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Abstract

KESO is a Java runtime environment for embedded systems that is built on top of an
OSEK operating system. It uses the Java programming language for its applications
and is itself implemented in C.

This thesis evaluates the possibility of implementing KESO’s garbage collection
in Java. Several difficulties had to be overcome: Low-level access to system data
structures had to be provided on Java’s language level and constraints had to be
placed on Java’s object instantiation in the garbage collectors, as no heap memory is
available from within a garbage collector’s code.

KESO’s weavelet mechanism, that allows to execute native statements from Java,
could be adopted for the low-level system access. KESO’s stack allocation feature
could be used to ensure no objects are to allocated on the heap and KESO’s compiler,
JINO, was extended to automatically check this constraint.

Using the above techniques, an implementation of the CoffeeBreak garbage collec-

tor in Java was created that is statically allocated and manages its data structures
via weavelets.

To circumvent the non-idiomatic code of the static CoffeeBreak, KESO’s domain
model was extended to support garbage collectors that can perform allocations on
their own heap. By identifying long- and short-lived objects in the garbage collector,
this heap may be cyclically reset to prevent memory exhaustion. This allows for a
more complete Java feature set in the garbage collector’s own code than available
in related projects.
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Kurzfassung

KESO ist eine Java Laufzeitumgebung für eingebette Systeme, die auf einem OSEK-
Betriebssystem aufbaut. In ihr wird Java für Anwendungsprogramme benutzt, wäh-
rend die Laufzeitumgebung selbst in C implementiert ist.

Diese Arbeit evaluiert die Möglichkeit, KESOs Speicherverwaltung in Java zu im-
plementieren. Mehrere Schwierigkeiten mussten dazu überwunden werden: Zugriff
auf systeminterne Datenstrukturen müssen auf Javas Sprachniveau zur Verfügung
gestellt werden und es gelten Einschränkungen für Javas Objektinstanziierung im
Code der Speicherverwaltung, da dort kein Haldenspeicher verfügbar ist.

KESOs Weavelet-Mechanismus, der es erlaubt, native Instruktionen aus Java-
Programmen heraus aufzurufen, konnte für den Zugriff auf systeminterne Daten-
strukturen verwendet werden. KESOs Stapel-Allokations-Verfahren konnte, gemein-
sam mit einem neu implementieren Überprüfungslauf in KESOs Übersetzer, JINO,
verwendet werden, um Halden-Allokation von Objekten zu vermeiden.

Unter Verwendung der obigen Techniken konnte eine Implementierung des
CoffeeBreak-Speicherverwalters erstellt werden, die selbst statisch allokiert ist und
ihre Datenstrukturen mit Weavelets verwaltet.

Um den nicht-idiomatischen Sprachstil dieser statischen CoffeeBreak-Implemen-
tierung zu vermeiden wurde KESOs Domänenmodell erweitert, um einen Speicher-
verwalter zu ermöglichen der selbst eine Halde für Allokationen besitzt. Durch die
Identifizierung von lang- und kurzlebigen Objekten im Speicherverwalter kann diese
Halde zyklisch zurückgesetzt werden um Speichererschöpfung zu verhindern. Das er-
laubt es, einen größeren Sprachumfang von Java im Quelltext des Speicherverwalters
zu verwenden als dies in verwandten Projekten der Fall ist.
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Chapter 1

Introduction

1.1 Motivation

Embedded systems become more and more widespread in today’s world. From
mobile sensors devices connected to the Internet of Things to embedded controllers
for various systems in cars – many aspects of modern live contain small computers.
Because of the limited functionality they must provide, these microcontrollers are
often tailored specially to the purpose they are used for.

Usually, embedded systems are programmed in low-level programming languages
such as C or even Assembler. Due to their increased use, which is boosted by sinking
prices for devices that at the same time come with higher computing power, new
challenges have arisen in regard to the way embedded systems are programmed.

Multiple tasks should be performed by just one system. While this requirement
is well-known in the realm of larger computers such as desktop- or even server-sized
devices, it is relatively new for embedded devices. Most of these miniature systems
do not use an actual operating system which would provide the means to manage
multiple applications on one processor. As traditional operating systems go, they
need considerable resources themselves – supplying them may not be feasible on
small-scale computers.

From a developers perspective, writing software for embedded systems has been
challenging: Writing in low-level languages such as the ones noted above is error-
prone, as little support to avoid common mistakes at development time is provided
by both the language and accompanying tools. The problems increase when the
applications become more complex.

More modern languages facilitate the creation of large software systems by design.
The Java programming language is such a language. It supports an imperative, object-
oriented programing paradigm and enforces memory- as well as type-safety upon
programs.

1



2 1.1 Motivation

KESO is a Java runtime environment for embedded systems. It runs on top
of an OSEK or AUTOSAR operation system, that provides low-level abstractions.
Applications for KESO are written in Java and then translated into executable code
using ahead-of-time compilation: Java code is compiled by KESO’s own compiler,
JINO, to C. In this step, JINO performs ahead-of-time optimizations and introduces
integrity checks into the generated C code that guarantee Java’s constraints to be
held at runtime. However, not only applications can be written in Java: KESO also
supports writing hardware drivers in Java by providing low-level access to hardware
on Java’s language level.

Nonetheless, many of KESO’s internal system components are still written in C.
The most prominent among them are KESO’s garbage collectors. They benefit from
the easily available low-level hardware access in C. However, their code can neither
be checked by JINO at compile-time nor can runtime checks be introduced.

In this thesis, two of KESO’s memory management techniques – the Restricted

Domain Scope (RDS) allocator and the CoffeeBreak garbage collector – shall be ported
to Java. This shall not only allow type-safety and static checking of the code at
compile-time by JINO, but also increased extensibility by adhering to object-oriented
design in the implementation.

1.2 Overview over KESO

This section is intended to give an overview over key aspects of KESO that will be
important in the context of this thesis. First, the general structure of a KESO system
will be shown. After that, an introduction to KESO’s object model will be given. In
closing, KESO’s compiler, JINO, and its pass model will be presented.

1.2.1 The KESO System

Figure 1.1 shows the architecture of a KESO system. From top to bottom, the
following elements of the system are visible: The domains house the Java applications
of the system, the KESO Runtime Environment forms an abstraction layer on top of
the Microcontroller.

KESO is statically configured. This means that all system objects are known at
compile time. The system is created by parsing a KESO configuration file (.kcl file)
that contains the feature set needed for a certain system. Only features required
here will be included in the final system build. This allows to tailor the system to its
use case and results in small binary sizes – a feature very welcome for embedded
systems.

Java applications also benefit from KESO’s static configuration. Relying on a
closed-world assumption (all aspects of the system are known at compile-time), the
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Figure 1.1 – The architecture of KESO (source: [1]).

applications can be optimized extensively, more drastically than in conventional
Java compilers. However, features that are normally available in standard desktop
JVMs, such as dynamic class loading, are not available.

As visible in Figure 1.1, there are multiple domain objects in a KESO system.
Each domain object contains its own application. KESO is hence called a Multi-JVM
– multiple applications can run within one system.

Domains function as a security mechanism. Each domain manages its own heap
for the application running within it. Applications can contain multiple tasks that are
implemented using Java’s well-known Runnable interface. From an application, it
is not possible to reference objects in the memory area of another domain. This way,
KESO enforces memory safety. However, applications running in different domains
can communicate with each other using the so-called portal service. Using this service,
copies of objects can be passed amongst domains.

As each domain acts as a JVM and contains its own heap, KESO implements
different memory management techniques. Each domain can employ a different
memory management service. Currently, there is one allocation-only memory man-
ager and three garbage collector implementations available in KESO. Whereas the
CoffeeBreak garbage collector (GC), that will be examined closer in this thesis, is a
conventional marking garbage collector, the Idle Round Robin and the fragmentation-

tolerant garbage collector are more suitable for real-time applications.

As visible in the figure, garbage collectors do not run in the context of the domain
whose memory they manage. Instead, the Domain Zero is a domain containing the
privileged Trusted Code Base (TCB) of the garbage collectors. Garbage collection
services within the Domain Zero are written in C instead of Java. This provides
the benefit of easily accessing the underlying structures of the Java objects within
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KESO’s runtime environment. The next section will introduce KESO’s object model
in greater detail.

1.2.2 KESO’s Object System

JINO translates Java classes to C code. This means, that Java’s class structures must
be represented in C structs. To be able to run KESO on embedded systems that
possess only limited system memory, it is crucial to keep the size of the structures
minimal. At the same time, efficient scanning of references that are stored within an
object is necessary to facilitate garbage collection.

C data field

B data field

A data field

object header

A reference field

B reference field

C reference field

data

references

object reference

Figure 1.2 – Structure of an object in KESO [2, p. 84]. The object of class C
inherits from the classes A and B, hence their fields are included in the object
structure.

To achieve the above goals, KESO employs a bi-directional object layout that can
be seen in Figure 1.2. Within KESO, an object reference points to the object header
of an object. Using the bi-directional layout, data and reference fields of the object –
containing fields inherited from parent classes – are laid out in adjacent directions
starting from the object header.

By constructing the object structure in this way, a coherent array of references is
achieved. This enables the garbage collector to treat the references of an object as
an array.

The object header’s composition depends on the hardware KESO was compiled for.
The details of its layout will not be discussed here and are available in [2]. Generally,
it contains the class identifier, the size of an array (if the object is an array) and an
area for memory management information. The latter is used, for example by the
CoffeeBreak garbage collector, to store whether an object has already been scanned
in this run of the GC.
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Within the garbage collectors, it is necessary to determine the number of ref-
erences stored in an object of a given type, as all references must be scanned by
the collector. This number is stored in the so called class store. The class store is a
property of each KESO system that is determined at compile-time, when all classes
in the system are known. Within KESO, the class store is implemented as an array
which can be accessed by using the class identifier of an object as index.

1.2.3 JINO

JINO is KESO’s custom compiler that generates C code suitable for compilation with
standard C compilers from Java class files. It is implemented in Java using a three
stages approach: In the first stage, parsing of both the system configuration and Java
class files into an intermediate representation of the KESO system occurs. After that,
various analysis and optimization passes can be performed on the program. The final
stage emits C code that can then be processed by a C compiler. The indirection over C
code was introduced to avoid writing custom backends for each target architecture:
A C compiler can be obtained for virtually any machine. It can also perform low-level
optimization that is not possible in JINO.

The second step of the above compilation process is configurable: Some opti-
mizations are only performed when the corresponding option was enabled in the
configuration. It is also highly modular. Adding additional analysis or optimization
passes is as easy as implementing and including a Java class – a benefit that will be
exploited in Section 3.1 of this thesis.

JINO also implements KESO’s weavelet mechanism. Weavelets allow arbitrary
Java methods to be replaced by C code. Replacement can occur at the call-side of the
method call or the method body can be replaced. For this purpose, JINO internally
manages a list of possible weavelets – each of them is implemented in a custom
class.

