
Tailorable System Software

Maßschneiderbare Systemsoftware

Der Technischen Fakultät der
Friedrich-Alexander-Universität Erlangen-Nürnberg

als

HABILITATIONSSCHRIFT

vorgelegt von

Dr.-Ing. Daniel Lohmann

Erlangen — 2013

Als Habilitation genehmigt von
der Technischen Fakultät der

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Tag der Einreichung: 11. August 2013

Fachmentorat Universitätsprofessor Dr.-Ing. habil. Wolfgang Schröder-Preikschat,
Friedrich-Alexander-Universität Erlangen-Nürnberg

Universitätsprofessor Dr.-Ing. habil. Klaus Meyer-Wegener,
Friedrich-Alexander-Universität Erlangen-Nürnberg

Universitätsprofessor Dr.-Ing. Olaf Spinczyk,
Technische Universität Dortmund

Gutachter Directeur de Recherche Dr. habil. Gilles Muller,
INRIA/LIP6, Paris

Universitätsprofessor Dr. rer. nat. Hermann Härtig,
Technische Universität Dresden

Abstract

System software, such as the operating system, provides no business value of its own. Its
sole purpose is to serve the concrete application’s needs – that is, to map the functional and
nonfunctional requirements efficiently to the functional and nonfunctional properties of
the hardware. Efficiency calls for specific, tailored system software; reusability demands
generic solutions. To overcome this dilemma, most system software provides built-in
static variability: It can be tailored at compile time with respect to a specific application–
hardware use case.

In the case of Linux v3.2, this static variability is reflected by nearly 12,000 configurable
features that control the inclusion and exclusion of 28,000 source files with 84,000 condi-
tional (#ifdef) blocks. Variability by means of thousands of features imposes challenges
for both system-software developers, who have to implement and maintain variability, as
well as application developers/administrators, who have to understand the impact of all
these features in order to configure a tailored variant.

Over the last four years, my research has focused on methods and techniques to
improve the design, implementation, and maintenance of static variability in highly
tailorable system software. My central contributions in this respect are: (a) The CiAO
approach, which employs language techniques to achieve excellent up-tailorability of
embedded system software (towards the requirements of a specific application). (b) The
SLOTH approach, which employs generative techniques to achieve down-tailorability of
embedded system software (towards better exploitation of modern commodity hardware).
(c) The VAMOS approach, which employs cross-language analysis techniques and holistic
variability modeling to improve on the long-term maintainability of multi-paradigmatic
variability implementations in existing large-scale system software, such as Linux.

This research has been carried out in collaboration with seven doctoral researchers and
master students from my research group, four of which have already defended.

i

Contents

1 Introduction 1
1.1 The Case for Tailorable System Software 1

Figure 1.1 System software: between a rock and a hard place 2
Table 1.1 Examples for statically configurable system software 3

1.2 Contributions . 3
Figure 1.2 Research areas with central research projects and key papers . . 4

1.3 Papers of This Treatise . 5
1.4 Structure of This Treatise . 6

2 Towards Tailorable System Software 7
2.1 Design for Static Variability . 7

Figure 2.1 The model of configurable system software 8
2.2 Implementation Approaches for Tailorable System Software 9

Figure 2.2 Classification of implementation approaches used in config-
urable system software . 10

2.3 Decompositional Implementation of Variability 11
2.4 Compositional Implementation of Variability 11
2.5 Generative Implementation of Variability 13
2.6 Summary . 14

3 The CiAO Approach 17
3.1 CiAO Goals . 17
3.2 Implementation Approach: Aspect-Aware Development 17

Figure 3.1 CiAO software structure . 18
Figure 3.2 Loose coupling of (interacting) optional features by advice-based

binding . 19
3.3 CiAO Results . 19
3.4 CiAO Key Papers . 20

4 The SLOTH Approach 23
4.1 SLOTH Goals . 23
4.2 Implementation Approach: Generative Programming 23

Figure 4.1 Interrupt handlers are the unified control-flow abstraction in
SLOTH . 24

4.3 SLOTH Results . 24

ii

Contents

Figure 4.2 Two-dimensional code generation with respect to architecture
and application . 25

4.4 SLOTH Key Papers . 26

5 The VAMOS Approach 29
5.1 VAMOS Goals . 29

Figure 5.1 Implementation levels of software variability in Linux 30
5.2 Implementation Approach: Holistic Variability Model 30
5.3 VAMOS Results . 30

Figure 5.2 The VAMOS approach at a glance 31
5.4 VAMOS Key Papers . 32

6 Discussion, Future Work, and Conclusions 35
6.1 Impact on Functional and Nonfunctional Properties 35
6.2 Explicit, Implicit, and Automatic Tailoring 36

Figure 6.1 Feature growth in Linux with respect to hardware/software-
related functions . 37

6.3 Multi-Level Separation of Concerns . 38
Figure 6.2 The vision of multi-level separation of concerns for configurable

features . 39
6.4 Conclusions . 39

A Bibliography 41
A.1 General Bibliography . 41
A.2 Personal Bibliography . 51

B Paper Reprints 59
CiAO Papers . 61

USENIX ’09: “CiAO: An Aspect-Oriented Operating-System Family for
Resource-Constrained Embedded Systems” 61

AOSD ’11: “Aspect-Aware Operating-System Development” 75
MobiSys ’12: “CiAO/IP: A Highly Configurable Aspect-Oriented IP Stack” . 87

SLOTH Papers . 101
RTSS ’09: “Sloth: Threads as Interrupts” 101
RTSS ’11: “Sleepy Sloth: Threads as Interrupts as Threads” 111
RTSS ’12: “Sloth on Time: Efficient Hardware-Based Scheduling for Time-

Triggered RTOS” . 123
VAMOS Papers . 135

EuroSys ’11: “Feature Consistency in Compile-Time-Configurable System
Software: Facing the Linux 10,000 Feature Problem” 135

SPLC ’12: “A Robust Approach for Variability Extraction from the Linux
Build System” . 149

HotDep ’12: “Automatic OS Kernel TCB Reduction by Leveraging Compile-
Time Configurability” . 159

iii

1. Introduction

System software is computer software that is designed to operate and control a comput-
ing hardware and to provide a platform for the execution (and partly also creation) of
application software on this hardware. Examples include, first and foremost, the operat-
ing system, but also the compiler, the database engine, middleware, network stack, Java
virtual machine, and so on. System software “maps” (in a general sense) the high-level
application functionality to the imperative hardware machine.

System software provides no business value of its own. Its sole purpose is to ease the
development, integration, and operation of applications – that is, to provide the “right”
set of abstractions for a particular application use case: The functional and nonfunctional
requirements of the application have to be mapped efficiently to the functional and
nonfunctional properties of the hardware. The term efficiency here refers to further
nonfunctional properties of the resulting system, such as memory footprint, throughput,
event latency, robustness, jitter, and so on. The “ideal” system software does not impair
these properties by abstractions and policies that do not serve the application’s needs
[141]. Between the application and the hardware, the effects of system software should be
as “thin” as possible (Figure 1.1). The avoidance of unnecessary overheads is particularly
important for the cost-sensitive domain of embedded systems.

Efficiency calls for specific, tailored system software for each concrete application–
hardware use case. On the other hand, the broad variety of applications and hardware
platforms demands generic, reusable solutions. Thus, system software designers are
caught “between a rock and a hard place”: broad reusability versus case-specific efficiency.

1.1. The Case for Tailorable System Software

To overcome this dilemma, most system software provides built-in static variability: It
supports a broad range of application requirements and hardware platforms, but can be
tailored at compile-time with respect to a specific use case. Historically, this has led to
the notion of system software as program families [145, 144].

With the rising number of static variation points and their dependencies (in the source
code of Linux v3.2, we can find more than 112,000 variation points) this has been
complemented by explicit models of variability known from the domain of software
product lines (SPLs) [138, 100, 131, 45]: The intended variability is expressed as a
feature model – a set of (configurable) features, which reflect a mandatory, optional,
or alternative functionality offered by the implementation. Features typically carry
constraints that define how they depend on or conflict with other features. In the case
of Linux v3.2, the intended variability is described as nearly twelve thoussand (11,863)

1

1. Introduction
“Between a Rock and a Hard Place”

7

S y s t e m S o f t w a r e

Hardware

Application

functional and nonfunctional requirements

functional and nonfunctional properties

tasks
sockets
file system
...
event latency
safety
...

ISA
IRQ handling
MMU / MPU
...
cache size
coherence
IRQ latency
...

Montag, 21. Februar 2011

Figure 1.1.: System software: between a rock and a hard place
The “ideal” system software is (a) resuable and provides (b) an as-thin-as-possible layer
that exactly maps the functional and nonfunctional requirements of the application – and
nothing more – to the functional and nonfunctional properties offered by the hardware.

features and their constraints in a language called KCONFIG [9, 28, 27]; KCONFIG front
ends load this model to let users select and deselect features to come up with a valid
configuration that describes a concrete Linux variant.

Linux is just one example of system software that offers tailorability by configuration
– although the largest one I am aware of. Table 1.1 lists a small selection of open-
source/research system software, with a focus on the operating-system domain: The
eCos [2] real-time operating system (RTOS), for instance, also provides more than 5,400
features, which are configured with (and checked by) ECOSCONFIG [92, 21]. All other
projects listed in Table 1.1 have imported the KCONFIG infrastructure of Linux. It is
remarkable, though, that even very small and young projects (compared to Linux), such
as BUSYBOX [109] or COREBOOT [30], and research projects, such as CiAO [C20?, C12?]1,
CiAO/IP [C5?] or L4/FIASCO [118] already offer hundreds to thousands of features.

Variability by means of thousands of configurable features imposes big challenges for
both system-software developers, who have to implement and maintain variability, as
well as application developers/administrators, who have to understand the impact of all
these features in order to configure a tailored variant.

1References to own publications, such as [J7, C25, W24], are prefixed by a one-letter acronym indicating
the type of the publication, including: Journal, Conference, Workshop (peer-reviewed). The complete
list can be found in the Personal Bibliography on pp. 51ff. References to key papers of this habilitation
treatise are additionally marked by an asterisk, such as [C20?].

2

1.2. Contributions

Project Description Version # Features

Linux Operating system v3.2 11821
eCos Library operating system for embedded systems 3.x (hg 3216) 5466
BUSYBOX UNIX tool suite for embedded systems 1.20.1 879
COREBOOT Firmware (BIOS/UEFI) 4.0 (13.10.2012) 1140
L4/FIASCO µ-kernel operating system svn 38 1255
CiAO Library operating system (AUTOSAR OS) svn 1829 578
CiAO/IP TCP/IP stack for IPv4 svn 1829 96

Table 1.1.: Examples for statically configurable system software

1.2. Contributions

Over the last four years, my research has focused on methods and techniques to improve
the design, implementation, and maintenance of variability in highly tailorable system
software. In this respect, I have been conducting research in the areas of (Figure 1.2):

1. Tailorable System Software (Goal)

2. Software Product Lines (Method)

3. Languages and Generators (Technique)

Tailorable system software is the target domain (Goal). For this purpose, system software
is conceptually understood as a software product line; the functional and nonfunctional
properties are modelled as optional and mandatory features and constraints (Method).
The resulting variability eventually has to be made explicit; it has to be implemented (and
maintained) in the code in a way that facilitates modularity and separation of concerns
without sacrificing nonfunctional properties, such as run-time and memory efficiency or
predictability (Technique).
In the end, however, it is all about the goal: researched methods and techniques have to
show their benefits by application to real system software; for instance, by evaluating
them in the design, implementation, and maintenance of operating systems and network
stacks. The central contributions of my research in this respect are:

(a) The CiAO approach [C20?, C12?, C5?], which employs language techniques to CiAO is Aspect Oriented

achieve excellent up-tailorability of embedded system software (towards the require-
ments of a specific application).

CiAO is a constructive analysis, design and implementation approach for the develop-
ment of fine-grained configurable system software using aspect-oriented program-
ming (AOP). It has been evaluated in the development of event-triggered automotive
RTOS, compilers, and network stacks for resource-constrained embedded systems.

