a TriCore TC1796 microprocessor running a
CiAO operating system (https://wwwé4.cs.fau.de/Research/CiA0/). The
hard- and software configuration for the testing environment are listed in
Table [3] The proportion of the number of classes and field references in the
benchmarks is given in Table [2]

48

https://www4.cs.fau.de/Research/CiAO/

Components \ CDx on-the-go / Snooker

CPU Infineon TriCore TC1796
150 MHz CPU
75 MHz system
Memory 2 MiB Flash, 1 MiB SRAM
OS CiAO Commit: 30df8c50453c14
Compiler GCC 4.6.3
KESO r4304
KESO’s memory management Restricted Domain Scope

Table 3: Hard- and software configuration used to run both benchmarks.

5.2 Measurements and Results
5.2.1 Static Evaluation

The number of field references that can be inlined in a benchmark acts as a
first indicator for the effectiveness of the analysis.
|

60 |- -1

52

00 all field references
10 inlined fields
20 |- .

3 2
0 T T
on-the-go snooker

Testcase

of field references

Figure 21: This figure displays the number of field references existing in
a benchmark compared to the fields that can be inlined. Each inline field
reference counts as field reference, too.

The proportion of field references to references, which can be inlined at least
one time, is depicted in Figure21] In the CDx benchmark only about ~ 4%
of the field references can be inlined while the snooker benchmark has ~ 8%.
This result is reasoned by several aspects. On one side the most field refer-
ences do not hold the final predicate even if a field would fulfill all necessary

49

conditions. An analysis that examines static-fields for the qualification of
being final exists already, the so-called Slot Alias analysis [CSIW14]. An
extension for non-static is "currently not yet implemented in jino” |[CSITW14].
On the other side, objects, which are assigned to such a final reference, are
created before the container object itself. As a consequence the co-allocation
is not possible, too.

It is also interesting how many times jino translates a co-allocation statement
in comparison to stack and heap allocations. The statistic is illustrated in

Figure 22|

150 |- 144 |
wm
=
'% 00 all allocations
g 100 11 | 0 co-allocations
= 10 stack-allocations
3 B co-stack-allocations
4 50 [43 i
27
8 8
0 - 0 2 — 0
I I
on-the-go snooker
Testcase

Figure 22: The graph displays how many times jino translates usual al-
locations, co-allocations, stack allocations and co-allocation that are stack-

allocations too.

A matter of fact is that no stack-allocatable object can be inlined and vice
versa. Such a combination is quite rare because the container object and
inlined object needs to be stack-allocatable. The proportion of co-allocations
is approximately as high as many field references are inlinable.

The code size of both benchmark differs not that far to their corresponding
inline variant (see Table [4)). The Data segment has still the same size while
the BSS segment of the CDx benchmark is increased by 4 Byte. The size of
the Text segment has also increased a bit.

50

’ Benchmark H Text \Data\ BSS H Total size‘

CDx on-the-go || 42071 | 1893 | 983419 || 1027383
normal

CDx on-the-go || 42199 | 1893 | 983423 | 1027515
inline
Snooker 18379 | 493 | 702106 720978
normal
Snooker 18395 | 493 | 702106 720994
inline

Table 4: The Table lists the code size of each benchmark, with and without
inlining, divided by its different data segments. The measurements are done
with the size program of the GNU toolchain.

This result does not surprise in anyway because the analysis removes neither
variables yet nor adds new ones. The additional space required in both Text
segments is caused by the longer function names introduced for inlining.
The additional 4 Byte in the CDx variant which has inlining enabled can be
caused, for instance, by alignment.

5.2.2 Dynamic Evaluation

The gathered information about stack and heap usage are stored in Table [5]
The variants of the CDx benchmark differs in the number of heap and stack
allocations while the Snooker benchmark has merely changed in the number
of heap allocations. In both cases the variant which uses object inlining
has less stack and/or heap allocations because of replacing them through
co-allocations.