During translation, method signatures are matched against the signatures found
in the weavelet classes. If a custom class implements a replacement for a certain
method, it can emit the appropriate C code. As it also has access to some of the
properties of the intermediate representation used in JINO, this step is not restricted
to reproducing a template. For example, it can be checked whether a parameter
given to a method is actually a constant value, which can be directly included in the
C code of the weavelet instead of accessing it at runtime.

1.3 Summary

This chapter showed the basic system architecture of both KESO and JINO. Key
points that are especially useful for this thesis, such as the bi-directional object layout
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or JINO’s weavelets, were highlighted. In the next chapter, the task of porting some
of KESO’s garbage collectors to Java will be analyzed in greater detail, and the
challenges that arise during this task will be discussed.



Chapter 2

Analysis

This chapter is intended to examine the problem of porting system services of a
runtime environment (RE)to the language the RE itself is written in.

To do so, first of all an overview over existing works in the same area will be given.
As an example, the Jalapeño/Jikes RVM, Singularity OS and Squawk VM projects will
be discussed and their implementation will be presented in closer detail. Common
problems identified by the above projects are also relevant for the implementation
of KESO’s type-safe services in chapter 3.

Secondly, the current implementation of memory management in KESO will be
introduced. The functionality of both the Restricted Domain Scope Allocator and
the CoffeeBreak Garbage Collector will be explained. For both systems, a detailed
summary of data structures that perform low-level data manipulation and serve as
an interface to KESO will be given as these pose a challenge for the implementation
of the services in Java.

In closing, the differences between C and Java will be presented. There are
several distinctions in the feature set of both languages that must be kept in mind to
successfully create a Java implementation of KESO’s existing C code.

2.1 Related Work

Several other systems, including their system services (e.g. garbage collection),
have already been implemented in a higher-level language like Java. This section
is intended to give an overview over those systems and point out similarities and
differences compared to KESO.

First, the Jalapeño/Jikes RVM system by IBM will be examined, the first Java

Virtual Machine (JVM) written in Java. The second project being discussed is Singu-
larity OS by Microsoft, a research operating system written in a dialect of C#. The

7



8 2.1 Related Work

last system presented in this section is the Squawk VM by Sun, a system tailored
especially towards embedded systems.

2.1.1 Jalapeño/Jikes RVM

The Jalapeño project by IBM, which was later continued under the name Jikes RVM,
is a research project to evaluate the feasibility of a JVM written in Java. It is the first
virtual machine written in Java that does not run on top of an already existing JVM,
but uses a bootstrapping mechanism to set up its own runtime environment from an
executable [3].

Being the first JVM written in Java, Jalapeño was also the first project to discover
the difficulties coming with the task. Concerning garbage collection, which this
thesis focuses upon, there are two main difficulties that were encountered by the
developers of Jalapeño:

1. Low-level access is required to investigate system properties like marking
bits in object headers or to access all references stored in an object (public
references as well as private ones).

2. The garbage collector cannot make use of functionality it has to provide. This
means that for example the new keyword is not available in the GC’s own
source code.

To circumvent the 1st problem, Jalapeño implements the so called Magic class.
By using this class, an adapter between high-level Java code and low-level system
manipulation is created: A method call in the Java code is replaced by the compiler
with its actual functionality written in a low-level language like C or even assembler.
While the coarsely grained structure of the Magic class has been criticized [4], as
it does not allow a way to restrict memory access to the subset actually needed by
the garbage collector, similar approaches were also used by the two other projects
presented in the chapter. KESO’s weavelets are a also a implementation of this
concept.

The 2nd problem is solved by not using heap allocation during the running phase
of the GC. Within Jalapeño this means that if a garbage collector needs any storage
for internal data structures, the garbage collector instance is created in an immortal,
uncollected memory region. In case of a copying garbage collector1, that could
potentially move the GC instance, special handling is needed to copy the GC memory
before actually running the collection [5].

To enforce restrictions upon the system’s source code, Jalapeño/Jikes RVM
introduces the concept of “semantic regimes” [4]. Regimes allow the compiler

1A copying garbage collector moves all found objects at the start of the heap. This decreases fragmen-
tation of heap space but does come at the cost of having to copy all objects and update the references
pointing to them.
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to check for forbidden operations in source code areas that need to obey certain
limitations.

Closely tied to the project is the development of MMTk, the Memory Management
Toolkit for and in Java [5]. It was created to replace the monolithic collectors of the
original Jalapeño VM by a system using a more object-oriented design adhering to
modern software engineering principles. For this purpose, object-oriented design
patterns were used for the composition of the garbage collectors and a common
interface to the Jikes RVM used by all their implementations was created.

2.1.2 Singularity OS

Singularity OS is a research operating system created by Microsoft Research with
the goal to create a more dependable system than existing ones. To reach this goal,
Singularity employs logical separation for each process much in the way KESO does
with domains. Singularity separates its components into SIPs (Software Isolated
Processes), closed environments in which the code is executed. Similar to KESO’s
domains, object references may not cross SIP borders and messages may only be
passed using special channels.

Garbage collection in Singularity is implemented in Sing#, a dialect of C# that
was created for the project. The system also has the ability to use different garbage
collection strategies for each SIP within one system. A total of five garbage collectors
has been implemented for Singularity.

To interface with underlying object data structures, the GC code is enhanced with
the use of a Magic class, similar to that found in Jalapeño. This class provides access
to properties normally not known in C#, such as the memory address of an object.
Calls to methods of the magic class are replaced by Singularity’s Bartok compiler
with native code. This is not the only way Singularity uses low-level memory access.
Contrary to Java, there are two modes for programming in C#: The safe mode and
the unsafe mode. Code regions marked as unsafe may use pointers to objects. This
mechanism is also heavily used within Singularity.

Similar to the mechanism implemented in this thesis (see section 3.1), Singular-
ity’s garbage collectors acknowledge the need that some methods may not perform
heap allocations and use a method attribute to mark those methods.

2.1.3 SQUAWK Virtual Machine

The Squawk Virtual Machine is intended for wireless sensor devices. It was developed
by Sun Microsystems. The goal of its development was the creation of a system that
allows easy prototyping of sensor network applications by providing simpler tools
than normally used in embedded systems programming [6].
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Contrary to KESO, the Squawk VM is running on the bare metal without any
underlying operating system. It is tailored to run on the Sun SPOT sensor device,
and features device drivers and a network stack for that platform, both written in
Java. There are two modes for running the Squawk VM: The hosted mode, which
runs on development systems within a conventional JVM, and the on-device mode
for using the VM in the field on its target hardware.

Similar to KESO, Squawk VM provides an isolation mechanism to separate
multiple applications running on one device from each other. However, there is an
actual, interpreting virtual machine running on the device. The on-device VM is
written in Java and converted to C, which in turn is compiled into a binary. This VM
cannot execute standard Java bytecode: A preprocessing step is required to convert
Java classes to Squawk’s custom bytecode, that is optimized for size.

To enhance configurability, the Squawk project implemented a custom preproces-
sor for Java. The preprocessor instructions come in the form of Java comments. This
ensures compatibility with already existing tools and IDEs. Using the preprocessor, it
is possible to inject compile-time constants into the code or conditionally alter which
type of object is being instantiated in a line of code. This mechanism is, for example,
used to choose the garbage collector algorithm in the system setup routine.

Native manipulation of memory is performed by means of the NativeUnsafe class
[7]. The public methods of this class will be replaced by their native implementation
during compilation, a mechanism similar to KESO’s weavelet or the Magic classes
in Jalapeño/Jikes RVM and Singularity OS. However, the NativeUnsafe class also
provides a Java implementation of the methods for use in the hosted mode mentioned
above.

Memory management is implemented in a subset of Java [6]. To obtain increased
performance, its code is not interpreted by the VM on-device. Instead, it is translated
into C code and then compiled. The memory management algorithms in the two
available garbage collectors are not backed by a heap during their execution. The Java
code of the garbage collection can therefore not perform any object instantiations
during runtime. The only new object creations of the GCs are performed in their
constructors. As Squawk VM uses only one heap for the whole system, the objects
created by the garbage collector reside in the permanent address space that is
located at the start of the heap. This part of the memory is reserved for system data,
effectively being static allocation. The restriction to one heap differs from KESO,
where there are multiple heaps for the domains in the system

It is interesting to note that Squawk VM’s memory management implementations
heavily rely on unsafe access to memory, even for their own data structures. This is a
result of the limitations described in the preceding paragraph. The implementation
of the marking stack2 of the Lisp2Collector [7] may serve as an example. Its stack

2For explanation of the purpose of a marking stack, see section 2.2.2.
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implementation is assigned fixed begin and end memory addresses, both of which
are located in the permanent system memory region. Slots on this fixed size memory
area are then subsequently accessed via an index. Object references are then stored
on the marking stack using NativeUnsafe’s methods.

All in all, the Squawk VM provides a comprehensive implementation of a virtual
machine for embedded devices in sensor networks. Its garbage collection, while
implemented in Java, is, however, limited in the way it can provide type-safety on a
language level as it relies on unsafe memory access for its operation.

2.2 Current Implementation of Memory Management

Currently, there are several options for memory management available in KESO.
The simplest implementation, called the RDS allocator and the CoffeeBreak garbage
collector will be examined closer in this thesis. Advanced memory management
techniques, that are especially suitable for the use in real-time systems, are the Idle
Round Robin and a dedicated fragmentation-tolerant garbage collector FragGC. For
the sake of brevity, those two will not be subject to this thesis.

Theoretically, each domain in the KESO system can employ different memory
management strategies. As an example, it is possible to use (for example) a domain
with an RDS allocator and another domain with a Coffeebreak garbage collector.
Each memory manager can store state information (counters, free memory lists and
the like) in a special heap area of embedded in the domain descriptor of the domain
it manages. Also, for each domain there is a fixed-size array that is used to provide
memory for object allocations of tasks executed in the domain (the so called heap

array). Its size may be configured by the user in the system configuration.

Presently, all of the above memory management techniques are implemented in
C. This makes accessing KESO’s system properties very simple. Configuration of the
mode of garbage collection is done via preprocessor usage or conditional inclusion
of source files by JINO.

2.2.1 Restricted Domain Scope Allocator

The RDS allocator is the simplest memory management technique. It provides pseudo-
static allocations without an actual garbage collection technique. The functionality
of the RDS allocator will be discussed in this section.