(b) The SLOTH approach [C19?, C10?, C7?], which employs generative techniques to The name features both
the lazy animal breed and
the deadly sin of laziness.

achieve down-tailorability of embedded system software (towards better exploitation
of modern commodity hardware).

3

1. Introduction

1: Tailorable System Software

3: Languages
an

d
G

enerators

2:
S

of
tw

ar
e

P
ro

du
ct

Li
ne

s

Goal

Techniqu
e

Method

CiAO
DFG (NV)

USENIX ’09
AOSD ’11

MobiSys ’12

SLOTH

RTSS ’09
RTSS ’11
RTSS ’12

VAMOS
DFG (NV)

EuroSys ’11
SPLC ’12

HotDep ’12

PLiC
Siemens CT

SPLC ’10

KESO

ISORC ’11
JTRES ’11

DanceOS
DFG (SPP 1500)

EDCC ’12
LCTES ’13

iRTSS
DFG (SFB/TR 89)

SFMA ’11

SiHeB
DFG (GRK 1773)

AspectC

KnoSys 20
TAOSD II

Figure 1.2.: Research areas with central research projects and key papers

SLOTH is a constructive approach for the development of very thin system software
that is aggressively and automatically tailored by generators towards platform-
specific hardware particularities. It has been evaluated in the development of
event-triggered and time-triggered automotive RTOS.

(c) The VAMOS approach [C14?, C6?, W5?], which employs a holistic variabilityVariability Management
in Operating Systems model to improve on the long-term maintainability of multi-paradigmatic variability

implementations in existing large-scale system software, such as Linux.

VAMOS is an analytical approach based on the automatic cross-language extraction
and checking of variability information. It has been evaluated by providing tool
support to find variability defects and bugs in Linux, increase the coverage of static
checkers in Linux, BUSYBOX, and L4/FIASCO, and the automatic tailoring of Linux
for a particular application use case.

This research has been carried out in collaboration with seven doctoral researchers and
master students from my research group. I have been the scientific leader and conceptual
contributor.

4

1.3. Papers of This Treatise

1.3. Papers of This Treatise

This document is a cumulative habilitation treatise. Out of my 82 peer-reviewed publica-
tions (see Appendix A.2 on pp. 51ff), I have selected the following 9 papers (full texts
are provided in Appendix B on pp. 59ff) as the key contributions of my research:

CiAO

USENIX ’09
pp 61 ff

Lohmann, Hofer, Schröder-Preikschat, Streicher, and Spinczyk. “CiAO: An Aspect-
Oriented Operating-System Family for Resource-Constrained Embedded Systems”
(Acceptance rate: 16%)

[C20?]

AOSD ’11
pp 75 ff

Lohmann, Hofer, Schröder-Preikschat, and Spinczyk. “Aspect-Aware Operating-
System Development” (Acceptance rate: 23%)

[C12?]

MobiSys ’12
pp 87 ff

Borchert, Lohmann, and Spinczyk. “CiAO/IP: A Highly Configurable Aspect-Oriented IP
Stack” (Acceptance rate: 18%)

[C5?]

SLOTH

RTSS ’09
pp 101 ff

Hofer, Lohmann, Scheler, and Schröder-Preikschat. “Sloth: Threads as Interrupts”
(Acceptance rate: 21%)

[C19?]

RTSS ’11
pp 111 ff

Hofer, Lohmann, and Schröder-Preikschat. “Sleepy Sloth: Threads as Interrupts as
Threads” (Acceptance rate: 21%)

[C10?]

RTSS ’12
pp 123 ff

Hofer, Danner, Müller, Scheler, Schröder-Preikschat, and Lohmann. “Sloth on Time:
Efficient Hardware-Based Scheduling for Time-Triggered RTOS” (Acceptance rate: 22%)

[C7?]

VAMOS

EuroSys ’11
pp 135 ff

Tartler, Lohmann, Sincero, and Schröder-Preikschat. “Feature Consistency in Compile-
Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” (Ac-
ceptance rate: 15%)

[C14?]

SPLC ’12
pp 149 ff

Dietrich, Tartler, Schröder-Preikschat, and Lohmann. “A Robust Approach for Variability
Extraction from the Linux Build System” (Acceptance rate: 33%)

[C6?]

HotDep ’12
pp 159 ff

Tartler, Kurmus, Heinloth, Rothberg, Ruprecht, Doreanu, Kapitza, Schröder-Preikschat,
and Lohmann. “Automatic OS Kernel TCB Reduction by Leveraging Compile-Time
Configurability” (Acceptance rate: 42%)

[W5?]

Regarding the order of authors: The first author did most of the actual implementation
and experimental work (usually a doctoral researcher), in close collaboration with me as
the responsible post-doc and scientific project lead. As such, I am listed as second author
on most papers, which can be considered as the “classical post-doc position”. Since 2012,
however, I have been deliberately shifting my name on papers to the last position for all
research projects for which I am the scientific project lead.

5

1. Introduction

1.4. Structure of This Treatise

The remainder of this document is structured as follows: In the next chapter

Chapter 2: “Towards Tailorable System Software” (pages 7–15)

I provide a short introduction into and classification of implementation techniques for
tailorable system software. This is followed by chapters for the three research projects in
which I have investigated such techniques:

Chapter 3: “The CiAO Approach” (pages 17–21)

Chapter 4: “The SLOTH Approach” (pages 23–27)

Chapter 5: “The VAMOS Approach” (pages 29–33)

In these chapters, I provide a brief overview of the respective projects, their underlying
design and implementation techniques, and a classification of the role of each paper that
is part of this habilitation treatise. Each chapter is logically followed by the reprints of the
respective papers, which constitute the body and main contributions of this treatise. For
the sake of easy (partial) printing and reading, however, I have moved the reprints to
Appendix B and continue with:

Chapter 6: “Discussion, Future Work, and Conclusions” (pages 35–40)

In the last chapter, I discuss some general aspects of my work, derive ideas for further
research, and conclude my work. I close with:

Appendix A: “Bibliography” (pages 41–58)

Appendix B: “Paper Reprints” (pages 59ff)

In the appendix I provide the general and personal bibliographies (including a complete
list of own papers) and reprints of the papers selected for this cumulative habilitation
treatise.

6

2. Towards Tailorable System Software

It has long been known that tailorability has to be considered as a first-class design goal
from the very beginning [142] and it is no surprise that most early work on program
families [148, 147, 145, 146, 144] focuses on system software. Technically, a system
software has to provide static variation points to be tailorable at compile time – well-
defined points in the program structure that, depending on a compile-time decision,
influence the resulting binary code.

2.1. Design for Static Variability

Variability as a system property includes two separated – but related – aspects: implemen-
tation and configuration.

Implementation (Model Level). System software developers provide variation points in the
code – in most cases by means of conditional compilation and the C Preprocessor
(CPP) [136, 88, 37, 23] (fine-grained variability) or the build system [40, 13]
(coarse-grained variability). Other implementation approaches for static variability
are (typically language-supported) component models [106, 107, 89, 137, 134, 123,
84, 128, 133, 110, 90] or domain-specific generators [100, 104, 18, 80].

Besides the actual variation points, system software developers furthermore have
to provide an interface to users or system integrators to exploit the thereby offered
variability.

Configuration (Instance Level). Application developers or system integrators configure the
system software to derive a concrete variant that fits their purposes. The provided
interface for this process varies from (1) the completely manual (un-)commenting
of #define directives (unvalidated) or component aggregation (validated by the
rules of some type system) over (2) explicit variability models supported by feature
models and validating configuration tools [22, 73, 50] up to (3) the (semi-)automatic
configuration based on application analysis [44] or a specification written in some
domain-specific language (DSL) [76, 104, 80, 100].

The configuration interface defines the configuration space, which is usually intended
to cover all variability of the implementation space defined by the variation points of
the actual implementation, but at a higher level of abstraction: Instead of single (i.e.,
extensional) variation points, system users can deal with configuration options – more

7

2. Towards Tailorable System Software

Conf iguration space Implementation space

Specif ic problem Tailored solution

Developer f1

f7

f3f2

f6f5f4
Features and dependencies

 Developer

Class

Aspect

ClassClass

AspectAspect...

Architecture and implementation

System user

f1
f2
...

�

�Conf iguration
A

B

D

C

System user

(b
)

In
st

an
ce

 le
ve

l
(a

)
M

od
el

 le
ve

l

Variant

intended
properties

actual
 implementation

intentional side extensional side

Figure 2.1.: The model of configurable system software
(a) System developers provide variation points in the implementation (implementation
space) together with an (abstract) interface to access the thereby offered variability in
a controlled manner (configuration space). (b) System users specify for their specific
problem a concrete instance via this interface to derive a tailored solution.

or less abstract (i.e., intentional) features;1 they select from these features (explicitly or
implicitly) to get a tailored solution for their specific problem.

Figure 2.1 presents the overall picture of this process and model, which is to be
supported by principles, methods, and tools. This is – with a focus on the implementation

1It should be noted that the understanding of features as (implementation-specific) configuration options
is in stark contrast to the early SPL literature, which understands the concept of features more from
the viewpoint of requirements, that is, focuses on problem variability: Features and feature models (as
a means to structure variability) are understood as intentional constructs that describe commonalities
and differences within a specific problem domain (the problem space), obtained by a process called
domain analysis [139, 138, 131, 97]. However, especially in the open-source world, system software is
developed implementation-driven [9]: Configurable features rarely stem from a domain analysis process,
but generally describe technical (i.e., explicit) implementation options and their constraints. They are
often implemented before they turn into features. Feature models have more and more been employed as
a tool to specify the configuration space and its constraints: In the systems-software community, this led
to the high number of features exemplified in Table 1.1. In the SPL community, this in turn has led to the
(arguable) recognition of system software as (large) “classical” SPLs [45, 22, 8] – the differences between
the software variability (implementation/configuration space) and product-line variability (problem space)
have somewhat blurred [43].

8

2.2. Implementation Approaches for Tailorable System Software

space – the goal of my research around CiAO, SLOTH, and VAMOS.
The general challenge is the efficient, consistent, and maintainable mapping from

elements of the configuration space (such as features and their constraints) to the
entities of the implementation space (such as conditional blocks and their presence
conditions2): The granularity of a feature in the implementation may scale from coarse-
grained (inclusion or exclusion of a complete module or file) to fine-grained (inclusion or
exclusion of a single statement – and even below [17]), or even be crosscutting (require
many variation points [C25, 94]). For static tailoring, feature implementations should be
bound at compile time and thus not induce an extra run-time overhead just by the fact
that they are configurable. Features often interact with each other [32], so that many
derivatives have to be provided for their implementation.

All this is to a high degree a matter of the chosen implementation approach, which has
a large impact on achieving granularity, efficiency, consistency, and maintainability.

2.2. Implementation Approaches for Tailorable System Software

In general, the approaches to implement static variability in system software can be
classified into three different classes (Figure 2.2):

Decompositional Approaches. The implementation of optional and alternative features is
intermingled in the source code with each other and the base system. At compile
time, annotation-based filtering techniques, such as conditional compilation with
#ifdef statements and the CPP, are used to filter out the source lines that do not
implement the concrete variant. This is, in a broader sense and with focus on
consistency and maintainability, the scope of the VAMOS approach.

Compositional Approaches. Optional and alternative features are implemented as a set of
fine-grained and loosely coupled implementation components in a “syntactically rich”
implementation language (e.g., C++ classes or templates). Each component (ideally)
implements a single feature only. A concrete variant is derived by composition of
feature components; the validity of the composition is guarded by the type system
of the implementation language. This is, with focus on granularity, efficiency, and
maintainability, the scope of the CiAO approach.

Generative Approaches. The code of optional and alternative features is not provided in
the compiler’s target language (such as C), but generated out of templates by a
problem-specific generator. A concrete variant is derived as an instance of the meta
model implemented by the generator. The meta model basically provides a problem-
specific type system for feature composition; the instances are often described in a
DSL. This is, with focus on granularity and efficiency, the implementation technique
applied in the SLOTH approach.