It might be a bit surprising that object inlining concerns the amount of stack
allocations. If an object, which is inlinable and stack-allocatable, is allocated
on the stack depends on its corresponding container object. In case the
container object is not stack-allocatable its inlinable objects are not stored
on the stack either and instead inlined on the heap.

Apart from that the requested heap and stack size are nearly the same.
In future work a better heap and stack requirement can be achieved, for
instance, by removing the field reference in the container object and instead
using a fixed offset which would spare out the space for a reference (4 byte
on the TC1796 device). If it works out to inline the object completely, it is
not essential to keep the header of the inlined object anymore with its size of
32bit [Stil2]. Summarized it might be possible to save about 64bit for each

51

inlined object.

Benchmark || Allocations | Requested | Allocations | Requested Co-
on Stack | Stack size on Heap Heap size | allocations
in byte in byte
CDx 13667 166046 12909 293688 -
on-the-go
normal
CDx 13637 165086 12673 294720 266
on-the-go
inline
Snooker 15 180 18313 220512 -
normal
Snooker 15 180 18213 220510 100
inline

Table 5: The Table shows the total requirement of stack and heap size as
well as the number of stack, heap and co-allocations at runtime.

The final measurement refers to the different runtimes (see Table [6).

’ Benchmark H Average Runtime in ns ‘ Differential in ns ‘
CDx normal 27002560
CDx inline 27792904 -790344
Snooker normal 22358254477
Snooker normal 22335398116 22856361

Table 6: The average runtime of each benchmark

The runtime of the CDx benchmark is almost the same. In several runs
it points out that each variant is sometimes faster than the other one. In
contrast the Snooker benchmark is continuously a little bit faster (about
~ 0.1%). This behavior might be reasoned by the fact that the pair of
container and inlined objects are fitting in a cache line or not. In the Snooker
variant the container object has a size of 40 Byte and its both inlined objects
of 12 Bytes. They fit perfectly in a cache line and the access is a bit faster.
On the opposite in the CDx benchmark is the size of the container object,
which is high frequently used, including its three inlined objects 96 Byte
large.

52

Nevertheless the speedup is marginal until now. The effectiveness of the Ob-
ject Inline analysis is highly application-specific as it depends on the number
of final references being used. Combining the Object Inline analysis with an
enhanced version of the Slot-Alias analysis [CSIW14] has the potential to
improve the runtime behavior.

53

6 Conclusion and Future Work

For this thesis an initial version of an object-inlining analysis for KESO has
been described and implemented. Therefore a co-allocation is implemented
which stores the inlinable objects behind the container object in memory.
Conditions defined for this co-allocation are for example:

a) The field references, which point to inlinable object(s), need to be
marked as final. This constraint guarantees that such a field reference
points to the same object during its lifetime.

b) The allocation order between the container and inlined object(s) is
essential. The container object has to be allocated before its inlined
objects.

The realization in KESO’s backend is done by introducing a new object lay-
out. It provides enough space for the container object and its set of inlined
objects. When the container object is translated the compiler allocates the
size of the new layout. Afterwards each inlinable object passes the allocation
procedure and is stored in the container object. The polymorphic aspect has
been solved by using the union construct of C.

In the evaluation it was figured that for two exemplary benchmarks just
about ~ 4 — 8% of the fields can be inlined. This is caused by the lack of
final references. To improve this result it would be helpful to extend the
Slot Alias Analysis [CSIW14] by figuring out for non-static fields if they can
be marked as final either.

Two suggested steps that can be done next to complete the inlining procedure
are:

a) Removing the reference of the container object

The address of each object can be obtained by a global map which
saves the corresponding offset. This would save a field reference for
each inlined object.

b) Completely inline the objects

Instead of keeping the inlined objects alive it might be interesting to
completely merge the inlinable object with its container object. This
procedure would spare out the object header and field reference for
each inlined object. In contrast the new object size is increased during
its whole lifetime.

o4

Both steps could save memory to runtime by erasing object headers and/or
field references. In addition another level of dereferencing can be optimized
out which causes lower runtime costs.