2.2.1.1 Operation of the RDS Allocator

The Restricted Domain Scope allocator (RDS allocator) is an allocation-only memory
management technique. It does not implement any garbage collection mechanisms
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as allocations are performed statically. Its internal state consists of the heap array, a
new pointer and a heap end pointer. The heap array is being used as a memory source
to satisfy incoming requests for memory. The new pointer references a position
in the heap array. At this position, a new object may be created. The heap end
pointer points to the end of the heap array. It is used as a safety feature: Before
every allocation, the memory request is checked against the heap end pointer. If the
memory request would exceed the boundaries of the memory area managed by the
RDS allocator, system execution is aborted.

Object a

Object b

heap_start

new_ptr

heap_end

(a) General structure of an RDS heap

unused, unreachable memory

used, reachable memory

free memory

new_ptr

new_ptr

(b) Allocation on an RDS heap

Figure 2.1 – Structure of an RDS heap and schematic of an allocation

Figure 2.1a illustrates the general structure of an RDS heap. Several allocations
have already occurred. For that reason, the new pointer has already been advanced
toward the end pointer of the heap array. Figure 2.1b shows how an object allocation
occurs. First, it is checked whether the memory request can be fulfilled. The memory
address the new pointer points to is being used as the address of the newly created
object. The new pointer is then increased by the size the object uses in the heap
array.

In Figure 2.1a, there are currently two objects on the heap that are still reachable
by the user application. Also, there is a memory block in between the objects that is
not filled with an object reachable by a reference in the application. This block has
previously been used by the application. When the object that took up the chunk
of memory went out of scope, the memory block is not reachable any more. This
illustrates the drawback of the RDS allocator: As absolutely no garbage collection
takes place, memory that was once allocated but is now not actively referenced by



2.2 Current Implementation of Memory Management 13

the user application any more may not be reused. The RDS allocator is therefore not
usable for more complex applications that repeatedly allocate and dispose objects at
runtime. In such applications, memory requests could not be fulfilled any more after
a certain amount of time. Albeit seeming very limited, the RDS allocator is suitable
for many small embedded systems that only perform allocations at the start of their
life-time.

On its positive site, it is very simple and provides a predictable allocation strategy
with little to no chance for errors. It is useful especially for simple applications that
allocate objects during their creation and use only this limited set of objects during
their runtime.

2.2.1.2 Native Interface to the System

As seen above, the RDS allocator possesses only a minimal number of data structures.
The only data structures stored in the allocator are the new and the heap end pointers.
These pointers are embedded in the domain data structure which the allocator was
configured for. Access to these pointers must therefore be managed by weavelets
because the domain descriptor is not accessible in Java code. Access to the new
pointer must be read/write whereas the heap end pointer should be read only.

For object creation, three different methods are necessary. First, a raw chunk of
memory must be split from the domain heap array. Secondly, this chunk of memory
has to be written over with zeros. This serves two purposes: Object references stored
in the object are being reset to null, preventing them from pointing to arbitrary
memory locations and potentially breaking memory access restrictions. A second
benefit is that primitive fields in the object structure are initialized to 0, their default
value according to Java language specifications.

In a last step, the raw memory block must be initialized as a valid object. This
requires casting the raw memory block to an object structure and adding the reference
offset (see Section 1.2.2) to the start address of the object. The latter step requires
pointer arithmetics and may therefore not be done by Java. The class identification
number is being stored in the object structure – requiring access to the raw object
structure, as this field is not accessible by Java code.

2.2.2 CoffeeBreak Garbage Collector

2.2.2.1 Operation of the Garbage Collector

The CoffeeBreak garbage collector is a conventional blocking garbage collector
following a mark-and-sweep principle. During its execution, all other tasks in the
system must be paused or blocked. This constraint ensures that all data structures
are in a consistent state and no non-garbage objects will be freed by the CoffeeBreak
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GC. The collection phase of the garbage collector is running in its own task with the
lowest priority within the KESO system. This GC task is logically located within the
so-called Domain Zero (see Section 1.2.1) and is therefore located in the trusted
code base of KESO.

Using the CoffeeBreak garbage collector, allocated but unreferenced objects can
be found. By collecting them, their memory can be reused later to create fresh object
instances. This feature enables applications with a more complex allocation and
deallocation behavior, which are able to run in an endless loop while creating new
objects in each cycle.

Internally, a free memory list is stored to keep track of the available free heap
memory. An example heap of a CoffeeBreak-managed domain is visible in Figure
2.2. As can be seen in the figure, the free list is implemented as a simple linked
list. In addition to a pointer to the next element in the list, each list element also
stores the size of its memory block. It is also apparent that the list elements of the
free memory list are stored in the heap areas they describe. This is done to avoid
managing a dedicated memory area for the free memory list. This is done to avoid
the principle of static allocation within the CoffeeBreak GC – a separate memory
area for the free memory list would mean managing a kind of heap. The last list
element’s next pointer will point to the symbolic address NULL, thus marking the
end of the list.

size 4 size 3 size 2

free_list

NULLnext next next

free memory used memory

Figure 2.2 – Heap of a CoffeeBreak managed domain. The free list is embedded
in the free memory blocks (source: own work).

Operation of the CoffeeBreak garbage collector can roughly be divided into three
steps: Allocation, a marking phase to find referenced objects and a sweep phase to
reconquer memory occupied by objects which are not reachable from application
code.
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Allocation

The allocator method receives all necessary information to create a new object. This
information consists of the size of the object, its class identifier and the reference
offset (see Section 1.2.2 for details about the object layout) of the object. In the
allocation method, the free memory list is being traversed to find a block of memory
that is sufficiently large to contain an object of the needed size. If such a block is
found, the iteration of the list is stopped. Depending on the relation between the
size of the found memory block and the size of the requested memory chunk, there
are now two possible cases:

• If the memory block size is exactly that of the request, the whole memory
block is removed from the list and used for the object.

• If the found memory block is larger than the memory request, it is split in two.
The first part is used for the actual object. The second part is enqueued into
the free memory list as a new list element. However, this may only occur if
the size of the remaining block is large enough to take up the list element
structure needed for the new list entry.

In both cases the memory chunk reserved for the new object will be overwritten by
zero, cast into an object structure and equipped with a class id and a reference offset.
This last step is equal to that described for the RDS allocator in section 2.2.1.1.

Marking Phase

During the marking phase live objects on the heap must be found and their position
must be memorized by the garbage collector. For that purpse, information about
used and free areas of the heap is stored in a bitmap and will be used in the following
sweep step. Each bit in the bitmap contains information whether a certain area of
the heap is in use. To facilitate usage of the bitmap, the heap is logically divided
into so-called slots. All slots are of the same size which is configurable by the user.
Organizing the heap in slots reduces the size of the bitmaps. Instead of using one
bitmap entry for each addressable memory unit (typically the size of a byte), a
bitmap entry now corresponds to a larger block of memory. The bitmap is used in
the sweep phase of the collector to find coherent free memory areas.

Internally, the marking phase uses a working stack to store found objects that
need to be scanned for further object references. Marking continues as long as there
are still objects on the working stack.

At the beginning, there are three sources of objects that form the so-called root

set:

System Objects System objects that are created by JINO ahead-of-time, such as the
instances of the Thread class, can contain reference fields.
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Static Fields References in the static fields of objects are found by JINO at compile-
time. All static reference fields are then placed in a shared array in the domain
descriptor. As the CoffeeBreak GC is aware of the domain descriptor of the
domain it is currently scanning, all objects in the root set can be found by
traversing these arrays and pushing its entries onto the working stack.

Objects on the Stack(optional) Linked stack frames [8] are a technique employed
by KESO to allow scanning local object references in tasks that are blocked.
Stacks of tasks that are not blocked are empty, because such tasks are already
finished: The CoffeeBreak task is running with the lowest priority of the system.

In conventional JVMs, it is difficult to scan a task’s stack for references: At
runtime, object references may not only be stored in local variables bound
to the root set described above, but also in the registers of a processor or on
the stack frame of a method. However, it is impossible to tell for a garbage
collector whether a value found in a register is a primitive value or a reference.
A pessimistic approach would therefore count every primitive value, that could
by its value also be a reference, as a live object on the heap. This reference
will then be added to the set of live objects, and its memory stays reserved.
This could postpone collection of the referenced memory area that does not
contain any actual objects.

KESO is eliminating this source of error by using an always up-to-date list of
references in the current method frame and omitting registers in the reference
scan. As a task can only be garbage collected if it’s either finished or blocking
(caused by a method call to the WaitEvent system call in OSEK), its linked
stack frames are always in a consistent state, meaning that it is guaranteed that
all its references that are not stored in fields are stored in any of the reachable
stack frames.

Upon entry of a method that may in its call hierarchy call WaitEvent, an
empty reference table is being created. Its size corresponds to the number
of object references used in the method’s code. At the beginning, the entries
in the object table are empty. For every new object created in the method,
its entry in the table is replaced with the reference to the object. Now, all
references kept in a method are stored in the table and can be easily traversed
by the garbage collector.

To find references that have been created on different levels of the call hierarchy,
the reference tables of all methods in the hierarchy are linked. The first table
can be found by accessing a special field in the task descriptor. The end of the
list is marked by a magic value instead of a valid pointer. Upon creation of a
new reference table, occurring when entering a method, it must be linked to
its predecessor [2].
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All in all, the linked list of local references allows the garbage collector to
find object references that only exist in method local variables. It eliminates
the need for the garbage collector to scan processor registers and allows to
dependably identify only actual objects.

Sweep Phase

The sweep phase makes use of the information that was stored in the bitmap during
the marking phase. At its start, the free memory list is cleared. The bitmap is then
searched for contiguous portions of the heap marked as free. By design, the use of
a bitmap allows to easily merge multiple neighboring blocks of memory into one
coherent free block without any further effort. When an area of free memory has
been found, a new list item is being created. The list item is then enqueued into the
free list. Once the bitmap has been searched completely, the GC run is finished.

2.2.2.2 Native Interface to the System

Access to the heap array of the domain descriptor by the CoffeeBreak GC is compa-
rable to that of the RDS allocator described in 2.2.1.2. However, the CoffeeBreak
GC makes use of a set of other system resources that need access to internal imple-
mentation details.

Firstly, marking objects relies on storing color information in object structures.
For this purpose, a part of the object header is reserved for usage by the garbage
collector (see Section 1.2.2). When a live object is scanned by the GC, it is marked
with a certain color. This coloring prevents re-scanning object references that have
already been handled in this run of the garbage collector, what could eventually
lead to an endless loop. The current color bit is also contained in the domain’s
heap descriptor. Access to both of these data structures requires access to the object
header – an easy task in C, but it requires a weavelet if it should be performed by
Java code.

Secondly, scanning an object relies on finding all references stored in it. This
requires access to its fields, be they public or private. As a reflection interface is not
available within KESO, this information can only be accessed by directly manipulating
the object header. All references contained within an object are stored subsequently
in its header. Information about the number of references accessible in an object
header must be acquired by querying KESO’s class store. This is easily possible, as
the object’s class identifier can be used as an index into the class store array, as
explained in Section 1.2.2

Lastly, scanning local object references in blocked tasks can only be performed by
accessing task descriptors and traversing the linked stack frames of blocking tasks.
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2.3 Comparison of Language Features: Java vs. C

The focus of this thesis lies on porting system components of KESO from their original
implementation in C to Java. However, the two languages have several differences
which make a direct translation from one language to the other difficult.