2The presence condition is the condition that has to be fullfiled for the respective block to be included, such
as the existence of a certain macro

9

2. Towards Tailorable System Software

(a) Decompositional Approaches

Configuration

Components Variant

(b) Compositional Approaches

Configuration

Components Variant

(c) Generative Approaches

Configuration

Generator VariantTemplates

Figure 2.2.: Classification of implementation approaches used in configurable system software
(a) All variation points are contained in a single implementation and described by annota-
tions (e.g., #ifdef blocks) before compilation to derive a concrete variant. (b) Variation
points are provided as (feature) components that can be composed according to the type
system to derive a concrete variant. (c) Variation points are provided by an active
generator, which employs the given configuration together with domain-specific knowledge
to derive a concrete variant.

For pragmatic reasons, real-world system software typically employs approaches of multi-
ple classes, even though in various degrees and qualities: For instance, variation points
are not only implemented with the CPP using conditional compilation (decompositional),
but also with CPP macro expansion (compositional). Some variation points are bound
at link time by symbol-level linking (compositional), and so on. Nevertheless, most
system software employs one of them as the dominant implementation technique. In the
following, I briefly discuss issues and variations of each approach and its application to
tailorable system software.

10

2.3. Decompositional Implementation of Variability

2.3. Decompositional Implementation of Variability

The application of preprocessors, especially the CPP, is considered to be the dominant
implementation approach for static variability in system software: Most system software
written in C [143] or C++ [126] also employs the CPP [88, 37, 23] for this purpose.

Basically, a preprocessor filters the source code before it is passed to the compiler by
evaluating preprocessor statements for conditional compilation3 (#ifdef CONFIG_OPTION

... #else... #endif blocks); the presence condition of such a block (such as the feature
flag CONFIG_OPTION) annotates which feature the respective code block belongs to.

The advantages of annotation-based static variability are efficiency and granularity:
The feature-specific part of the code is directly injected into the source code before
compilation without any indirection via a (language-specific) run-time concept (such
as virtual method invocation). Hence, the approach is inherently free of any run-time
overhead for binding feature-related parts of the code. Because preprocessing is just
text processing on the source code (outside of the “burden” of a type system), feature-
dependent parts can be specified on statement level or even below [17], which technically
facilitates very fine-grained feature interactions.

The disadvantages of this flexibility are consistency and maintainability: Neither the
presence conditions nor the results of including or excluding feature-related parts of the
code are checked for declarative completeness, consistency, and type conformance; if
there are many and fine-grained annotations (“#ifdef hell”), the code becomes difficult
to understand and maintain [136, 122, C25]. Approaches to mitigate these disadvantages
by better tool support are an active field of research [103, 34, 29, 46, W15, 24, 16, 10] –
and also part of the VAMOS project [C2, C17, C14?, W11].

Also considered by VAMOS is the fact that in most real-world system software (e.g.,
Linux), only fine-grained decompositional variability is implemented with the CPP (and
sometimes other source-code preprocessors, such as [1, 85, 62]), whereas the imple-
mentation of coarse-grained variability is delegated to the build system [13, 39, W3,
C6?], which conditionally includes or excludes complete translation units from being
preprocessed, compiled, and linked.

2.4. Compositional Implementation of Variability

A wide-spread direct counterpart to the source-code–based decompositional implementa-
tion of variability by CPP and conditional compilation is source-code patching: Optional
or alternative features are provided as source-code patches, which are applied by the
PATCH tool to augment the source-code before compilation. As preprocessing, source-code
patching is basically untyped text processing on the source code, so it shares the same
advantages regarding efficiency and granularity and disadvantages regarding consistency

3Most preprocessors, including the CPP, also provide macro expansion as a second mechanism, which
belongs, depending on the expressive power of the expansion mechanism, to the class of compositional
or generative approaches.

11

2. Towards Tailorable System Software

and maintainability; better, “semantic” patch languages that can incorporate context into
the patching process [55, 54, 36, 19, 63, 60] aim to mitigate the disadvantages. In prac-
tice, patches are mostly used as a transitional or organisational means for compositional
variability for features that are developed and maintained “out-of-tree” [9].

Most other approaches for compositional variability aim at type-safe compositions:
Variation points are implemented on the base of syntactical constructs of the implemen-
tation language (such as classes, methods, fields); the underlying type system guards
the composition of valid variants. A large research community investigates methods and
languages to support compositional variability [114, 99, 72, 61, 25], only few of which,
however, have actually been applied to larger pieces of system software.

The use of compositional variability in system software is mostly based on the ab-
stractions provided by some general-purpose programming language, such as Oberon
modules [137], Modula 3 generics (SPIN [133, 128]) C++ objects (Choices [134], K42
[57, 52]), C++ classes (PURE [110]), C++ templates (EPOS [112, 96]), Java classes
(JX [90]), or – as also investigated In the CiAO project – aspects (BOSSA in Linux [80],
AspectC in FreeBSD [94, 82]; TOSKANA in NetBSD [51]; AspectC++ in PURE [91,
W34], COMET [78, 77, 59], IP-TN [56], eCos [C25, 4], CiAO [C20?, C12?, J1], and
CiAO/IP [C5?]). Other approaches are not tied to a particular programming language,
but instead employ a language-independent (binary) component model, such as plain
function libraries (exoKernel [129]) or Microsoft’s COM [116], with components as the
elementary building blocks. Examples for the COM approach include THINK [89], KOALA
[106], and Flux/OSKit [123]. On the border to generative approaches and DSLs are
component models that are supported by domain-specific general-purpose programming
languages, such as NesC for TinyOS [64, 84, 42, 66].

Compositional variability based on strongly typed languages or component models
bears clear advantages regarding consistency and maintainability: Consistency and valid-
ity of concrete variants is to a large degree ensured by the type system; a well-defined
module and interface concept provides for easy extensibility (optional features), sub-
stitutability (alternative features), and separation of concerns: in the ideal case, each
feature of the configuration space can be mapped to a distinct module or component in
the implementation space (Figure 2.1).

The efficiency of binding features, on the other hand, depends on the actually employed
mechanisms and how well they match the needed binding abstraction. With C++ objects
or COM components, for instance, feature substitutability (abstraction) is implemented by
virtual functions (mechanism), which bears an inherent run-time and memory overhead
[127]. Choices and K42 also aim at run-time configurability, so they use a mechanism
to bind feature modules that matches the intended abstraction. If, however, the goal is
static variability, the mechanism provides more than actually needed; the overhead of
“componentization” ([107]) can become significant [J8]. Flux/OSKit partly mitigated
this overhead by additional language and tool support [107] that (re-)facilitates cross-
component optimizations, such as inlining. The general message, however, is that
efficiency is hampered if the employed binding mechanism provides more than the

12

2.5. Generative Implementation of Variability

actually needed abstraction.4 The implementation of static variability calls for purely
static binding mechanisms.

The possible granularity of feature interactions in the implementation is restricted to
the granularity of the syntactic entities offered by the language or component model
– in most cases to function/method level. This is in stark contrast to decompositional
variability using the CPP, where features may augment the implementation on statement
level (or even below). The implementation of finer-grained variability with compositional
approaches is possible, but often leads to either code duplication (e.g., a method is
duplicated to provide a variant that differs only in a single statement) or artificial
“micromodularization” [3] (e.g., the single statement is factored out into an own method
that does not necessarily reflect an abstraction) – both of which imply follow-up costs
with respect to consistency, maintainability, and efficiency. Ideally, the granularity of
the syntactical entities of the employed language or component model matches the
granularity of feature interactions in the implementation.

In system software – especially with respect to optimizing nonfunctional properties –,
these interactions often are (a) fine-grained and (b) bear an inherently crosscutting
character [C20?, W29, W26, 78]. This makes, despite all stated critique regarding
negative effects on modular reasoning [81, 74, 70, 58, 41, 34], the syntactical concepts
provided by AOP [125, 95], especially pointcut and advice, so attractive as a means for
the efficient compositional implementation of static variability in this domain. This is the
scope of the CiAO approach.

2.5. Generative Implementation of Variability

With generative implementation techniques, the elements of the implementation space
(Figure 2.1) become active: Instead of mapping features and their constraints to imple-
mentation fragments in the employed programming language or component model (such
as #ifdef blocks or COM components), they are mapped to generators – meta programs
(developed in a Turing-complete language) that interpret the configuration to generate
(parts of) the tailored system’s implementation at build time [100].

Generative approaches are beneficial if feature interactions are (a) very fine-grained
and complex (context-sensitive) in the implementation, or (b) have to be instantiated
over many variation points. In system software, this is often the case when dealing with
hardware peculiarities. A typical example is the implementation of IPC or syscall mecha-
nisms [121]; the respective stubs that marshal parameters over protection boundaries
have to be instantiated for each specific IPC or syscall. In order to provide for efficiency,
the code generation has furthermore to be highly optimized with respect to platform

4An example for the efficiency issues caused by “having too much” in a fundamental binding mechanism
is local IPC in µ-kernel operating systems: Mach’s [140] IPC mechanism, for instance, was optimized
for remote IPCs by network transparency and portability – and performed badly if only local IPC was
needed [124]. In L3 and L4 [135, 130], in contrast, the IPC mechanism was less flexible and optimized
for local situations by a platform-dependent implementation in assembler, which results in a much better
perfomance for local IPC [124].

13

2. Towards Tailorable System Software

particularities [102]. In a sense, the respective generators implement operating-system–
specific active libraries [120, 101, 100] that know how to map certain mechanisms of
the system software (such as a syscall) efficiently to hardware. This is also the approach
behind SLOTH.

Other examples from the domain of system software include the implementation of
capabilities [20], cache coherence protocols [111], and device drivers [115, 108, 104,
75, 33]. Not as close to hardware, but also suggested have been generative approaches
for protocol stacks [86, 119, 18] and thread schedulers [68, 87, 80]. These examples for
generative implementation of static variability are mostly motivated by benefits regarding
consistency and maintainability – which are achieved by the use of a domain-specific
language (DSL) as an input language. Compared to general-purpose languages, DSLs
typically provide fewer and more declarative mechanisms, so that software development
and maintenance can take a higher, domain-related abstraction level and thus becomes
easier and less error prone [100, 68, 67]. In other cases, the DSL is embedded into a
general purpose language and extends it by domain-specific abstractions [115]. Embed-
ded DSLs and generators are often implemented with C++ template meta-programming
[132, 100, 93] (also in combination with AOP [C29, C27, 4]), a technique that also has
been applied to system software [20, 86, 112, 96].

Generative approaches bear the risk that the complexity of variability implementation
is just shifted from the target software to the generator and languages, so that the
difficulties regarding consistency and maintainability remain – just on another level. To
mitigate these problems, reusable generator frameworks and modularization concepts
have also been suggested for language and generator design [79, 65, 31].

For embedded system software, such as the RTOS, even the complete specification in
higher-level DSLs and subsequent generation has been suggested [105]. SLOTH, which
implements the automotive OSEK/AUTOSAR operating-system standards [48, 49, 69, 98],
also features complete generation. The expressive power of the configuration language,
however, is very similar to other OSEK/AUTOSAR implementations [76]. The goal
behind the generative implementation of variability in SLOTH is to provide efficiency and
portability by whole-system optimization and platform-specific back ends for the efficient
mapping of kernel mechanisms to hardware.

2.6. Summary

Variability as a system property includes two separated – but related – aspects: implemen-
tation and configuration. The general challenge is the efficient, fine-grained, consistent,
and maintainable mapping from elements of the configuration space (such as features
and their constraints) to entities of the implementation space.

Technically, a piece of system software has to provide (many/good) static variation
points to be tailorable at compile time. This is, first and foremost, a question of the
software design method – static variability has to be considered as a first-class design
goal from the very beginning. Additionally, the chosen implementation technique has
a large impact on achieving granularity, efficiency, consistency, and maintainability in

14

2.6. Summary

the resulting system. Common in system software are decompositional, compositional,
and generative implementation approaches, all of which have specific advantages and
disadvantages.

To exploit the advantages and mitigate the disadvantages by methods, techniques, and
tools is the objective behind CiAO (compositional), SLOTH (generative), and VAMOS
(decompositional, multi-paradigmatic) – with a strong focus on the goal: System software
that offers fine-grained static tailorability with respect to its functional and, especially,
nonfunctional properties.