95

7 Appendix

References

[CSTW14]

[Erh11]

[JA00]

[JASJ96]

[KHP+09)

[Lan12]

[MakO6]

IMIR*11]

[OL02]

P.01]

Erhardt C., Kuhnle S., Stilkerich I., and Schroder-Preikschat W.
The final fronier: Coping with immutable data in a jvm. ACM,
October 2014.

Christoph Erhardt. A Control-Flow-Sensitive Analysis and Op-
timization Framework for the KESO Multi-JVM. Diplomar-

beit, Friedrich-Alexander University Erlangen-Nuremberg, March
2011.

Dolby J. and Chien A. An automatic inlining optimization and
its evaluation. ACM, pages 345-357, 2000. In Proceedings of
the ACM SIGPLAN 00 Conference on Programming Language
Design and Implementation.

Dolby J., Chien A., Reddy U. S., and Plevyak J. Icc++ - a c++
dialect for high performance parallel computing. pages 76-95,
March 1996. In Proceedings of the 2nd International Symposium
on Object Technologies for Advanced Software.

Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, Ben
Titzer, and Jan Vitek. CD,: a family of real-time java bench-
marks. pages 41-50, 2009.

Clemens Lang. Improved stack allocation using escape analysis in
the keso multi-jvm (keso/estackalloc). Bachelorarbeit, Friedrich-
Alexander University Erlangen-Nuremberg, October 2012.

Dariusz Makowski. The Impact of Radiation on Electronic Devices
with the Special Consideration of Neutron and Gamma Radiation
Monitoring. Dissertation, Technical University of Lodz, 2006.

Stilkerich M., Thomm I., Kapitza R., Schroder-Preikschat W.,
and Lohmann D. Automated application of fault tolerance mech-
anisms in a component-based system. ACM, September 2011.

Lhotak O. and Hendren L. Run-time evaluation of opportunities
for object inlining in java. ACM, (10), November 2002.

Laud P. Analysis for object inlining in java. 2001.

56

[Rob74]

[Sti12]

[TET79]

[Waw09)]

Tarjan Robert. Depth-first search and linear graph algorithms.
SIAM Journal on Computing 1, pages 146-160, 1974.

Michael Stilkerich. Memory Protection at Option - Application-
Tailored Memory Safety in Safety-Critical Embedded Systems.
PhD thesis, Friedrich-Alexander-Universitat Erlangen-Niirnberg,
2012.

Lengauer T. and Tarjan R. E. A fast algorithm for finding domi-
nators in a flowgraph. ACM, pages 121-141, 1979.

Christian Walter Alois Wawerisch. KFESQO: Konstruktiver Spe-
icherschutz fiir FEingebettete Systeme. PhD thesis, Friedrich-
Alexander University Erlangen-Nuremberg, 2009.

57

	Introduction
	Related Work
	KESO – A Multi-JVM
	Structure of JINO
	Frontend
	Middle End
	Backend
	Summary

	Relevant Analyses Provided by KESO
	Method Inlining
	Dominance Analysis
	Escape Analysis
	Control-Flow-Sensitive Analysis

	Object Inline Analysis
	Layout
	KESO Object Layout
	Object-Inline Layout
	Layout in C Code
	Conclusion

	Candidates for Inlining
	Relevant Methods

	Object size
	Largest Dynamic Type
	Object Size With Union
	Dynamic types

	Cycles in Inline Graph
	Allocation Order
	Translate Allocations
	Combination of Stack Allocation and Object Inlining

	Evaluation
	Benchmarks
	CDx
	Snooker

	Measurements and Results
	Static Evaluation
	Dynamic Evaluation

	Conclusion and Future Work
	Appendix