This section is intended to give an overview over the features of the two lan-
guages. Where a feature is not directly available in Java, but is needed in KESO’s
implementation of system services, possible workarounds are shown.

2.3.1 General Overview

C has its origins in the development of the UNIX operating system by Kernighan and
Ritchie [9]. Although it is not only useful in that context, C has many features that
make it fit for the purpose of system programming. C is an imperative language that
allows to declare functions and structures, but it offers little of the abstractions such
as object-oriented design present in many modern languages such as Java.

C programs are compiled into machine code. The compilation processors typically
includes a preprocessor run before the actual C compiler run, a mechanism that is
examined closer in the next section.

Java is an imperative, object-oriented language. The goal behind its invention was
to provide a common language for implementing platform-independent applications.
Also, Java should facilitate creating more robust programs by ensuring memory
safety. This means restricting memory access to the bounds of actually created
objects. As a trade-off, low-level access to hardware is normally not desired in Java.
In contrast to C, The language also guarantees type-safety. With this feature, it is
always possible to determine the type of a variable – for example, if a variable is
a reference to an object or a primitive value. This feature allows the creation of
automatic garbage collection that frees memory areas not needed by objects.

A Java program is normally shipped in the form of a standardized byte code file.
The byte code is then being executed by a Java Virtual Machine (JVM), which is the
only part of the system that has to be ported to new machines. In KESO, Java is
translated to C code using JINO, which can in turn be compiled to a binary suitable
for execution on a machine.

2.3.2 Preprocessor Usage

The C compilation process puts a preprocessor run before the actual compilation
in which the C code is parsed and transformed. The preprocessor itself does not
parse the C source code. Instead, it performs basic text manipulation: Files can



2.3 Comparison of Language Features: Java vs. C 19

be included, symbolic value replacement is possible and source code lines may be
omitted or included based on conditions.

1 # include " header .h"
2

3 # define NUM_ENTRIES 42
4

5 int main(int argc , char ** argv) {
6 #ifdef SYSTEM_HAS_PRINTF
7 printf ("Test value: %d\n", NUM_ENTRIES );
8 #endif
9 return 0;

10 }

Listing 2.1 – Example of preprocessor usage in C.

Some of the features of the preprocessor are shown in listing 2.1. These features
are the following ones:

File Import In line 1, a header file is included into the current file. This step places
the content of the header file at the place of the #include statement. It can
for example be used to import variable of function declarations.

Text Replacement Line 3 shows the use of symbolic constants: All occurrences
of NUM_ENTRIES will be replaced by the value 42. This step may also
include macros. Using macros, the preprocessor will then handle inserting
parameters that can be passed to the macro call into the replacement string.

Conditional Compilation This feature of the preprocessor is shown in the lines 6
to 8 of the listing. Line 7 will only be included in the preprocessor output if
the value SYSTEM_HAS_PRINTF has previously been defined.

Especially the latter feature is often used in KESO’s source code. Depending
on the configuration options which were enabled in the system configuration, or
compile-time optimization by JINO, features may be available or disabled in the
final system that consists of a set of system components and is running on the actual
hardware. For example, systems that do not make use of arrays of objects do not
have to include the definitions needed for such data structures. This means, that a
garbage collector such as the CoffeeBreak GC does not have to include the ability to
handle arrays of objects – the necessary part of the code can thus be omitted. This is
done via preprocessor conditions.

Similarly, preprocessor constants are used to communicate the values of constants
determined by JINO during compilation to the final system. During the coding phase,
JINO emits preprocessor statements, e.g. for the number of tasks in the system, into
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the appropriate header files. Those files can then be included where the information
is needed.

Contrary to C, Java does not include a preprocessor per default. Instead of
including symbolic constants and portions of code before the actual compilation
step, object-oriented techniques are employed. This is due to the fact that the
preprocessing is performed outside of the normal language scope, a frequent reason
for criticism. In the context of object-oriented programming, basic preprocessor
features like including constants by text replacement hurt the principle of data
encapsulation – all data should be found in the object hierarchy and not come from
outside of it. Configuration of the system should also rather happen by methods
such as dependency injection instead of conditionally including the needed parts of
code. With dependency injection, objects are created dynamically at runtime and
passed to their places of use via references. Having to rely on object instantiations
does impair the applicability for system services that may require a static allocation
scheme.

However, some features in system programming may only be implementable by
using a preprocessor. The lack of a preprocessor in Java for exactly that purpose has
therefore been noted by the Jalapeño project in [3]. There are Java projects where
a custom preprocessor was implemented. One example would be the Squawk VM
presented in section 2.1.3. For KESO, no such preprocessor was deemed necessary, as
its system interface is mostly written in C. The C code can be emitted conditionally
by JINO or the original C preprocessor can be used.

Relying on the above methods means that KESO does not adhere to the principle
of data encapsulation on its system level. However, on the application level, where
the programmer expects to use pure Java, data encapsulation is provided, with the
only exception of side-effects introduced by weavelets. As weavelets should be used
sparingly, and are only necessary in use-cases not intended by Java (such as the one
in this thesis), this is a minor impact.

2.3.3 Memory Management and Usage

As C has its origin in system programming, it allows very fine-grained control over
its memory usage behavior. The programmer can decide whether to place a date on
the stack, the heap or – in the case of global variables – in the data segment of the
program.

Allocating heap memory in C is traditionally implemented using library functions
such as malloc and free. Thus, the programmer has full control over the memory
usage if their program. They can also explicitly create a pointer to arbitrary memory
addresses. As a consequence, C code can possibly be written without having a
dedicated heap area where new objects can be created. The way current GCs are
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implemented in KESO is exemplary for this way of programming – all objects in the
garbage collectors are either statically allocated or exist temporarily on the stack
frame of their method hierarchy.

As noted in Section 2.1 during the discussion of Java-based memory management
in other projects, Java heavily relies on an existing memory management technique
for its implementation, as it is one requirement for a full-featured JVM. New instances
of objects are typically created on the heap, but modern JVM implementations
can allocate objects on the stack. KESO’s mechanism for stack allocations will be
examined in Section 3.1. There are no keywords for deliberately deleting an object
that goes out of scope and will not be needed any more. This is done to prevent
dangling pointers, object references that point to memory areas where an object has
previously existed, but was deleted. The reference would then point to memory
space that does not belong to an object, hurting Java’s memory model.

A full-featured Java implementation therefore always requires a working garbage
collection mechanism. Where no such mechanism is available, only a subset of Java
can be used. This subset needs to be restricted to either abstain completely from
object instantiations by forbidding the use of the new keyword or ensuring that only
allocations that can be performed on the stack are allowed. The latter solution will
be enforced by the implementation presented in this thesis in Section 3.1.

This subset can either completely forbid heap allocations – this is the way memory
management is implemented in existing systems. Within KESO, objects may also be
allocated on the heap.

However, this restriction renders large parts of the standard Java class library
unusable. Data structures like the working stack implementation of the CoffeeBreak
garbage collector need to store immortal data on the heap. It is also not possible to
use methods that internally create an object and return it to their caller. This is, for
example, done in the Integer.toInt() method of Java’s standard class library.

2.3.4 Pointers and Direct Memory Access

As noted above, C’s intended use case was the programming of operating systems.
Hence, it makes direct memory access available to the programmer: With the use of
pointers, memory addresses may be referenced, read from and written to. Pointer
arithmetics is also available. This allows to write efficient low-level programs as
only a minimum of abstraction is available between the higher-level language and
the bare machine.

Java does not have the concept of a pointer to arbitrary memory addresses
that can be manipulated manually by the programmer. At the time of its creation,
Java was primarily intended for application programming and thus did not have
the need to directly interfere with hardware devices. Additionally, pointers are a
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notorious source of errors: Incorrect use may accidentally alter memory locations,
thereby leading to data corruption or damage to the runtime environment. Java’s
programming model makes use of references to objects. A reference may either
be invalid (null) or point to an object. Consequently, Java ensures memory safety.
Memory safety is the guarantee that references may not point to invalid addresses
such as an out-of-bounds access of an array at an invalid index or addresses of objects
that are now deallocated [10].

One goal of KESO was promoting the use of a type-safe language for as many
system components as possible to exploit features such as static analysis of . This
created the need of directly accessing hardware features of the processors the system
would run on: Hardware drivers should be written in Java. For this purpose, there
are two mechanisms which break the boundaries of Java: Weavelets and memory-
mapped objects.

Weavelets, as shown in Section 1.2.3, allow to call snippets of C code from a Java
program. Therefore, they may be used to access and manipulate memory contents
hidden on Java’s language level. This topic will be discussed further in chapter 3.

Memory mapped objects allow to map certain memory addresses to Java objects.
The memory address to map is statically configured in the Java source file. This
mechanism is useful to access ports available in micro controllers. With memory
mapped objects, device drivers may be entirely implemented in Java. An example of
this feature, and a discussion whether it may be used for KESO’s system services,
can be found in section 3.2.

2.4 Summary

This chapter provided an overview over existing projects using type-safe garbage
collector implementations in high-level programming languages. Among the prob-
lems commonly encountered by these projects are the lack of low-level memory
manipulation and the need to abstain from using memory management itself in the
Java code of the aforementioned implementations.

Two of the memory management tools provided by KESO – the RDS Allocator and
the CoffeeBreak GC – were examined closely. Attention was paid not only to their
functionality, but also to their interface to KESO’s internal data structures. These
data structures must be handled with care, as there normally is no representation
for them on Java’s language level.

In closing, a comparison between Java and C was performed. The two languages
differ not only in their language paradigm – an imperative, type-unsafe and an
object-oriented, type-safe language – but also in their targeted use cases. Where
C was originally intended as a system programming language running on the bare
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metal, Java aims at developing applications running in a managed environment.
This is problematic because it consequently – while bringing additional benefits –
lacks some features found in C. Among those features are some like memory pointers
that are critical for the implementation of a heap management strategy.

Solutions to the above problems that were developed during the implementation
of KESO’s garbage collectors will be suggested in the next chapter.





Chapter 3

Implementation

This chapter presents the implementation of type-safe garbage collection services
that was created in the course of this thesis. The first section shows how stack-
allocation may be enforced by JINO upon garbage collectors that must not perform
allocations on a heap. After a discussion of the possibility of using KESO’s memory-
mapped objects in the garbage collectors, the last two sections present the static
implementations of both the RDS allocator and the CoffeeBreak GC and in closing
the dynamic CoffeeBreak GC.