15

3. The CiAO Approach

The dominant implementation technique for variation points in system software is the
CPP [88, 37, 23], despite all the disadvantages with respect to understandability and
maintainability (“#ifdef hell”) this approach is known for [136, 122]. In my PhD thesis
[T1], I evaluated aspect-oriented programming [125, J7] as an alternative technique
[C25] and came up with the analysis and design method of aspect-aware system-software
development. This method leads to a much better separation of concerns and it facilitates
fine-grained feature implementations and the configurability of even fundamental system
policies without giving up on run-time efficiency and memory thriftiness.

The result of this research – and also the starting point for my further research activities
– was the CiAO operating system [C20?, C12?, J1]. CiAO implements the automotive
OSEK/AUTOSAR standards for completely statically configured1 RTOSs [48, 49, 69],
but provides a much better configurability and tailorability towards specific application
requirements than leading commercial implementations. Besides operating-system ker-
nels, we have also applied aspect-aware system-software development to the domains
of compilers [C18, J4] and network stacks for resource-constrained embedded systems
[C5?].

3.1. CiAO Goals

The primary goal of the CiAO approach is configurability of all functional and nonfunc-
tional properties [B1, W29]. This includes fine-grained tailorability and composability
of optional features [J8], but also configurability of even fundamental, “architectural”
policies, like synchronization [W25] or isolation in time and space [W24, W17] in an OS
kernel or byte ordering and checksumming in an IP stack [C5?].

3.2. Implementation Approach: Aspect-Aware Development

Static variability in CiAO is implemented using a compositional approach based on AOP
[125, 95] and the strongly typed AspectC++ language [J7]. The basic implementation
idea is to achieve a strict decoupling of policies and mechanisms in the implementation
by using aspects as the primary composition technique: CiAO components are sparse and
do not directly interact with each other; they are glued together and extended by aspects,
which thereby implement policies and optional features. For fundamental “architectural”

1Completely statically here means that all OSEK system entities (tasks, events, resources, ...), their priorities,
and possible interactions (which tasks can access which resource) are known at compile time.

17

3. The CiAO Approach

as personalityciao personality

Ti
m

in
g

pr
ot

ec
tio

n
Se

rv
ic

e
pr

ot
ec

tio
n

<hardware>

<ciao application>

Serial0

Timer0
IR

Q
 s

yn
ch

ro
ni

sa
tio

n
Scheduler Alarm manager

Preemption

OS control

Event support

Resource support

Hooks support

Stack monitoring

<as application>

M
em

or
y

pr
ot

ec
tio

n

os::krn
os::dev
os::irq

ciao as

CPUContinuation AST0 MPUTimer0 init

hw::irq hw::dev

hw::hal

interface
layer

system
layer

hardware
layer STMASC0STM_SRC0

Figure 3.1.: CiAO software structure
Depicted are the three functional software layers of CiAO with a selection of (logical) sublay-
ers, abstractions, and aspects (depicted with rounded corners). Configurable architectural
properties, such as Memory protection, Service protection, or IRQ synchronization are
modeled as aspects and may have an effect across multiple layers.

system policies, such as synchronization or protection, this binding may even take place
across multiple functional layers [144] up to the application (Figure 3.1).

The fundamental language concept of AOP in this context is advice, by which it becomes
possible to let optional features and cross-cutting policies specify themselves how they are
to be integrated into the base program (Figure 3.2). As advice-based binding is inherently
loose (if the addressed join point is not present, the binding is silently dropped) it also
provides a solution for the implementation of interacting optional features [C20?], which
are difficult to tackle with other compositional approaches [32]. Advice code is inlined
in AspectC++ [J7], so separation of concerns and loose coupling in the design do not
imply an binding overhead in the implementation of the resulting system [144])– when
refactoring #ifdef-based variability into aspects, the resulting binary code typically
remains the same [C25].

Aspect-aware development thereby leads to a very fine-grained composability, espe-
cially with respect to policies and optional features – no functionality shall be considered
mandatory [142]. The identification and decomposition of optional features and cross-
cutting policies is guided by the structured concern impact analysis (CIA) process [W23,
C12?] and a set of predefined class and aspect roles [C20?, C5?].

18

3.3. CiAO Results

F1

extension()

P

base()

ex
te

ns
io

n

kn
ow

s

(a)

«aspect»
F1

exec("base")

P

base()

know
s

"base"

(b)

«aspect»
F1

exec("%::base")

P1

base()

Pn

base()
. . .

(c)

. . .

Figure 3.2.: Loose coupling of (interacting) optional features by advice-based binding
Optional feature F1 shall extend product-line component P, so F1::extension() needs
to be invoked from P::base(). (a) With traditional programming paradigms (e.g., OOP),
P knows and has to know F1 (i.e., its name and signature) to invoke F1::extension().
(b) With advice, F1 integrates itself into P (i.e., in the execution of P::base()) if P is
present. (c) Advice-based binding with quantification: F1 integrates itself into all present
(matching) feature components P1...n.

3.3. CiAO Results

We have applied aspect-aware development to the domains of embedded operating-
system kernels (CiAO [C20?, C12?]), compilers (PUMA [C18, J4]), and network stacks
for embedded systems (CiAO/IP [C5?]). In all cases, the resulting tailorability leads to
significant advantages with respect to nonfunctional properties compared to existing
leading solutions:

In comparison to a leading commercial implementation2 of the OSEK OS standard
[69], CiAO achieves significantly lower latencies for system services (up to 70% less) and
an excellent scalability of the memory footprint, mainly because of its better tailorability
with respect to the actual application’s requirements. However, even if the amount
of features of a CiAO variant is “artificially enriched” to provide the same amount of
unneeded functionality than the commercial OSEK, CiAO still performs better in most
cases [C20?].

For PUMA, which is an open-source C/C++ transformation framework also used in the
implementation of the AspectC++ weaver [J7], the goal was not so much performance
and memory efficiency, but separation of concerns with respect to optional features,
namely, tailoring towards the large variety of C/C++ language dialects and extensions
(GNU, VisualC++, AspectC++, ...). The PUMA C++ parser implementation, for instance,
requires only ten percent of the lines of code of the GNU C++ parser [J4, C18].

CiAO/IP, the most recent project, provides an aspect-oriented IPv4 TCP/IP stack for
sensor nodes and other resource-constrained embedded systems. The leading implemen-

2part of the BMW and VW/Audi standard cores

19

3. The CiAO Approach

tations in this field were micro-IP (uIP) and lightweight-IP (lwIP) [83]. By its excellent
tailorability towards specific application requirements, the CiAO/IP TCP/IP stack outper-
forms lwIP and uIP in terms of code size (up to 84% / 88% less than uIP / lwIP for a
UDP sender on an AVR), throughput (up to 587% / 33% higher than uIP / lwIP for a TCP
sender on IA-32 with Gbit Ethernet) and energy consumption (up to 63% lower than uIP
on AVR for a TCP sender) [C5?].

3.4. CiAO Key Papers

In the following, I briefly classify the role of the three related key papers, which are
part of this cumulative habilitation treatise. Reprints of these papers are available in
Appendix B.

USENIX ’09
pp 61 ff

Lohmann, Hofer, Schröder-Preikschat, Streicher, and Spinczyk. “CiAO: An Aspect-
Oriented Operating-System Family for Resource-Constrained Embedded Systems”
(Acceptance rate: 16%)

[C20?]

The USENIX ’09 paper introduces, on the example of the CiAO operating
system, AOP and aspect-aware development as an alternative to CPP-based
configuration from a systems perspective: It shows why “#ifdef-hell” appears
to be inevitable in configurable system software, introduces the three funda-
mental design principles of aspect-aware develpment and the resulting aspect
roles to overcome these problems, and evaluates the scalability of CiAO with
respect to performance and memory consumption.

AOSD ’11
pp 75 ff

Lohmann, Hofer, Schröder-Preikschat, and Spinczyk. “Aspect-Aware Operating-
System Development” (Acceptance rate: 23%)

[C12?]

The AOSD ’11 paper complements the USENIX ’09 paper by summarizing
aspect-aware development from a software engineering perspective: It de-
scribes our longer-term experiences with using AOP vs. object-oriented
programming (OOP) as a compositional mechanism in this domain and how
the complete approach – the process of CIA, aspect-aware design and devel-
opment – has emerged from that. CIA and aspect-aware design are evaluated
and discussed on the examples of AUTOSAR OS and CiAO with respect to
separation of concerns.

MobiSys ’12
pp 87 ff

Borchert, Lohmann, and Spinczyk. “CiAO/IP: A Highly Configurable Aspect-Oriented IP
Stack” (Acceptance rate: 18%)

[C5?]

Finally, the MobiSys ’12 paper generalizes the applicability of the approach by
applying it to a different domain: network stacks. It exercises the complete
product-line development process (domain analysis, CIA, aspect-aware design
and implementation) on the example of a TCP/IP stack and comes up with
a new aspect role for layered system designs. The resulting CiAO/IP stack

20

3.4. CiAO Key Papers

is evaluated and compared with the state of the art regarding scalability
(throughput, memory, energy consumption) and separation of concerns.

The work on CiAO arose out of my PhD [T1], helped by Olaf Spinczyk and two diploma
students: Wanja Hofer developed the OSEK/AUTOSAR personality; Jochen Streicher
developed the configurable memory protection. The work on CiAO/IP was conducted with
Christoph Borchert (TU Dortmund) during his Masters and first PhD year, helped by Olaf
Spinczyk.

21

4. The SLOTH Approach

While CiAO provides an excellent up-tailorability of system software towards the specific
requirements of the application, it offers relatively few options [C21] to tailor it with
respect to specific hardware properties. Many features of modern µ-controller hardware
densely interact with each other; the resulting constraints make it difficult to express
them as configurable features and to exploit them in system software. Instead, for the
sake of platform independence, operating system designers try to abstract (arguably
too early and too much [141]) from hardware as soon as possible by provisioning of a
hardware abstraction layer (HAL), which defines an abstract machine the kernel is built
on (cf. [38, 47]).

SLOTH kernels go the other way round [C19?, C10?, C7?]: The goal here is to embrace
the specific features of modern commodity off-the-shelf hardware as much as possible
for the implementation of standard operating-system services: As CiAO, SLOTH kernels
implement (most of) the automotive OSEK/AUTOSAR RTOS standards [48, 49, 69, 98],
but “let the hardware do all the work” [O5].

4.1. SLOTH Goals

The major goal of SLOTH is to embrace platform-specific hardware particularities instead
of blindly abstracting from them – in order to use them in an (unorthodox) way for
the efficient implementation of core operating-system services, such as scheduling and
dispatching.

A key concept in this realm is to implement all control flows (software-triggered,
hardware-triggered, time-triggered) as interrupt handlers and let the hardware, namely
the interrupt subsystem, do the scheduling and dispatching work (Figure 4.1). Hence,
SLOTH implies some hardware requirements with respect to the interrupt subsystem: (1)
It has to offer as many interrupt sources and priority levels as there are control flows in
the system. (2) Interrupt requests can also be triggered from software. These properties,
however, are provided by many modern µ-controller platforms. The Infineon TriCore, for
instance, the SLOTH reference platform, provides 256 interrupt priority levels and more
than 180 interrupt sources that can be triggered by software [71].

4.2. Implementation Approach: Generative Programming

The automatic tailoring of SLOTH towards the application and hardware is implemented
using a generative approach, based on an custom, Perl-based DSL and generator frame-
work: Application requirements and global policies are described in an (OIL-like [76])

23

4. The SLOTH Approach

IRQ Source
Task1

IRQ Source
ExtTask1

prio=1

request

req IE

IRQ Source
ISR2

prio=2

request

IRQ Source
Task3

prio=3

request

IRQ Source
Task4

IRQ Source
ExtTask4

prio=4

request

req IE

Hardware
Periphery

Timer
System

HW IRQ

Alarm Exp.