3.1 Restriction to Stack Allocation

As seen in the previous chapter, allocation of objects on the heap is not feasible for
garbage collection services that do not have a heap. This section shows how stack
allocation can be enforced in KESO at compile-time and shows additional benefits
for systems using the RDS allocator.

3.1.1 Motivation

As seen in the language comparison in section 2.3, many features of Java rely on
allocating objects on the heap. This makes reimplementing the operation of system
services that were originally written in C difficult.

All variables used by garbage collection algorithms implemented in C are either
method-local or allocated ahead of time in the data section of the program. The
only exception is made by the free memory list of the CoffeeBreak GC: It is placed
within the free memory areas of the domain heap it manages.

25
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3.1.2 Java Annotations in JINO

The Java Virtual Machine Specifications [11] define so-called annotations. An-
notations allow the programmer to enrich the program code with non-functional
information. Annotations can be used either by the JVM or accessed by the program
via reflection. An example of an annotation that is bound to a method can be found
in listing 3.1. Here, the method someMethod has been equipped with the annotation
SomeAnnotation. New annotations – like the annotation SomeAnnotation – are
defined as Java classes.

1 @SomeAnnotation
2 public void someMethod (int arg) {
3 // ...
4 }

Listing 3.1 – Example usage of method annotations. The annotation

SomeAnnotation has been added to the method.

According to the specification, annotations are stored in the byte code of a Java
program. They are contained in the attributes section of classes, fields or methods.
There are two categories of annotations: runtime invisible and runtime visible ones.
Runtime invisible annotations are intended to be used by the JVM. Runtime visible
annotations can be accessed using Java’s reflection interface. Each annotation can
obtain additional parameters. These are stored as a list of key value pairs in the byte
code of the annotation.

For checking the allocations performed in statically executed garbage collector
code, JINO was expanded to support a limited subset of annotations. Parsing method
annotations has been implemented into the MethodData parser. As JINO is an ahead-
of-time compiler – and a reflection interface is not available in the KESO system
– only RuntimeInvisibleAnnotations can be parsed. If any other annotation
type is encountered while parsing of Java class files, a message is printed and the
corresponding section of the Java byte code will be skipped.

For the limited support needed in JINO, annotations do not need to support
parameters. Any encountered parameters to annotations will hence be discarded
in the parsing process. This further facilitates storing the annotation information,
as omitting parameters to annotations obliterates the need to actually instantiate
the class defining the annotation. Therefore, all annotations bound to a method
definition will be stored as a list of class names in the compiler’s internal method
representation.

3.1.3 Compiler Checks

JINO should enforce two constraints on methods that do not allow heap allocation:
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1. Methods that were marked as stack-allocation-only should be able to exclusively
call methods to which the same restriction applies.

2. During the coding phase, JINO decides whether an object creation should
create an object on the stack or perform a heap allocation. When a method is
marked as stack-allocation-only, any attempt to create a heap allocation for an
object instantiation must be prevented here.

To make the programmer’s intent known to JINO, methods that require to be
run in a static context must be marked. This is achieved by creating a custom
annotation named @NoHeapAllocation that can be attached to methods. Usage of
this technique is demonstrated in Listing 3.2, where the method restrictedMethod
should not perform any heap allocations.

The first goal is then implemented as an additional compiler pass called Forced-
StackAllocationAnalysis. For every method marked with the @NoHeapAllocation
annotation, all callees are found and checked for the same annotation. If a callee is
not flagged correctly, an error is thrown to inform the programmer and translation
is aborted.

Obviously, this pass requires knowledge about all callees of a given method and
benefits from KESO’s closed-world assumption – no dynamic class loading at run
time is possible. The information can be obtained by querying the call graph of the
application, where all possible method calls are analyzed. Its construction has already
been implemented in JINO and its creation is required in the pass configuration of
the ForcedStackAllocation pass.

The second goal is implemented by inserting additional checks in JINO’s coding
phase. Here, the decision whether an object will be allocated on the stack or on the
heap is made. This decision relies on several parameters like the size of the object
or its escape state.

The escape state describes whether an object leaves the scope of its creation.
This information is created during the EscapeAnalysis run of JINO that determines
where an object must be created. In JINO, there are three different escape states [1,
p. 19]:

1 @NoHeapAllocation
2 public int restrictedMethod (B input) {
3 A aInstance = new A(input);
4 return aInstance . doStuff ();
5 }

Listing 3.2 – Method restrictedMethod must allocate the local object

aInstance on its stack.



28 3.1 Restriction to Stack Allocation

Local The object is only used locally and does not escape the scope boundaries of
its creating method.

Method The object escapes its creating method but not its thread.

Global The object also escapes its thread.

Concerning stack allocation, only objects that have an escape state of local may
be created on the stack. An example can be seen in Listing 3.2. Here, the object
aInstance is not stored in a class variable or used as a return value. It thus has an
escape state of local, allowing the object aInstance to be created on the method’s
stack.

Correct enforcement of stack allocation therefore also relies on escape information
for the application being created. The additional compiler pass introduced above
therefore depends on the EscapeAnalysis pass. As noted earlier, up to now JINO
decides the mode of the allocation (heap or stack) in its coding phase. The decision
does not only depend on the escape state but also on other factors such as aspects of
the configuration or the object’s size. The object may either be too large to fit on the
stack or its size may be dynamic.

This behavior could not be changed fundamentally. Instead, an error message is
now given by JINO at compile-time if an object can only be allocated on the heap
but this operation is forbidden in its scope. The programmer must then manually
circumvent the source of the problem.

3.1.4 Additional Benefit for Systems Using the RDS Allocator

Besides its use in implementing Java code to be executed in an environment without
a heap, there is yet another benefit of automatically checking for heap allocations
using method annotations. As noted in section 2.2.1.1, using an RDS allocator forces
the programmer to initialize all used Java objects at the start of the application.
After that, no heap allocations should take place to prevent memory exhaustion. The
program is therefore divided into two parts: initialization and execution.

Initialization methods can be left unchanged, and all heap allocations can be
performed within them as usual. However, it is possible to mark the execution
methods of the program with the @NoHeapAllocations annotation. Now, JINO will
automatically find unwanted heap allocations and alert the programmer if such are
found. That way, the program can be statically checked and programming faults
that would lead to failure during runtime can be prevented.
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3.2 Implementation Using KESO’s Memory Mapped

Objects

3.2.1 General Overview

As KESO’s target architecture are embedded systems, it must provide a way of
interacting with its environment. On small-scale systems, full-featured device drivers
are often not available or needed. To control peripheral devices, the out- and input
pins of the micro controller are mapped into the address space.

1 package atmega128 ;
2 import keso.core .*;
3

4 public class PortA implements MemoryMappedObject {
5 // PortA consists of three 8-bit registers ( unsigned )
6 public MT_U8 PINA; // address 0x39
7 public MT_U8 DDRA; // address 0x3a
8 public MT_U8 PORTA; // address 0x3b
9

10 // create a mapping of this class at base address 0x39
11 static PortA regs = ( PortA ) &

MemoryService . mapStaticDeviceMemory (0x39 , &
" atmega128 /PortA ");

12

13 // configures one port PIN as output PIN
14 public void setOutput (byte pinNumber ) {
15 DDRA.or(1 << pinNumber );
16 }
17 // the class can contain more mthods and also regular (not &

mapped ) fields
18 }

Listing 3.3 – Example usage of memory-mapped objects as a device

driver [12].

Listing 3.3 shows the use of memory-mapped objects in KESO. Three 8-bit
registers are made accessible by Java code in the lines 6 to 8. Special classes,
identified by the prefix MT_, are used to denote memory types. To set up the
memory mapping, a system service must be called (line 11). The objects are then
accessed using ordinary Java methods (line 15). In the example it can be seen that
memory-mapped objects can make use of Java’s visibility modifiers. An elegant
object-oriented design of driver classes that makes use of information hiding is
therefore possible.
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3.2.2 Evaluation of Memory-Mapped Objects for Low-level Ac-
cess in Garbage Collectors

At first glance, memory-mapped objects seem well-suited for the purpose of imple-
menting KESO’s garbage collection in Java. Internal structures such as the domain
descriptors could be mapped to Java objects. This way, for example the root set of a
domain could be conveniently accessed by the garbage collector.

By implementing additional memory types for pointers, a Java interface for this
low-level construct could be provided. It would also be possible to execute sanity
checks when accessing pointers and thereby enforce some kind of access restrictions.

However, there are two major drawbacks that render memory-mapped objects
unusable for garbage collectors:

1. Memory-mapped objects are mapped to static addresses (see line 11 of Listing
3.3).

2. The layout of memory mapped objects is fixed.

The first item especially concerns the usage of memory-mapped objects for data
structures that can be placed at arbitrary positions in the systems main memory. It
would be possible to adopt the MemoryService’s functionality so that the mapping
to structures such as the domain descriptors would work, as the position of these
descriptors is known to the linker. However, the access to objects that are placed
at a variable position in the memory is not possible that way. The only way of
accessing such structures, for example the references in an object, is using the
weavelet mechanism.

Concerning the second problem, the difficulty arises from the way internal data
structures of the runtime environment are constructed in KESO. For example, the
layout of the domain descriptor C struct is created based on the configuration
options chosen by the user for this system build at compile-time by JINO. This means
that the number of fields in the descriptor varies. If a memory mapped object with a
given data layout would be mapped onto a domain descriptor that had been given
another data layout by JINO, the system would not work correctly or not at all.

To make matters even worse, error checking during runtime would come with
high costs and is therefore not reasonable. Therefore, crashes or other unpredictable
behavior caused by the mismatched data could occur.

Especially the second problem makes KESO’s memory-mapped object mechanism
unusable in garbage collectors. The impulse to use memory-mapped objects was
therefore discarded and KESO’s weavelet technology was adopted to provide access
to low-level language constructs. The weavelet mechanism allows to access data
at arbitrary memory locations and is independent of the structure of the domain
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descriptors, as the elements of the structure can be accessed by their name and not
their position.

3.3 Static Implementation

As noted before, implementations of memory management in Java must not rely
on the memory management itself. Previous projects like the ones in presented in
section 2.1 therefore abstained from using Java’s object allocation.

In this section, implementations of the RDS allocator as well as the CoffeeBreak
garbage collector that were created in the context of this thesis will be presented.
Both do not make use of Java’s dynamic heap management and are hence called
static implementations.

With this task come certain problems concerning the storage of program data
that must be available over the whole program runtime and must survive the scope
of its creation and the usage of the Java’s standard class library. These problems will
be discussed and possible solutions will be presented.

3.3.1 Restricted Domain Scope Allocator

This section explains the implementation of the static RDS allocator that was per-
formed for this thesis. Both the compiler-side changes and the system-side imple-
mentation are shown here.

3.3.1.1 Compiler-Side Implementation

During the compilation process of KESO, parameters for its system components are
read from the configuration file. To store this information as well as additional data
during the compilation, an intermediate representation for parts of the system is
needed. In JINO, each heap management mechanism is represented by its own
intermediate representation class. At compile time, this class will be instantiated
within JINO, equipped with values from the configuration and computed information
and emit the code needed in KESO.

1 Heap = UserDefinedDomainScope {
2 HeapSize = 4096;
3 ClassFile = " javards / RDSHeap ";
4 AllocMethod = " keso_rds_alloc (III)Ljava/lang/ Object ;";
5 }

Listing 3.4 – Configuration of the Java RDS allocator within a domain

configuration section.
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For the Java implementation of the RDS allocator, a custom heap class called
IMHeapUserDefinedDomainScope with a custom system configuration entry was
created. A sample entry may be seen in listing 3.4. It is apparent that three configu-
ration values are needed:

HeapSize The size of the heap in bytes. It is needed to create a heap array of the
correct size in the KESO system.

ClassFile The class file of the implementation of the RDS heap.

AllocMethod The method within the class that handles allocations. Note that the
signature of the method must be given explicitly.

It may seem needless to write the exact method signature of the allocation method
into the configuration file. However, this is needed to ensure correct compilation of
the system.

During the compilation process, various optimizations are applied to JINO’s
internal program representation. Some of these optimizations include the removal
of dead code. In normal use – when JINO is just translating a Java application – all
classes needed by the application are deduced from the applications main class. All
classes and methods required by the application are determined by examining call
and reachability relations from the main class.

When translating the Java Restricted Domain Scope allocator, the class of the
allocator is not reachable by direct calls from the application’s source code. Instead,
it is indirectly needed via new calls. This relation is not known to JINO. Hence,
it must be ensured that the Java RDS code is not optimized out by JINO. To do
so, the necessary classes are specified in the configuration and made known to the
reachability analysis.

There are three places within JINO where special care must be taken to keep
the classes of a Java heap in the class store. The first is the JavaDomain class,
which must manually require the files needed for its heap implementation. The
second is the CallGraphAnalysis class, which must be made aware of the classes
belonging to the heap implementation it is currently optimizing. The last is the
ReachabilityAnalysis component of JINO. Heap methods of a Java heap must be
added to its root set, as they are not reachable for the program by direct calls.

3.3.1.2 System Implementation

The implementation follows the general functionality presented in Section 2.2.1.1.
To perform memory manipulation, and access domain descriptor fields, the weavelet
Domain_RDS was created. Besides accessing the domain descriptor, two larger
methods are managed by the weavelet: Allocating a new object and setting the class
identifier for the object.
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Two methods were necessary that do not belong to the Domain_RDS weavelet:
Overwriting the new object’s memory with zero and interfacing with KESO’s error
message output, for printing out a message in case the heap memory is exhausted.
Those two methods were created in the Marshal weavelet.

Normally, applications within KESO may use standard Java IO mechanisms. Given
the restriction that no heap allocations may occur, this is not possible any more.
Java’s implementation of IO streams internally manages a buffer that is located on
the heap, as it may be increased in size during run time. Consequently, the Marshal
weavelet implements adapter methods for KESO’s normal output primitive as well
as the error handling function.

3.3.2 CoffeeBreak Garbage Collector

This section is intended to show the implementation of the CoffeeBreak garbage
collector that was created with the restriction of not allocating objects on the heap.
After an overview over the structure of the component, the usage of weavelets for
storing data structures of the garbage collector will be explained in greater detail.

3.3.2.1 Overview

The CoffeeBreak garbage collector is more complex than the RDS allocator presented
in the previous section. This is due to the fact that the CoffeeBreak garbage collector
must store an internal state that goes beyond of the few fields of the RDS allocator
that can be embedded into domain descriptors: The free list of the garbage collector,
the working stack for the marking phase and the bitmap for marking free heap areas
must all be stored within the CoffeeBreak GC.

The structure of the static CoffeeBreak garbage collector as it was implemented
for this thesis can be seen in Figure 3.1. The class JavaCoffeeBreak is the main
class of the garbage collector. It contains two methods, one for allocating a new
object and one for starting the actual garbage collection. These methods redirect to
the actual implementation and serve as an interface to KESO.

Both tasks of the garbage collector – allocation and collection – have been imple-
mented in their own classes: CoffeeBreakCollector or CoffeeBreakAllocator. All
three of the mentioned garbage collector classes are static. As no new object alloca-
tions are allowed in the garbage collector, its classes also may not be instantiated.

At a quick glance, it may seem possible to store, for example, the bitmap of
the garbage collector in class fields. However, class fields are stored within the
domain descriptor in KESO. This way, class field values do not hurt the principle,
that references may not be shared between domains: Each domain has its own set of
class variables. Concerning the garbage collector that is running within the TCB of
the Domain Zero, where no domain descriptor is available that could contain class
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Figure 3.1 – Class structure of the static CoffeeBreak GC. Classes implemented
using weavelets are marked with «weavelet».

fields, it is impossible to use class variables. The Domain Zero has no actual domain
descriptor that could contain class fields, as there was no need to provide a domain
descriptor for the native C implementation of the domain’s tasks.

This means that the garbage collector classes cannot manage state information
needed during their execution. All this information must therefore be stored in
memory accessed through weavelets. The usage of weavelets for storing the GC’s
state will be discussed in the next section.

3.3.2.2 Usage of Weavelets/KESO Native Interface (KNI)

As already suggested in Section 1.2.3, weavelets are a mechanism that enables
JINO to substitute method bodies or even method calls in Java code with C code at
compile time. This section shows that weavelets were used in the static CoffeeBreak
implementation in two ways: Providing a way to store CoffeeBreak’s internal data
structures and accessing system properties such as domain descriptors and object
headers.

The existing native implementation of the garbage collector stores its data pri-
marily in a bitmap and in the free list that is embedded in the free memory chunks
of the heap (see 2.2.2). The bitmap is a fixed size array declared in the CoffeeBreak
source file.

The Java implementation needs to provide a similar bitmap, but it cannot declare
such a data structure due to its memory usage restrictions – an array must not be
created on the heap and it is too large in size to create it on a method stack. For this



3.3 Static Implementation 35

reason, the actual data of the CoffeeBitmap class visible in figure 3.1 is stored in a
native C array that is accessed via weavelets.

The CoffeeBitmap provides methods to set the status of contiguous blocks of
slots to either free or used. The logic of mapping slots to entries in the bitmap
was implemented purely in Java. Only a minimal set of methods that contain
no algorithmic code and are restricted to performing access to the bitmap are
implemented in C. For this purpose, KESO’s weavelet mechanism was extended so
that it can emit static C arrays into the header files generated for a weavelet class, a
functionality that was not possible previously for weavelets.

The CoffeeDomain weavelet provides access to data structures stored in the
domain descriptor and methods that allow for example manipulating an object’s
class identifier. Its functionality is similiar to the weavelet used in the RDS allocator
in the previous section of this thesis.

Iterating the free memory list of the garbage collector was also implemented
using weavelets. The already existing list element structure written in C was reused
for the Java implementation. This allows to keep the benefit of managing the list
elements within the free heap blocks. However, implementing the iteration over the
list proved to be a challenge, as pointer manipulation is required.

«weavelet»

CoffeeListElement

+ CoffeeListElement(CoffeeDomain)

+ next()

+ atEnd() : boolean

+ clearList()
...

Figure 3.2 – CoffeeListElement as an iterator. Only methods necessary for
iterating over the list are shown.

For this reason, the CoffeeListElement class was implemented following the
pattern normally used for an iterator in Java. The methods of the class can be
seen in Figure 3.2. Traversal of the list can be controlled via the methods next()
and atEnd(). Per default, constructing a instance of a CoffeeListElement element
sets its internal list element pointer to that of the current domain – that is why a
CoffeeDomain object must be passed to the constructor. The CoffeeListElement
class hides the internal “magic” occurring when traversing the free memory list.
The pointer to the current list element is stored in a field in the object header. This
field is injected in the weavelet translation process by JINO and is therefore not
visible in the Java class – only the weavelet’s C code can access it. Contrary to the
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C implementation, the Java CoffeeBreak never has to perform any of the ongoing
pointer manipulations and interacts with the CoffeeBreak list using a well-defined
interface.

The CoffeeDomain and CoffeeListElement both store internal state. For that
reason, they must actually be instantiated. The Java CoffeeBreak therefore makes
use of KESO’s stack allocation facility: Instances of the objects are created at the top
of the call hierarchy and then passed down to the leaf nodes.

3.4 Dynamic Implementation

The previous section introduced both an RDS allocator and a CoffeeBreak garbage
collector written in Java. Where the RDS allocator was fairly easy to port, as its
complexity is limited, the CoffeeBreak Java implementation is very restricted: Much
of the functionality is still implemented as weavelet and therefore actually written
in C. This problem is mainly caused by the lack of the new operator in Java within
the GC’s code.

It is therefore desirable to implement the CoffeeBreak GC as a Java application
that behaves more idiomatic for the programmer. Weavelets cannot be replaced for
accessing KESO’s system interface, but they should not be necessary for the internal
data structures of the garbage collector.

This section introduces an implementation that removes the restriction to the
object of allocations within the CoffeeBreak garbage collector at least for the mark-
and-sweep phase. To do so, KESO’s Domain Zero concept is first expanded: By
introducing an actual Java Domain for trusted code base instead of treating the
Domain Zero as a concept that only exists at compile time in JINO, static fields
become usable. This Java Domain Zero will then be equipped with a heap using an
RDS allocator.

New object instances of the CoffeeBreak GC can be created on this heap. Resetting
this heap cyclically will allow the CoffeeBreak collector to allocate permanent as
well as temporary Java objects. Because this implementation does not require the
GC’s data structures like the working stack or the bitmap to be defined statically in
the binary of the system, it shall be called dynamic implementation.

3.4.1 Introducing a Java Domain Zero

Up to now, the Domain Zero in KESO’s system architecture, as shown in Section
1.2.1, was a purely theoretical concept: No actual domain descriptor was emitted
into the domain configuration file by JINO, as the garbage collector implementations
written in C declared their own data structures in their source code and needed no
domain descriptor to store them.
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To implement a full-featured garbage collector in Java, the Domain Zero must
support all features of a normal Java Domain: Class variables and a heap need to be
available. However, compatibility with existing code that runs statically in a Native
Domain must be kept.

For this reason, JINO’s representation of the Domain Zero was remodeled to
support a hybrid approach. The actual Domain Zero representation serves as a
wrapper and contains both a Native Domain and a Java Domain. The implementation
of the Domain Zero can be seen in figure 3.3.