IRQ
Arbi-

tration
Unit

CPU

curprio=X

activate(Task1)

IRQ Vector
Table

task1()

isr2()

task3()

task4()

prol1()

isr2()

prol3()

prol4()

task1()

task3()

task4()

Task Stack

Stack ET1

Stack ET4

Figure 4.1.: Interrupt handlers are the unified control-flow abstraction in SLOTH

All control flows (tasks and ISRs) managed by the kernel are mapped to hardware interrupt
sources. Activation takes place by either hardware events (ISR2, Task4) or software
events (as in activate(Task1)). The IRQ arbitration unit schedules in hardware by
reporting the highest-priority interrupt request to the CPU; if its priority is higher than
curprio, the CPU dispatches in hardware by invoking the respective interrupt vector.

DSL, which is then used by the SLOTH generator framework to generate C code and
linker scripts for the tailored kernel variant, which is highly optimized with respect to
the mapping of the application’s requirements to the specific target hardware. This
“ideal” mapping of application requirements to hardware elements is achieved by a
two-dimensional generation approach: The generation process is augmented by both
architecture-specific and application-specific code-generation rules (Figure 4.2).

4.3. SLOTH Results

SLOTH kernels implement the conformance classes BCC1 [C19?] (all tasks are run-to-
completion) and ECC1 [C10?] (tasks may block) of the OSEK OS standard [69] for
event-triggered RTOS, as well as the OSEKtime standard [98] and AUTOSAR OS schedule
tables [49] for time-triggered/mixed-mode RTOS. The generative approach facilitates
portability to other platforms, even though the hardware-centric design requires a very
deep interaction with hardware particularities. Besides the TriCore reference platform,
SLOTH kernels are also available for the ARM (Cortex M3), PowerPC (Freescale MPC55xx),
and IA32 (APIC) plattforms.

By its uniformed control-flow abstraction, SLOTH abolishes the artificial distinction
between threads and interrupts: All control-flows managed by the kernel, may they be
hardware-triggered, software-triggered, or time-triggered and bear blocking or nonblock-
ing semantics, share the same mechanisms and priority space (which is the interrupt
hardware and priority space).

24

4.3. SLOTH Results

Arch-independent
templates

– Kernel object
template

– Kernel
configuration
template

Arch-specific
templates

– IRQ vector table
and management
template

– Schedule table
management
template

App-specific, arch-
independent files

– Kernel object
instantiation

– Kernel
configuration

App-specific,
arch-specific files

– IRQ vector table

– IRQ source init
and management

– Schedule table init
and management

App-independent,
arch-independent files

– Kernel interfaces
and syscalls

– IRQ suspension
management

– Event
management

App-independent,
arch-specific files

– Linker script

– Startup code

– IRQ handler
management

– Task dispatching

Application

Application/system
configuration

Verification

Common calculations

Generator

Compiler

Application–
system binary

Arch-independent Arch-specific
A

p
p

-s
p

ec
ifi

c
A

p
p

-i
n

d
ep

en
d

en
t

Figure 4.2.: Two-dimensional code generation with respect to architecture and application
Application properties and target architecture are given as an application/system configu-
ration to the SLOTH generator, which combines architecture-independent and architecture-
dependent generation rules to produce the application-specific tailored kernel code. The
generated code is then passed together with application-independent parts of the kernel
and the user code (application) to the compiler/linker to produce the resulting application–
system binary.

25

4. The SLOTH Approach

This has a number of notable implications on important nonfunctional system proper-
ties: With its unified priority space for threads and interrupts, SLOTH avoids – by design –
all issue of rate-monotonic priority inversion [53, 12]1 and achieves excellent priority obe-
dience. Compared to leading commercial software-based implementations of OSEK OS,
OSEKtime and AUTOSAR OS, SLOTH achieves kernel-time speedups of 1.3x–171x, event
latencies as low as 14 clock cycles, and extremely low memory footprints [C19?, C10?,
C7?].

4.4. SLOTH Key Papers

In the following, I briefly classify the role of the three related key papers, which are
part of this cumulative habilitation treatise. Reprints of these papers are available in
Appendix B.

RTSS ’09
pp 101 ff

Hofer, Lohmann, Scheler, and Schröder-Preikschat. “Sloth: Threads as Interrupts”
(Acceptance rate: 21%)

[C19?]

The RTSS ’09 paper introduces the SLOTH idea: To map thread executions to
interrupts in order to have the interrupt controller of commodity hardware
do all the scheduling and dispatching work and unify the priority space
of interrupts and software tasks. The paper describes the implementation
approach and compares SLOTH with CiAO with respect to event latencies
and priority obedience. As interrupt handlers, software tasks in SLOTH must
bear run-to-completion semantics, that is, they may not block. Neverthe-
less, SLOTH thereby already implements the BCC1 conformance class of the
OSEK OS [69] standard.

RTSS ’11
pp 111 ff

Hofer, Lohmann, and Schröder-Preikschat. “Sleepy Sloth: Threads as Interrupts as
Threads” (Acceptance rate: 21%)

[C10?]

The RTSS ’11 paper complements the RTSS ’09 paper with respect to blocking
control flows. SLEEPY SLOTH provides a universal control-flow abstraction
that, as in SLOTH, delegates all scheduling and dispatching work to the
interrupt controller, but additionally provides blocking control flows, which
may be either tasks or interrupts. The paper describes the implementation
approach with the resulting SLEEPY SLOTH generation process and compares
SLEEPY SLOTH to SLOTH and a commercial OSEK OS implementation. With
its support for blocking as well as run-to-completion tasks, SLEEPY SLOTH

implements the ECC1 conformance class of OSEK OS while still being fast.

1This kind of priority inversion occurs if a (logically) low-priority interrupt (such as a timer that activates a
low-priority task) interrupts a high-priority software task. This effect can be observed in most RTOS, as
interrupts are managed separately from tasks in the interrupt priority space, which has priority over all
software tasks. The dual priority space has long been identified as a major obstacle in real-time software
development: “Interrupts are perhaps the biggest cause of priority inversion in real-time systems, causing
the system to not meet all of its timing requirements.” [113]

26

4.4. SLOTH Key Papers

RTSS ’12
pp 123 ff

Hofer, Danner, Müller, Scheler, Schröder-Preikschat, and Lohmann. “Sloth on Time:
Efficient Hardware-Based Scheduling for Time-Triggered RTOS” (Acceptance rate: 22%)

[C7?]

Finally, the RTSS ’12 paper presents SLOTH ON TIME, which generalizes
the SLOTH idea “to let the hardware do the work” from event-triggered
systems to time-triggered systems by mapping schedule tables, deadline
monitoring, time synchronization, and execution budgeting to commodity
hardware timer arrays. The paper describes the implementation and refined
generation approach and compares SLOTH ON TIME to commercial OSEKtime
and AUTOSAR OS implementations. SLOTH ON TIME extends SLEEPY SLOTH

by the support for the OSEKtime standard [98] and AUTOSAR OS schedule
tables [49] for time-triggered as well as mixed-mode RTOS.

The work on SLOTH, SLEEPY SLOTH, and SLOTH ON TIME was conducted with Wanja Hofer
during his PhD [5], helped by Wolfgang Schröder-Preikschat. Daniel Danner developed
the timer-cell mapping and respective generator for SLOTH ON TIME during his Masters.

27

5. The VAMOS Approach

Both the aspect-aware CiAO approach and the generative SLOTH approach lead to
operating-system kernels and other pieces of system software that are highly config-
urable and provide excellent tailorability towards specific application requirements or
hardware properties. However, they are constructive approaches that have to be applied
from the very beginning of the development process. This limits their value for existing
configurable system software, such as Linux.

The VAMOS approach is different in that it is an analytical approach. We aim to
address issues of maintaining and managing variability in existing large-scale system
software and independently of the underlying implementation techniques.

In the literature, configurability in system software is perceived as implemented mainly
by means of the CPP [37, 23, 17, 136, 122]. In fact, real-world software employs a
multitude of tools and languages for this purpose: The Linux v3.2 kernel, for instance,
provides nearly twelve thousand configurable features (11,863 unique KCONFIG items)
in its feature model. These features first control the configuration-dependent inclusion
or exclusion of 28,000 source files by the build system (KBUILD rules, coarse-grained
variability in Figure 5.1), which in turn contain 84,000 #ifdef blocks that are evaluated
by the CPP (fine-grained variability in Figure 5.1) before the source code is finally passed
to the compiler and (in the case of linker scripts, which may also be preprocessed by
CPP) the linker [C6?]. Thus, in Linux the implementation of variation points and their
constraints is spread over at least three interacting levels: feature model, build system,
and preprocessor; each level constrains the configurable variability on the subsequent
levels (Figure 5.1).

5.1. VAMOS Goals

This distribution of the variability implementation imposes big challenges for Linux
developers with respect to ensuring (a) consistency of variability information and (b)
coverage of configuration-conditional code. Furthermore, the high number of available
features impose a challenge to Linux users with respect to (c) configuring an actual Linux
kernel for a concrete use case.

The goal of the VAMOS project is to provide methods and tool support to deal with
such issues in large-scale and highly distributed implementations of variability.

29

5. The VAMOS Approach

Dominancy and Hierarchy of Variability

l0: Feature Modeling 12,000 features

l1: Coarse-grained: KBUILD 31,000 source files

l2: Fine-grained: CPP 89,000 #ifdef blocks

l3: Language-level: GCC → if(CONFIG_SMP) ...

K
C

O
N

FIG
controlled

V
ariabilityl4: Link time: LD → branches in linker scripts

l5: Run time: INSMOD, MODPROBE, ...

c� dl KSS (VL 5 | SS 13) 5 The VAMOS Approach | 5.2 Variability in Linux 5–10

Figure 5.1.: Implementation levels of software variability in Linux
Each level effectively constrains the possible variability in the subsequent levels (for in-
stance, the coarse-grained variability implemented in the build system (KBUILD) dominates
fine-grained variability implemented by the preprocessor (CPP)). Further static variation
points may be implemented on the language level or linker level. However, as of kernel
version 3.2, this is not common in Linux.

5.2. Implementation Approach: Holistic Variability Model

The basic idea of VAMOS is to extract the variation points (features and constraints) from
all sources of variability into a common holistic variability model based on propositional
logic (Figure 5.2). In the case of Linux this is mostly variability that is implemented with
decompositional approaches.

The holistic variability model is then be used to provide tools that address issues (a) to
(c) in an automated manner [C14?, C6?, W5?, C17, J2, J3].

5.3. VAMOS Results

Our results show that variability has to be considered as a significant source of software
bugs in its own respect – all of which could be found upfront by better tools support.

In [C14?], we have presented tool support to address issue (a) – that is, to automatically
crosscheck the intended variability (expressed by the KCONFIG feature model) with the
actually implemented variability (expressed by CPP statements in the code): We have
found more than 1,700 variability defects – inconsistencies that manifest as dead #ifdef

code or actual bugs. Our results have led to (accepted) fixes for more than 350 of them,
including 20 new bugs and the removal of 5,000 superfluous lines of #ifdef code in Linux
v2.6.36.

However, these numbers turned out to be just the tip of the iceberg: They did not take
the KBUILD build system into account – which we found in Linux to have effect on more

30

5.3. VAMOS Results

Application 1: Configuration Defects in Linux

Eurosys 2011: undertaker: The Linux 10000 Feature Nightmare

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else
// Block3

endif
#endif

ϕConf. = (FLATMEM → MEMORY MODEL)

∧ (DISCONTIGMEM → MEMORY MODEL)

∧ (SPARSEMEM → MEMORY MODEL)

∧ (NUMA → MEMORY MODEL)

∧ (DISCONTIGMEM → NUMA)

ϕImpl. = (Block1 ↔ DISCONTIGMEM)

∧ (Block2 ↔ Block1 ∧ (NUMA)

∧ (Block3 ↔ Block1 ∧ ¬Block2)

Implementation Space Constraints

Implementation Space

Configuration Space Constraints

Configuration Space

dead? sat(C ∧ I ∧ BlockN)

undead? sat(C ∧ I ∧ ¬BlockN

∧ parent(BlockN))

Configurability Defects

Result: > 100 patches

tartler@cs.fau.de Reinhard Tartler (January 29, 2013) 14 – 21

Figure 5.2.: The VAMOS approach at a glance
Variability information (features and their dependencies) is extracted from all sources of
variability (here: KCONFIG and CPP level) into a holistic variability format based on proposi-
tional logic. A SAT solver can then be employed to check, for instance, for contradictions
and tautologies regarding the reachability of each #ifdef block.

than two thirds (!) of all KCONFIG features [W3]. Extending the holistic variability model
with the variability implemented in the build system [C6?] increases the number of found
defects to more than 2,500 in Linux v3.2.

With respect to issue (b), we have extended our tool support to automatically derive
configurations that maximize the coverage of configuration-conditional code (#ifdef
blocks) by static analysis tools [W11]. For Linux/arm v3.2, we thereby have – just using
the compiler as a static checker – found 91 new bugs (not yet published).

However, our holistic variability model does not only help developers to maintain
feature-related code in highly configurable system software, but also users can benefit
from this: With respect to issue (c), the 12,000 configuration options of Linux have
rendered it nearly impossible for the average user to tailor a Linux kernel for this specific
use case. In [W5?] we have presented an approach to automate this process. On the
base of a kernel trace, our tools automatically derive a Linux configuration that includes
only the necessary features. For a typical webserver setup (LAMP: Linux, Apache, MySQL,
PhP), the resulting configuration enables only about ten percent of the features and
executable code as enabled in a standard Linux Debian kernel, which here leads to a
significant reduction of the attack surface exploitable by a potential attacker.

31

5. The VAMOS Approach

5.4. VAMOS Key Papers

In the following, I briefly classify the role of the three related key papers, which are
part of this cumulative habilitation treatise. Reprints of these papers are available in
Appendix B.

EuroSys ’11
pp 135 ff

Tartler, Lohmann, Sincero, and Schröder-Preikschat. “Feature Consistency in Compile-
Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” (Ac-
ceptance rate: 15%)

[C14?]

The EuroSys ’11 paper introduces the problem of configurability-related
software defects in large-scale system software on the example of Linux. It
classifies sources and characteristics of such defects and presents the VAMOS
approach of generating a holistic variability model to detect such defects
early in the development process. Feasibility and scalability to the size of
Linux is demonstrated by the implementation in the UNDERTAKER tool, which
covers CPP- and KCONFIG-induced variability. The actual relevance of our
findings is evaluated by analyzing the reaction of the Linux community to
123 submitted patches that fix 364 defects.

SPLC ’12
pp 149 ff

Dietrich, Tartler, Schröder-Preikschat, and Lohmann. “A Robust Approach for Variability
Extraction from the Linux Build System” (Acceptance rate: 33%)

[C6?]

The SPLC ’12 paper complements the VAMOS approach by an important
building block: Variability extraction from the build system, which in Linux
influences the code generation for two thirds of all features. However, ex-
tracting this variability information is difficult due to the declarative and
Turing-complete MAKE language; previous approaches that rely on simple text
processing of build scripts are inherently incomplete and have to be tailored
to a specific Linux variant. The paper presents a robust probing approach that
exploits the build system itself to extract the variability model. It describes
the implementation in the VAMPYR tool and evaluates the probing approach
by comparing it to existing text-based extraction approaches with respect to
robustness, correctness, and impact on UNDERTAKER findings.

HotDep ’12
pp 159 ff

Tartler, Kurmus, Heinloth, Rothberg, Ruprecht, Doreanu, Kapitza, Schröder-Preikschat,
and Lohmann. “Automatic OS Kernel TCB Reduction by Leveraging Compile-Time
Configurability” (Acceptance rate: 42%)

[W5?]

Finally, the HotDep ’12 paper generalizes the VAMOS approach towards a
new use case: The automatic configuration of Linux with respect to a specific
application. Based on the holistic variability model and a kernel trace with a
distro kernel, UNDERTAKER automatically derives a tailored configuration that
is optimized with respect to a nonfunctional property, which here is kernel
attack surface. The resulting kernel is compared against the distribution
kernel with respect to code size, known vulnerabilities, and throughput.

32

5.4. VAMOS Key Papers

The work on VAMOS was conducted with Julio Sincero and Reinhard Tartler during their
PhDs [6, 7]. Julio developed the CPP extractor and the initial version of the KCONFIG

extractor; Reinhard refined the KCONFIG extractor and investigated, with help of bachelor
student Christian Dietrich, the probing-based KBUILD extractor. Reinhard also conducted,
together with Anil Kurmus (IBM Research), the automatic tailoring approach, helped
by Bernhard Heinloth, Anderas Ruprecht, and Valentin Rothberg, who implemented the
tools as part of their master’s project.

33

6. Discussion, Future Work, and Conclusions

The CiAO, SLOTH, and VAMOS approaches briefly introduced in the preceding sections
all address challenges in the design, implementation, and long-term controllability of
variability in tailorable system software: Tailorable system software (Goal) is conceptu-
ally understood as a software product line; the functional and nonfunctional properties
are modelled as optional and mandatory features and constraints (Method). The re-
sulting variability is implemented (and maintained) in the code by decompositional,
compositional, and generative approaches (Technique).

In the following, I discuss some broader aspects of the three approaches – together
with my ideas for further research – and conclude my work.

6.1. Impact on Functional and Nonfunctional Properties

Tailoring basically means to leave out all unneeded optional features and to choose the
“right” variant of all alternative features – “right” with respect to important nonfunctional
properties, such as memory footprint, throughput, event latency, robustness, jitter, and
so on. The “ideal” system software does not impair these properties by abstractions and
policies that do not serve the application’s needs. Both CiAO and SLOTH excel in this
respect, but differ fundamentally in their design and implementation strategy:

• The CiAO approach leads to excellent up-tailorability of embedded system software
(towards the requirements of a specific application) by its aspect-aware design and
implementation approach. The resulting fine-grained separation of concerns and the
strict decoupling of policies and mechanisms in the implementation make it easy to
provide many optional and alternative features.

• The SLOTH approach leads to excellent down-tailorability of embedded system
software (towards better exploitation of hardware) by its generative design and
implementation approach. The generated SLOTH kernels map the application’s
control flows to the features offered by the hardware in an “ideal manner”.

Both the CiAO and SLOTH kernels, implement (most of) the OSEK OS and AUTOSAR OS
standards. So which approach leads to better system software?

• CiAO actually provides more than requested by OSEK OS and AUTOSAR OS. For the
sake of further tailorability with respect to functional and nonfunctional properties,
CiAO offers alternatives for many mechanisms and strategies (protection, synchro-
nization, locking protocols, scheduling, ...). These can be chosen to fine-tune the

35

6. Discussion, Future Work, and Conclusions

trade-off between relevant nonfunctional properties. An example is priority obedi-
ence: CiAO is, as most RTOSs that feature a software scheduler, subject to issues of
rate-monotonic priority inversion. However, on the TriCore platform, CiAO provides
an extension aspect [C20?] that maps interrupts to tasks by delegating all interrupt
requests to the peripheral control processor (PCP) featured on this platform; the PCP
runs truly parallel to the main CPU. Its program activates the corresponding task,
but only interrupts the main CPU if the priority of the incoming interrupt is higher
than the running task’s priority [C21]. This completely prevents rate-monotonic
priority inversion at the price of 3x–4x higher interrupt latencies (caused by the PCP
detour) – the application developer is offered the alternative to trade latency for
priority obedience.

• SLOTH, in contrast, provides only few options and alternatives. Functionally provided
is what can be mapped efficiently to the hardware. The “unfiltrated” efficiency that
results from the application–hardware specific generation of the kernel leads to an
“almost-optimal” solution with respect to many nonfunctional properties: memory
footprint, performance, latency, and priority obedience. Hence, for these properties,
there is simply no need to trade one for another and thus no need for alternatives:
The bare efficiency of SLOTH-based kernels often mitigates the need for alternative
policies – as long as the mapping to hardware is actually possible: The control-flow
model of OSEK is rewarding in this sense. Nevertheless, a higher number of tasks
(exceeding the number of interrupt sources) or a different functionality (e.g., an
earliest deadline first (EDF) scheduler) would be easy to integrate into CiAO, but
would require to introduce software-based scheduling in SLOTH. This would reduce
the “bare efficiency” effect and, thus, also increase the demand for alternatives of
other features in order to keep the system tailorable.

The bottom line is that the SLOTH, in comparison to CiAO, trades efficiency (by implicit
down-tailorability to the hardware) for generality (by explicit up-tailorability to the
application). It should be possible to combine both approaches without generally trading
one for another. This is a topic for further research.

6.2. Explicit, Implicit, and Automatic Tailoring

Another point is the influence of the implementation technique on the process of tailoring
itself. CiAO and CiAO/IP are modelled as software product lines; each instance has to be
tailored explicitly by providing an application description and an explicit configuration
with respect to the 674 features offered by the CiAO feature model. SLOTH basically only
requires the application description; most of the tailoring is then performed implicitly by
the generator with respect to the application description and selected target hardware.
In general, I consider this implicit tailoring preferable, as it removes the burden from the
user to manually decide on the “right” configuration. However, implicit tailoring requires
exploiting domain-specific knowledge in generators – it limits the generality of the system
software.

36

6.2. Explicit, Implicit, and Automatic Tailoring

(a)

v2
.6

.2
5

v2
.6

.2
6

v2
.6

.2
7

v2
.6

.2
8

v2
.6

.2
9

v2
.6

.3
0

v2
.6

.3
1

v2
.6

.3
2

v2
.6

.3
3

v2
.6

.3
4

v2
.6

.3
5

v2
.6

.3
6

v2
.6

.3
7

v2
.6

.3
8

v2
.6

.3
9

v3
.0

v3
.1

v3
.2

0

2,000

4,000

6,000

8,000

10,000

12,000 All features

HW features
arch/ drivers/ sound/

SW features (everything else)

(b)

v2
.6

.2
5

v2
.6

.2
6

v2
.6

.2
7

v2
.6

.2
8

v2
.6

.2
9

v2
.6

.3
0

v2
.6

.3
1

v2
.6

.3
2

v2
.6

.3
3

v2
.6

.3
4

v2
.6

.3
5

v2
.6

.3
6

v2
.6

.3
7

v2
.6

.3
8

v2
.6

.3
9

v3
.0

v3
.1

v3
.2

0

1,000

2,000

3,000

4,000

all

arm

powerpc

mips

x86

blackfin

sh

cris

m68k

ia64

mn10300

alpha

avr32

s390

sparc

h8300

um

m32r

frv

parisc

xtensa

Features

Figure 6.1.: Feature growth in Linux with respect to hardware/software-related functions
(a) Hardware support is the driving force of feature growth in Linux; since Linux V2.6.25,
only 12–13 percent of all Linux features have been related to pure software functionality,
87–88 percent are dedicated to specific hardware support (subsystems arch, drivers,
sound). (b) The growth of hardware-related features is dominated by the arch subsys-
tem on Linux/arm.

Hence, for broad-scale system software, such as Linux with its twelve thousand features
and application domains ranging from enterprise servers to mobile phones and appliances,
automatic tailoring by the automatic derivation of a good initial configuration might be a
reasonable alternative. This is an active field of research: With the VAMOS approach,
we have shown that it is possible to automatically detect required functional features
from a run-time trace and thereby indirectly optimize nonfunctional properties, such as
code footprint and attack surface [W5?, C1]. Other researchers have investigated static
source-code analysis for this purpose [44] or suggested systematic testing techniques
for the automatic prediction [14] and incremental optimization [15] of nonfunctional
properties. It would be interesting to combine these techniques in order to scale to the
(increasing) configurability of system software, such as Linux. This is a topic for further
research.

On the other hand: For specific domains, such as automotive control systems, I do
see quite some potential for implicit tailoring – towards further nonfunctional properties
(such as memory safety and fault resistance) – by generators and also compilers that are
aware of the application domain, hardware properties, and operating-system semantics.
Exploiting static knowledge across the complete stack [W7, W12, C13, W17, C4, W1, 26,
137, 117] (hardware, operating system, middleware, application) remains a promising
field for further research.