*

DomainZero

+ createJavaTask(name, class, method) : JavaTask

+ createNativeTask(name) : NativeTask

JavaDomainZero

DomainZeroJavaTask

NativeDomainZero

javaDomainZero nativeDomainZero

Figure 3.3 – The new Domain Zero implementation hides two actual domain
structures – one for native tasks, one for Java tasks.

To add a task that should be running in the privileged TCB of the Domain Zero,
one must use the create. . .() methods provided by the class DomainZero. This
ensures that the domain descriptors will only be added to the system if the domain is
actually needed. As a domain descriptor for Java domains is quite large (it contains a
heap array), this saves space for system configurations that do not make use of system
services in Java. Also, within JINO, the domain object for the Java Domain Zero must
be treated differently from ordinary Java domains: Where normal Java domains are
being added to the sets of application domains, system domains and Java domains,
the Java Domain Zero must only be contained in the sets of system domains and Java
domains. The latter step prevents JINO from performing reachability analysis on the
GC tasks. Reachability analysis determines which system objects and code belong to
which domain. As the garbage collector runs “outside” of the normal system, and



38 3.4 Dynamic Implementation

especially the allocation method is never explicitly called, it must be made sure that
its code is not removed by JINO.

Having the GC task created by a factory method also enforces correct priority
settings. The priority of the task must always be the lowest priority, so that it can
only run when all other tasks are blocked (see Section 2.2.2).

One problem that arose during the creation of the JavaDomainZero was a faulty
initialization of the domain’s data structures. This is due to the fact that JINO emits
a sequence of initialization operations for all domain descriptors in the order the
domains were added to the system configuration. As the intermediate representation
of the Java Domain Zero is added late in the system, it would be initialized after all
other domains – these domains however require the CoffeeBreak GC to be set up to
handle their allocation requests.

The problem was solved by treating the initialization of the Java Domain Zero
as privileged and adding it before any other domain’s initialization in the system.

3.4.2 Separation of Allocation from Collection

This section describes how the allocation method of the CoffeeBreak garbage collector
does not need to create new object instances for the CoffeeBreak collector and
therefore enables usage of the memory management model described in the next
section. For increased clarity of writing, the term allocation shall refer to a memory
request by the application that must be handled by the CoffeeBreak’s allocator
method and new object instantiation shall refer to an object that needs to be created
within the code of the CoffeeBreak itself.

The implementation of the dynamic CoffeeBreak garbage collector is based upon
the following observation: The method for allocation of new objects is executed in
the context of the calling domain. Therefore, whenever a new object instantiation
is performed within the allocation method of the CoffeeBreak GC, its new object
will be created on the heap of the domain that is managed by the CoffeeBreak
instance. This heap is managed by the CoffeeBreak, which means its allocation
method would be called again – an infinite loop would occur. That happens, because
KESO redirects allocations to the allocator method for the current domain in the
macro KESO_ALLOC. Figure 3.4 illustrates this dilemma.

However, the allocation method does not need to perform its own allocations.
The only data structure of the CoffeeBreak GC used in the method is the free memory
list. If the free memory list is implemented purely in Java, its list elements shall
reside in the heap assigned to the Domain Zero. The free memory list can then be
used in the following two ways in the allocation method:

1. A memory block referenced by one element in the free memory list exactly fits
the size needed for a memory request. The block is then removed from the
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Figure 3.4 – Separation of call sites of the CoffeeBreak code: Allocation is
executed in the context of the application domain, collection within the Domain
Zero.

pool of available free memory blocks. The respective list element is discarded.
No new object instantiation within the allocation method is needed.

2. A free memory block is large, and only a portion of it is used to fulfill a memory
request by the application. The rest of the free memory block must be kept
in the free memory list by enchaining a free list element referencing it. In
this case, the free memory element originally referencing the large object may
be reused by equipping it with the size and start address of the new, smaller
memory block. No new object instantiation is needed.

Consequently, the allocation method can be implemented completely in a way so
that no object instantiations are needed. The mark-and-sweep phase of the dynamic
CoffeeBreak implementation however does need object instantiation. Its design, and
how memory management within a Java Domain Zero can be managed, will be
shown in the next section.

3.4.3 Architecture

The architecture of the dynamic CoffeeBreak garbage collector is similar of the one
presented in Section 3.3.2 that does not have its own heap for object instantiations.
However, there are several differences concerning weavelet usage and adaption to
KESO’s task model. The overall architecture can be seen in Figure 3.5.

In comparison with the previous implementation of the CoffeeBreak shown in
Figure 3.1, the reduced number of weavelets is instantly visible. In my new Coffee-
Break implementation, all data structures that are restricted to the garbage collector
were implemented in Java. The weavelets GCUtils and MinimalCoffeeDomain
are therefore only needed to access domain descriptor properties and object headers.

The data structures that could be implemented in Java due to the newly created
Java Domain Zero are visible at the bottom of the figure: A class Stack for the
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Figure 3.5 – Class structure of the dynamic CoffeeBreak GC. Classes imple-
mented using weavelets are marked with «weavelet«

working stack used in the mark-and-sweep phase, a class CoffeeBitmap for the
bitmap used to mark the status of memory slots and the FreeMemElement class
that implements a list element of the free memory list. How exactly these objects
can be kept in the CoffeeBreak’s RDS allocator managed heap without exhausting
memory after some time will be explained in the next section.

3.4.4 Cyclically Resetting the RDS Heap

The objects created by the CoffeeBreak GC in its run time can be divided into two
groups. One group will be referred to as base set of the CoffeeBreak GC. It contains
objects that must exist during the lifetime of the garbage collector, which is also the
lifetime of the whole system. The other group refers to short-lived objects that do not
need to survive the mark-and-sweep phase.

The base set of the CoffeeBreak GC in its current implementation contains an
object of the class MinimalCoffeeDomain. The instance of the CoffeeBitmap class
used in the mark-and-sweep phase is also stored here. Because the size of the latter
is constant for the runtime of the garbage collector, it can be created once, but must
then be reset at the start of the marking phase. This is done to avoid accidentally
marking slots as still used that have been freed by the program in the meantime.
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The set of short-lived objects consists mainly of the free memory list. The free
memory list is not kept in the heap memory it describes any more (like in the C
implementation and the static Java CoffeeBreak), but in the RDS-managed heap of
the Java Domain Zero. This comes with a penalty on memory usage, but enables
the free memory list to be implemented purely in Java.

The working stack that stores objects in the mark-and-sweep phase can also be
placed in the RDS heap of the Java Domain Zero. Contrary to the C implementation,
which used a fixed-size array and needed the CoffeeBreak GC to manually keep
track of the index into the array, the class Stack offers a well-defined interface to
the garbage collector. Internally, it manages an array that is dynamically increased
when necessary.

Persistent base set, con-

sisting of domain and

bitmap object.

Temporary objects such

as the free memory list.

base

new_ptr

Reset of the RDS heap’s
new_ptr occuring at
the start of CoffeeBreak’s
run.

Figure 3.6 – Cyclically resetting the RDS heap of the Java Domain Zero.

Figure 3.6 shows the composition of the RDS heap of a Java Domain Zero used
by a CoffeeBreak garbage collector. At the start of the heap are the persistent objects:
The domain object and the bitmap will survive as long as the system is active. The
middle part of the heap is taken up by temporary objects like the working stack or
the free memory list. At the top of the heap, a free area of memory is still available
for the creation of new objects within the garbage collector.

At the right site of the heap array, two pointers into the address space of the heap
array are visible. The pointer base marks the end of the persistent memory area.
The memory area above the base pointer is available for dynamic object creation.
The new_ptr pointer is equivalent to the new pointer of the RDS heap – it marks the
first empty memory address and new objects will be created here. Its target moves
toward the top of the heap with each performed allocation on the heap.
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Resetting the heap does not work automatically, but requires the programmer to
identify and mark two critical points in the code:

1. The creation of the base set is finished in the CoffeeBreak’s constructor. At this
point, the current position of the RDS allocator must be stored. Later on, the
new pointer of the RDS allocator will be reset to this memory address.

2. The reset of the new pointer must occur at the start of each CoffeeBreak run.
As the CoffeeBreak collector runs in an endless loop, this is done start of the
loop’s body.

It must be made sure that no object references into the memory area that will be
reused after the reset survive. For this purpose, it is advised not to declare temporary
objects in the scope of the mark-and-sweep method before the RDS heap was reset,
and to set references stored in class fields to null. The latter operation allows KESO
to throw an error when an invalid reference, that was not assigned to a newly
allocated object again, is accessed.

Resetting the RDS heap is currently implemented using the weavelet RDSHeap-
Resetter. Its two methods support querying the base address of the RDS allocator
as well as resetting the new pointer.

3.4.5 Configurability

KESO strives to be as configurable as possible. This allows to create a system that
is tailored exactly to the limited hardware available in embedded systems. Within
the CoffeeBreak’s C implementation, conditional compilation is often used to en-

gc

CoffeeBreakTask

+ alloc(int, int, int) : Object

+ run()

LoggingCoffeeBreakCollector

+ mark()

# sweep()
...

CoffeeBreakCollector

+ mark()

# sweep()
...

Figure 3.7 – Structure of the logging CoffeeBreak GC.
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or disable features based on configuration options that were passed by JINO as
compile-time constants. As stated in Section 2.3.2, Java does not allow conditional
compilation.

One notable example for a feature which can be enabled or disabled is the
support for tracing, that prints debug information to the standard output during
execution of the garbage collector. To display the possibility of using object-oriented
design instead of preprocessor features, a class LoggingCoffeeBreakCollector was
implemented that also prints debug output.

The logging garbage collector was implemented following a proxy pattern [13].
The class LoggingCoffeeBreakCollector inherits from the class CoffeeBreakCol-
lector. It wraps every method call of the super class in debug statements. If functional
changes were to be made in the standard CoffeeBreak class, no additional changes
would be needed in the sub-class of the logging GC.

By instantiating the correct instance of the collector object in the CoffeeBreak’s
task, the system can execute either the standard or the logging CoffeeBreak collector.

A benefit of this method, in comparison to the C implementation, is especially
that there are no debug statements and preprocessor conditions cluttering the code
that is needed for the GC’s functionality.

3.4.6 Summary

In this section, the implementation of a CoffeeBreak garbage collector that is not re-
stricted to storing its own data structures in weavelets was presented. To circumvent
the restriction to stack allocation, a resettable RDS heap was added in a custom Java
domain. An example also showed how this implementation of the garbage collector
can be extended using object-oriented design instead of conditional compilation
previously used in KESO.





Chapter 4

Evaluation

The implementation of the CoffeeBreak GC that was presented in the previous chapter
is the final implementation of one of KESO’s memory mechanisms in Java. This
chapter is intended to evaluate the work that was done: In the first section, a critical
discussion of the solutions that were found for the main challenges in implementing
garbage collection in Java will be given. The following section will show the changes
in the size of the final binary in comparison to the native C implementation of the
memory management. In closing, the runtime of the system will be examined.