But even Linux could profit from more implicit tailoring. I am convinced that explicit
tailoring (even with automation support) is going to hit its limits in the case of Linux:

37

6. Discussion, Future Work, and Conclusions

Since 2005, the number of configurable features has grown by 10–20 percent every year –
mostly caused by advances in hardware: About 88 percent of all features directly deal
with low-level hardware support (subsystems arch, drivers, sound, see Figure 6.1a).
The rising ARM platform (Android smartphones) with its many derivatives and short
innovation cycles has become the driving force in this process (Figure 6.1b). However, at
the same time the “quality” of features (as conceptual abstractions) is going down: Many
new features on Linux/arm address only hardware revisions, subtle device differences,
or specific silicon bugs. Such features are difficult or even impossible to find by the
automatic tailoring approaches described above. Hence, deriving a valid (and running)
configuration for some particular ARM-based device requires a lot of arcane knowledge
about this device – knowledge that, as SLOTH has shown, could better be hidden inside
generators to generate device-specific parts of the code. Device-specific code generation
is an active field of research [104, 75, 33], even though it remains unrealistic that drivers
can completely be generated [11]. Nevertheless, the potential of integrating generative
techniques into Linux in order to reduce the number of features is another topic of further
research.

6.3. Multi-Level Separation of Concerns

Incorporating generative techniques into the Linux build process would result in even
more implementation levels of software variability (Figure 5.1) – potentially increasing
the complexity of software quality measures, evolution, and maintenance tasks even
further. This holds especially for all features that are implemented across multiple levels
or that interact with features implemented on other levels. So what are the broader
implications regarding separation of concerns [147] and feature modularity [3, 35]?

As demonstrated by CiAO, language-based compositional approaches can be beneficial
for the implementation of feature modularity, especially of interacting features. However,
this always holds for just a single implementation level of variability – and there never
is just one level: Even in CiAO we also have a feature model and a build system, both
of which implement parts of the variability. The idea to have just one level and a single
language to express all variability might be tempting, but I am convinced that this is
neither conceptually nor practically achievable. The modularity problem of scattered
feature implementations has to be solved at the tool level!

Lifting modularity as a concept from the language to the tool level has been suggested
(for a single implementation level only) under the term virtual separation of concerns for
decompositional, annotation-based variability. The general idea is to solve the common
issues of “#ifdef hell” by providing feature-related integration views on the software
system with variability-aware IDEs [34, 29, 46, 24] or by a variability-aware file system
[W15].

What is needed – and what is a topic of further research – is an approach and tool
support for virtual separation of concerns across all implementation levels of variability,
independently of the actual implementation technique used on each level. It should
become possible to (a) analyze, (b) visualize, and (c) control feature implementations

38

6.4. Conclusions

Figure 6.2.: The vision of multi-level separation of concerns for configurable features
Implementation fragments of a particular feature can be analyzed, visualized, and controlled
as “cross-layer aspects” – virtual modules that describe variability over more than one level
and implementation technique.

across all levels: The implementation of a feature may then combine compositional,
decompositional, and generative techniques; its implementation parts, which technically
are scattered over different levels and languages, are represented and maintained as a
virtual feature module.

With respect to (a), the VAMOS approach with its holistic variability model might be a
good starting point, also for (b) as a foundation for detecting and grouping related cross-
level feature fragments with the technique suggested in [W15]. For (c), we need some
sort of “cross-layer aspects” that can augment the implementation across multiple levels.
Our work on aspect-oriented programming [J7], but also semantic patch languages, such
as SmPL [55, 54, 36, 19] or C4 [60] might be a suitable approach for this purpose, ideally
extended by some problem-specific cross-level/language constraint system, as we have
suggested in the product-line component (PLiC) approach [C16, C15].

6.4. Conclusions

Providing no business value of its own, system software is expected to provide the
“right” set of abstractions for a particular application use case: The functional and

39

6. Discussion, Future Work, and Conclusions

nonfunctional requirements of the application have to be mapped efficiently to the
functional and nonfunctional properties of the hardware. This is of particular importance
in the hardware-cost–sensitive domain of deeply embedded systems, such as automotive
control units.

Efficiency calls for tailored system software, reusability calls for generic system software.
To overcome this dilemma, most system software provides built-in static variability; it can
be configured at compile time to tailor it towards a specific use case. In my research, I
have investigated methods and techniques towards highly tailorable system software with
focus on the design, implementation, and maintenance of fine-grained static variability.

The resulting CiAO (compositional, aspect-oriented implementation of variability) and
SLOTH (generative, two-dimensional implementation of variability) approaches have both
been successfully applied to the construction of new system software (operating systems,
network stacks). The CiAO and SLOTH families of RTOSs and the CiAO/IP family of TCP/IP
network stacks offer – by their tailorability – unprecedented excellence with respect to
many important nonfunctional properties, including memory footprint, event latency,
priority obedience, jitter, throughput and energy consumption. The analytical VAMOS
approach (decompositional, multi-level implementation of variability) has successfully
been applied to mitigate maintenance, quality, and configuration challenges resulting
from static variability in existing large-scale system software. In Linux we have, by our
holistic variability model, found hundreds of bugs and thousands of lines of dead #ifdef

code – and contributed accepted fixes for many of them. By automatic tailoring, we could
reduce the attackable code size of special-purpose Linux installations by nearly ninety
percent.

While writing these last lines of this habilitation treatise, Linux has reached version
number v3.8 with nearly 13,000 (12,857) features. New hardware features that need to be
abstracted and embraced by configurable system software appear every day. Tailorability
as a system property – and, thus, the efficient and maintainable implementation thereof –
is becoming more important every day.

In this respect, I envision the flexible and problem-oriented integration and combination
of all implementation techniques for variability by methods and tools for multi-level
separation of concerns – towards more implicit down-tailoring, rich functional up-tailoring,
and the long-term controllability of variability for both developers and users.

40

A. Bibliography

A.1. General Bibliography

[1] GNU M4 – GNU Project – Free Software Foundation (FSF). http://www.gnu.org/software/m4/,
visited 2010-07-29. URL: http://www.gnu.org/software/m4/.

[2] eCos homepage. visited 2013-03-19. URL: http://www.ecoscentric.com/ecos/index.shtml.

[3] C. Kästner, S. Apel, and K. Ostermann. “The road to feature modularity?” In: Proceedings of the
15th Software Product Line Conference (SPLC ’11), Volume 2. (FOSD ’11 Proceedings). ACM Press.
ISBN: 978-1-4503-0789-5. DOI: 10.1145/2019136.2019142.

[4] C. Borchert, H. Schirmeier, and O. Spinczyk. “Generative Software-based Memory Error Detection
and Correction for Operating System Data Structures.” In: Proceedings of the 43rd International
Conference on Dependable Systems and Networks (DSN ’13). IEEE Computer Society Press, 2013.

[5] W. Hofer. “Sloth: The Virtue and Vice of Latency Hiding in Hardware-Centric Operating Systems.”
PhD thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg, 2013.

[6] J. Sincero. “Variability Bugs in System Software.” PhD thesis. Friedrich-Alexander University
Erlangen-Nuremberg, 2013.

[7] R. Tartler. “Mastering Variability Challenges in Linux and Related Highly-Configurable System
Software.” PhD thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg, 2013.

[8] T. Berger, S. She, R. Lotufo, and A. W. und Krzysztof Czarnecki. Variability Modeling in the Systems
Software Domain. Tech. rep. GSDLAB-TR 2012-07-06. Generative Software Development Laboratory,
University of Waterloo, 2012. URL: http://gsd.uwaterloo.ca/sites/default/files/vm-2012-
berger.pdf.

[9] J. Corbet, G. Kroah-Hartman, and A. McPherson. Linux Kernel Development. How Fast it is Going,
Who is Doing It, What They are Doing, and Who is Sponsoring It. The Linux Foundation, 2012.

[10] P. Gazzillo and R. Grimm. “SuperC: parsing all of C by taming the preprocessor.” In: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’12).
ACM Press, 2012, pp. 323–334. ISBN: 978-1-4503-1205-9. DOI: 10.1145/2254064.2254103.

[11] A. Kadav and M. M. Swift. “Understanding modern device drivers.” In: Proceedings of the 17th
International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’12). ACM Press, 2012, pp. 87–98. ISBN: 978-1-4503-0759-8. DOI: 10.1145/2150976.
2150987.

[12] L. E. Leyva-del-Foyo, P. Mejia-Alvarez, and D. de Niz. “Integrated Task and Interrupt Management
for Real-Time Systems.” In: Transactions on Embedded Computing Systems 11.2 (2012), 32:1–32:31.
ISSN: 1539-9087. DOI: 10.1145/2220336.2220344. URL: http://doi.acm.org/10.1145/2220336.
2220344.

[13] S. Nadi and R. C. Holt. “Mining Kbuild to Detect Variability Anomalies in Linux.” In: Proceedings of
the 16th European Conference on Software Maintenance and Reengineering (CSMR ’12). (Mar. 27–30,
2012). IEEE Computer Society Press, 2012. ISBN: 978-1-4673-0984-4. DOI: 10.1109/CSMR.2012.21.

[14] N. Siegmund, S. Kolesnikov, C. Kastner, S. Apel, D. Batory, M. Rosenmuller, and G. Saake. “Pre-
dicting performance via automated feature-interaction detection.” In: Proceedings of the 34nd
International Conference on Software Engineering (ICSE ’12). IEEE Computer Society Press, 2012,
pp. 167–177. ISBN: 978-1-4673-1067-3. DOI: 10.1109/ICSE.2012.6227196.

41

http://www.gnu.org/software/m4/
http://www.gnu.org/software/m4/
http://www.ecoscentric.com/ecos/index.shtml
http://dx.doi.org/10.1145/2019136.2019142
http://gsd.uwaterloo.ca/sites/default/files/vm-2012-berger.pdf
http://gsd.uwaterloo.ca/sites/default/files/vm-2012-berger.pdf
http://dx.doi.org/10.1145/2254064.2254103
http://dx.doi.org/10.1145/2150976.2150987
http://dx.doi.org/10.1145/2150976.2150987
http://dx.doi.org/10.1145/2220336.2220344
http://doi.acm.org/10.1145/2220336.2220344
http://doi.acm.org/10.1145/2220336.2220344
http://dx.doi.org/10.1109/CSMR.2012.21
http://dx.doi.org/10.1109/ICSE.2012.6227196

Bibliography

[15] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel, and G. Saake. “SPL Conqueror:
Toward optimization of non-functional properties in software product lines.” English. In: Software
Quality Journal 20.3-4 (2012), pp. 487–517. ISSN: 0963-9314. DOI: 10.1007/s11219-011-9152-9.
URL: http://dx.doi.org/10.1007/s11219-011-9152-9.

[16] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger. “Variability-Aware
Parsing in the Presence of Lexical Macros and Conditional Compilation.” In: Proceedings of the 26th
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
’11). ACM Press, 2011. DOI: 10.1145/2048066.2048128.

[17] J. Liebig, C. Kästner, and S. Apel. “Analyzing the discipline of preprocessor annotations in 30
million lines of C code.” In: Proceedings of the 10th International Conference on Aspect-Oriented
Software Development (AOSD ’11). ACM Press, 2011, pp. 191–202. ISBN: 978-1-4503-0605-8. DOI:
10.1145/1960275.1960299.

[18] “Microsoft’s Protocol Documentation Program: Interoperability Testing at Scale.” In: Queue 9 (6
2011). A Discussion with Nico Kicillof, Wolfgang Grieskamp and Bob Binder, 20:20–20:27. ISSN:
1542-7730. DOI: 10.1145/1989748.1996412.

[19] N. Palix, G. Thomas, S. Saha, C. Calvès, J. L. Lawall, and G. Muller. “Faults in Linux: Ten years
later.” In: Proceedings of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’11). ACM Press, 2011, pp. 305–318. DOI: 10.1145/
1950365.1950401.

[20] A. Warg and A. Lackorzynski. “Rounding pointers: type safe capabilities with C++ meta program-
ming.” In: Proceedings of the 6th Workshop on Programming Languages and Operating Systems (PLOS
’11). ACM Press, 2011, 3:1–3:5. ISBN: 978-1-4503-0979-0. DOI: 10.1145/2039239.2039244. URL:
http://doi.acm.org/10.1145/2039239.2039244.