For the latter two steps, the benchmark CDj was used. It implements a real-time
collision detection for aircraft traffic. The program consists of two components: A
generator that generates radar frames and the actual collision detector. In this thesis,
the “on-the-go” variant where both components are located in one KESO domain
will be used.

4.1 Evaluation of the Implementation and its Features

This section is intended to give an overview over the solved challenges in the imple-
mentation of the CoffeeBreak GC and the limitations that were encountered in this
thesis.

4.1.1 Overview over Solved Challenges

The implementation of the CoffeeBreak garbage collector that can allocate objects
on its own, Restricted Domain Scope (RDS)-managed, heap shows a solution to the
two basic problems of implementing garbage collection in Java: Complications in
handling new object instantiation and access to low-level system data structures.
In addition, an attempt at making the resulting implementation configurable and
extendable was made.

45



46 4.1 Evaluation of the Implementation and its Features

Two solutions to the restrictions to object allocation within the garbage collector’s
code have been found:

Stack allocation allows to allocate objects on the stack frame of the current method.
The mechanism for allocating objects on the stack had already been imple-
mented for KESO. In this thesis, I introduced a mechanism to ensure that only
stack allocation is used in places where no objects may be allocated on the
heap. Nonetheless, stack allocation is not suitable for all object creations, as
objects created on the stack perish when their creating method is left.

Cyclic RDS heap resetting was created in this thesis to allow the instantiation oeps,
the benchmark CDj was used. It implements a real-time collision detection
for aircraft traffic. The program consists of two components: A generator
that generates radar frames and the actual collision detector. In this thesis,
the “on-the-go” variant where both components are located in one KESO dof
long- as well as short-lived objects from within the garbage collector. However,
this solution requires additional work by the programmer to identify suitable
points for resetting the heap in the source code.

Low-level system access has successfully been provided by weavelets. These serve
as an adapter between KESO’s C structures and the garbage collector’s code. However,
the implementation of the adapters requires each weavelet to be implemented
manually. In addition, some of the weavelets need to store internal state information
such as the progress in an iteration. For this purpose, the weavelet mechanism was
expanded in the course of this thesis.

Configurability is a basic feature of the CoffeeBreak garbage collector. Contrary to
the original C implementation, the Java implementation cannot rely on a preprocessor
to conditionally include code when needed. Instead, object-oriented design patterns
can be used, as was shown in this thesis with the implementation of the CoffeeBreak
garbage collector with additional debug output.

4.1.2 Limitations

Weavelets for low-level system access and object-oriented patterns for configuration
of the garbage collector show the limitations of implementing type-safe garbage
collection in KESO: The related projects shown in Section 2.1 are runtime environ-
ments for Java (or C#) with garbage collectors written in Java (or C#). The runtime
environments themselves are written in Java (or C#).

However, KESO is a Java runtime environment for Java with garbage collection
written in Java that is itself written in C. This means that access to data structures
such as object headers that may be available as a Java/C# object in related projects
must always be implemented in weavelet-based adapters. This is for example the
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case for advanced features such as the scanning of object references found on the
linked stack frames of methods: Scanning of those object references is handled
completely by the corresponding weavelets and cannot be done in Java.

In addition, configuring available features is difficult – in case of the CoffeeBreak
GC with additional debug output, its implementation class must be selected man-
ually in the configuration by the user. Previously, only required code for system
features found in the analysis performed by JINO would be emitted and features in
the templates for the C implementation of the CoffeeBreak GC could be included
conditionally by the preprocessor. Due to the lack of a Java preprocessor and the
handling of Java classes in JINO, this is not possible for the Java implementation.

Additionally, the resettable RDS heap is by far not an ideal solution. It does solve
the problem of creating Java objects within the garbage collector’s code. However,
this comes at a high cost: The programmer must manually identify object sets that
are long- and short-lived and must take special care to prevent access to objects that
are not valid any more. Therefore, the resettable RDS heap regrettably hurts Java’s
principle of memory-safety.

4.1.3 Summary

In conclusion, it has been shown that implementing garbage collection in Java for
KESO is feasible. Solutions for accessing low-level data structures and circumventing
the restrictions on new object allocations have been found.

However, the lack of a preprocessor makes system programming difficult. In
addition, the nature of KESO – the system is written in C – requires the frequent use
of weavelets. This makes using more advanced features of the runtime environment,
such as the linked stack frames, cumbersome for the programmer, as they constantly
have to switch between Java and C to implement the actual algorithm of the garbage
collector and its accompanying weavelets.

4.2 Size of the Application

The KESO system containing the CDx was configured to use a heap size of 800 kB.
The complete configuration for the benchmarks is shown in Table 4.1. Table 4.2
shows the changes in size for the various configurations of the garbage collectors.

The total overhead for the weavelet-based implementation of the CoffeeBreak
garbage collector adds up to 0.36 % in comparison to the system using the existing
C implementation of the garbage collector.

The majority of the increase is caused by the larger text section and the bigger
data section. The text section size difference is can be explained by additional
functions in the implementation due to the usage of weavelets.



48 4.2 Size of the Application

Configuration

CPU Infinion TriCore TC1796

CiAO git revision 14defd2b
KESO SVN revision 4303

TriGCC compiler version 4.6.4

Table 4.1 – Configuration used for running the CDx benchmark.

The data section of the binary is 2.63 % bigger than its native counterpart. Its
increase insize adds up to as little as 52 Byte. Its increase in size can be explained
by a minimally longer string constant for the “out of memory” error message given
by the GC (the GC name was prepended) and the increased size of the class store of
the system.

The small overhead of the bss section can mainly be traced back to the fact
that the fixed-size array of the GC’s working stack is bigger in the weavelet-based
CoffeeBreak implementation as it is not configurable by the user in the configuration
file.

The overhead of the size of the binary configured to use the RDS-heap-based

implementation of the CoffeeBreak is 3.84 % compared to the CoffeeBreak’s C imple-
mentation.

The text section is 9.05 % bigger as it contains more Java code: Here, the Java
code must also implement features not previously found in the CoffeeBreak GC, such
as dynamically increasing the size of the working stack of the CoffeeBreak. This
added complexity is also represented by the increase of the size of the data section.

The absolute increase of the bss section adds up to more than 30 kByte. This is
not surprising, as the additional heap of the Java Domain Zero has a size of 40 kByte.
The discrepancy between those two numbers can be explained by the fact that the
working stack and the bitmap are both allocated on said heap at runtime.

All in all, both Java implementations come with a measurable increase of the
size of the binary.

4.3 Runtime of the Application

To measure the runtime of the application, the configuration of the CDx collision
detector was set to calculate collisions in 50 radar frames. The time used for each
frame is measured by the program. The percentual overhead for each frame was
then calculated for both the weavelet-based CoffeeBreak as well as the CoffeeBreak
that is implemented purely in Java. The results can be seen in Figure 4.1.
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Figure 4.1 – Percentual runtime overhead for each frame of the CDx applica-
tion.

The results show that the weavelet-based implementation of the CoffeeBreak
garbage collector has a runtime for each frame that is on average 36 % higher than
that of the C implementation. The implementation using a Java-based approach for
the GC’s own data structures is significantly faster, with an average overhead of only
11 % compared to the native C implementation of the CoffeeBreak.

The spike in the overhead for the first frame is caused by the fact that the time
taken for its calculation is much lower than that of the other frames. Deviations
in execution time for this first frame therefore show much more prominently than
those of other frames.

Consequently, the wide-spread use of weavelets for CoffeeBreak can only be dis-
couraged: It comes with a huge penalty on performance. The additional complexity
incurred by adding a Java Domain Zero however is well justified: It more than halves
the time overhead incurred by implementing the GC in Java.
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Chapter 5

Conclusion

This thesis evaluated the possibility of implementing KESO’s garbage collection
services in the type-safe language Java instead of C. To do so, changes were not
only made to the implementation of the actual garbage collectors but they were also
needed in all three stages of KESO’s compiler, JINO.

In a first step, the task was analyzed: Related work of garbage collection in type-
safe languages was reviewed and common problems found in the Jalapeño/Jikes
RVM, Singularity OS and Squawk VM projects were identified. Among them are
especially the need to provide low-level access to memory in Java and to restrict Java’s
object allocation. Additional problems stem from language differences between Java
and C.

JINO’s previously existing stack allocation was reused. An additional mechanism
in the compiler was implemented to restrict the garbage collector implementations
in Java that were then implemented to stack allocation. In this process, KESO’s
memory-mapped objects were discarded as a method to provide low-level system
access, as they showed to be too inflexible. KESO’s weavelets were used instead.

This implementation heavily relied on weavelets, not only for accessing system
properties but also for storing garbage collection data structures. As this was deemed
unsatisfactory, a new approach was developed that allows the garbage collector
to use an allocation-only heap that is reset at pre-defined points in the algorithm.
Additionally, a way of expanding the garbage collector’s code using object-oriented
patterns instead of conditional compilation was shown.

In conclusion, the initial problems identified in the analysis could be circum-
vented, and it was shown that writing garbage collection in Java for KESO is certainly
possible. However, the development proved to be cumbersome due to KESO’s nature:
As KESO’s runtime system is written in C (contrary to related systems), weavelets
have to be written for virtually any system interaction. In addtion, KESO’s fine-
grained configurability that relies both on procedural generation of program code by
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JINO, as well as conditional compilation, complicates propagation of configuration
options to the Java code of the garbage collector.

Future Work

Resetting the RDS heap in the final, dynamic implementation of the CoffeeBreak
garbage collector has two drawbacks: The programmer must make sure that no
object references into the re-usable area of the heap survive. They must also manually
determine the points in the algorithm where the base set has been allocated and
where resetting the heap is appropriate.

To improve the safety of the resettable RDS heap, it would be interesting to
evaluate whether additional compiler passes could automatically identify the point
in code where the reset should occur. The base set could be identified by data flow
analysis. JINO could then insert the necessary instructions automatically.

Another area that shows potential for improvement is the propagation of KESO’s
configuration to the Java implementation of the garbage collectors. As shown in
Section 3.4.5, it is possible to re-create configuration options present in the original
CoffeeBreak collector. However, the class that implements the desired option has to
be selected manually by the user.

To facilitate option passing and be able to access constants read from KESO’s
configuration file or determined during the compilation process, a preprocessor
could be included. Other projects, such as the Squawk VM presented in Section
2.1.3, already have a working preprocessor for Java. It would be interesting to
evaluate if this preprocessor could be used for KESO.



List of Acronyms

GC garbage collector

JVM Java Virtual Machine

KESO “Konstruktiver Speicherschutz für eingebettete Systeme“ – German for ”Con-
structive memory protection for embedded systems“

RDS Restricted Domain Scope

RE runtime environment

TCB Trusted Code Base
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