[21] T. Berger and S. She. Formal Semantics of the CDL Language. Technical Note. University of Leipzig,
2010.

[22] T. Berger, S. She, R. Lotufo, and A. W. und Krzysztof Czarnecki. “Variability Modeling in the
Real: A Perspective from the Operating Systems Domain.” In: Proceedings of the 25th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’10). ACM Press, 2010, pp. 73–82.
ISBN: 978-1-4503-0116-9. DOI: 10.1145/1858996.1859010.

[23] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. “An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines.” In: Proceedings of the 32nd International Conference
on Software Engineering (ICSE ’10). ACM Press, 2010. DOI: 10.1145/1806799.1806819.

[24] M. Ribeiro, H. Pacheco, L. Teixeira, and P. Borba. “Emergent feature modularization.” In: Proceedings
of the 25th ACM Conference Companion on Object-Oriented Programming, Systems, Languages,
and Applications (SPLASH ’10). ACM Press, 2010, pp. 11–18. ISBN: 978-1-4503-0240-1. DOI:
10.1145/1869542.1869545.

[25] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella. “Delta-oriented programming of software
product lines.” In: Proceedings of the 14th Software Product Line Conference (SPLC ’10). Vol. 6287.
Lecture Notes in Computer Science. Springer-Verlag, 2010, pp. 77–91. ISBN: 978-3-642-15578-9.
DOI: 10.1007/978-3-642-15579-6_6.

[26] F. Scheler and W. Schröder-Preikschat. “The RTSC: Leveraging the Migration from Event-Triggered
to Time-Triggered Systems.” In: Proceedings of the 13th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC ’10). IEEE Computer Society Press, 2010, pp. 34–
41. ISBN: 978-0-7695-4037-5. DOI: 10.1109/ISORC.2010.11.

[27] S. She and T. Berger. Formal Semantics of the Kconfig Language. Technical Note. University of
Waterloo, 2010.

[28] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. “The Variability Model of the Linux
Kernel.” In: Proceedings of the 4th International Workshop on Variability Modelling of Software-
intensive Systems (VAMOS ’10). 2010.

42

http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1145/2048066.2048128
http://dx.doi.org/10.1145/1960275.1960299
http://dx.doi.org/10.1145/1989748.1996412
http://dx.doi.org/10.1145/1950365.1950401
http://dx.doi.org/10.1145/1950365.1950401
http://dx.doi.org/10.1145/2039239.2039244
http://doi.acm.org/10.1145/2039239.2039244
http://dx.doi.org/10.1145/1858996.1859010
http://dx.doi.org/10.1145/1806799.1806819
http://dx.doi.org/10.1145/1869542.1869545
http://dx.doi.org/10.1007/978-3-642-15579-6_6
http://dx.doi.org/10.1109/ISORC.2010.11

A.1. General Bibliography

[29] S. Apel and C. Kästner. “Virtual Separation of Concerns - A Second Chance for Preprocessors.” In:
Journal of Object Technology 8.6 (2009), pp. 59–78.

[30] A. Borisov. “Coreboot at your service!” In: Linux Journal 1 (186 2009).

[31] P.-E. Dagand, A. Baumann, and T. Roscoe. “Filet-o-Fish: practical and dependable domain-specific
languages for OS development.” In: Proceedings of the 5th Workshop on Programming Languages
and Operating Systems (PLOS ’09). ACM Press, 2009, 5:1–5:5. ISBN: 978-1-60558-844-5. DOI:
10.1145/1745438.1745446.

[32] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Batory, and G. Saake. “On the Impact
of the Optional Feature Problem: Analysis and Case Studies.” In: Proceedings of the 13th Software
Product Line Conference (SPLC ’09). Carnegie Mellon University, 2009. ISBN: 978-0-9786956-2-0.

[33] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser. “Automatic device driver synthesis with
termite.” In: Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP ’09).
ACM Press, 2009, pp. 73–86. ISBN: 978-1-60558-752-3. DOI: 10.1145/1629575.1629583.

[34] C. Kästner, S. Apel, and M. Kuhlemann. “Granularity in Software Product Lines.” In: Proceedings of
the 30th International Conference on Software Engineering (ICSE ’08). ACM Press, 2008, pp. 311–320.
ISBN: 978-1-60558-079-1. DOI: 10.1145/1368088.1368131.

[35] C. Kim, H. Peter, C. Kästner, and D. Batory. “On the Modularity of Feature Interactions.” In: Pro-
ceedings of the 5th International Conference on Generative Programming and Component Engineering
(GPCE ’08). ACM Press, 2008, pp. 23–34. ISBN: 978-1-60558-267-2. DOI: 10.1145/1449913.
1449919.

[36] Y. Padioleau, J. L. Lawall, G. Muller, and R. R. Hansen. “Documenting and Automating Collateral
Evolutions in Linux Device Drivers.” In: Proceedings of the ACM SIGOPS/EuroSys European Conference
on Computer Systems 2008 (EuroSys ’08). ACM Press, 2008.

[37] D. Spinellis. “A Tale of Four Kernels.” In: Proceedings of the 30th International Conference on
Software Engineering (ICSE ’08). ACM Press, 2008, pp. 381–390. ISBN: 978-1-60558-079-1. DOI:
10.1145/1368088.1368140.

[38] W. Stallings. Operating Systems. Internals and Design Principles. Sixth. Prentice Hall PTR, 2008.
ISBN: 978-0136006329.

[39] B. Adams, K. De Schutter, H. Tromp, and W. D. Meuter. “Design recovery and maintenance of
build systems.” In: Proceedings of the 23st IEEE International Conference on Software Maintainance
(ICSM’07). IEEE Computer Society Press, 2007, pp. 114–123. ISBN: 978-1-4244-1256-3. DOI:
10.1109/ICSM.2007.4362624.

[40] B. Adams, K. D. Schutter, H. Tromp, and W. D. Meuter. “The Evolution of the Linux Build System.”
In: Electronic Communications of the EASST (2007). ISSN: 1863-2122.

[41] C. Kästner, S. Apel, and D. Batory. “A Case Study Implementing Features Using AspectJ.” In:
Proceedings of the 11th Software Product Line Conference (SPLC ’07). IEEE Computer Society Press,
2007, pp. 223–232. DOI: 10.1109/SPLC.2007.5.

[42] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay, and P. Levis. “Integrating Concurrency
Control and Energy Management in Device Drivers.” In: Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP ’07). ACM Press, 2007, pp. 251–264. ISBN: 978-1-59593-591-5.
DOI: 10.1145/1294261.1294286.

[43] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and G. Saval. “Disambiguating the Documentation
of Variability in Software Product Lines: A Separation of Concerns, Formalization and Automated
Analysis.” In: Proceedings of the 15th IEEE Conference on Requirements Engineering (RE ’07). (Oct. 15–
19, 2007). IEEE Computer Society, 2007, pp. 243–253. ISBN: 0-7695-2935-6. DOI: 10.1109/RE.
2007.61.

[44] H. Schirmeier and O. Spinczyk. “Tailoring Infrastructure Software Product Lines by Static Appli-
cation Analysis.” In: Proceedings of the 11th Software Product Line Conference (SPLC ’07). IEEE
Computer Society Press, 2007, pp. 255–260. ISBN: 0-7695-2888-0. DOI: 10.1109/SPLINE.2007.33.

43

http://dx.doi.org/10.1145/1745438.1745446
http://dx.doi.org/10.1145/1629575.1629583
http://dx.doi.org/10.1145/1368088.1368131
http://dx.doi.org/10.1145/1449913.1449919
http://dx.doi.org/10.1145/1449913.1449919
http://dx.doi.org/10.1145/1368088.1368140
http://dx.doi.org/10.1109/ICSM.2007.4362624
http://dx.doi.org/10.1109/SPLC.2007.5
http://dx.doi.org/10.1145/1294261.1294286
http://dx.doi.org/10.1109/RE.2007.61
http://dx.doi.org/10.1109/RE.2007.61
http://dx.doi.org/10.1109/SPLINE.2007.33

Bibliography

[45] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk. “Is The Linux Kernel a Software
Product Line?” In: Proceedings of the International Workshop on Open Source Software and Product
Lines (SPLC-OSSPL 2007). 2007.

[46] N. Singh, C. Gibbs, and Y. Coady. “C-CLR: A Tool for Navigating Highly Configurable System
Software.” In: Proceedings of the 6th AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (AOSD-ACP4IS ’07). ACM Press, 2007, pp. 1–6. ISBN: 1-59593-657-8. DOI:
10.1145/1233901.1233910.

[47] A. S. Tanenbaum. Modern Operating Systems. Third. Prentice Hall PTR, 2007. ISBN: 978-0136006633.

[48] AUTOSAR. Requirements on Operating System (Version 2.0.1). Tech. rep. Automotive Open System
Architecture GbR, 2006.

[49] AUTOSAR. Specification of Operating System (Version 2.0.1). Tech. rep. Automotive Open System
Architecture GbR, 2006.

[50] D. Beuche. Variant Management with pure::variants. Tech. rep. http://www.pure-systems.com/
fileadmin/downloads/pv- whitepaper- en- 04.pdf, visited 2011-11-12. pure-systems GmbH,
2006.

[51] M. Engel and B. Freisleben. “TOSKANA: A Toolkit for Operating System Kernel Aspects.” In:
Transactions on AOSD II. Lecture Notes in Computer Science 4242. Springer-Verlag, 2006, pp. 182–
226.

[52] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski, J. Xenidis, D. Da Silva, M. Ostrowski, J.
Appavoo, M. Butrico, M. Mergen, A. Waterland, and V. Uhlig. “K42: building a complete operating
system.” In: Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems
2006 (EuroSys ’06). ACM Press, 2006, pp. 133–145. ISBN: 1-59593-322-0. DOI: 10.1145/1217935.
1217949.

[53] L. E. Leyva-del-Foyo, P. Mejia-Alvarez, and D. de Niz. “Predictable Interrupt Management for
Real Time Kernels over conventional PC Hardware.” In: Proceedings of the 12th IEEE International
Symposium on Real-Time and Embedded Technology and Applications (RTAS ’06). IEEE Computer
Society Press, 2006, pp. 14–23. DOI: 10.1109/RTAS.2006.34.

[54] Y. Padioleau, R. R. Hansen, J. L. Lawall, and G. Muller. “Semantic Patches for Documenting and
Automating Collateral Evolutions in Linux Device Drivers.” In: Proceedings of the Linguistic Support
for Modern Operating Systems ASPLOS XII Workshop (PLOS ’06). ACM Press, 2006.

[55] Y. Padioleau, J. L. Lawall, and G. Muller. “SmPL: A Domain-Specific Language for Specifying
Collateral Evolutions in Linux Device Drivers.” In: International ERCIM Workshop on Software
Evolution. 2006.

[56] J. Siadat, R. J. Walker, and C. Kiddle. “Optimization Aspects in Network Simulation.” In: Proceedings
of the 5th International Conference on Aspect-Oriented Software Development (AOSD ’06). ACM Press,
2006, pp. 122–133.

[57] D. D. Silva, O. Krieger, R. W. Wisniewski, A. Waterland, D. Tam, and A. Baumann. “K42: an
infrastructure for operating system research.” In: ACM SIGOPS Operating Systems Review 40.2
(2006), pp. 34–42. DOI: 10.1145/1131322.1131333.

[58] F. Steimann. “The Paradoxical Success of Aspect-Oriented Programming.” In: Proceedings of the 21st
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
’06). ACM Press, 2006, pp. 481–497. DOI: 10.1145/1167515.1167514.

[59] A. Tešanović, M. Amirijoo, and J. Hansson. “Providing Configurable QoS Management in Real-Time
Systems with QoS Aspect Packages.” In: Transactions on AOSD II. Lecture Notes in Computer
Science 4242. Springer-Verlag, 2006, pp. 256–288.

[60] M. Yuen, M. E. Fiuczynski, R. Grimm, and Y. Coady. “Making Extensibility of System Software
Practical with the C4 Toolkit.” In: Proceedings of the 4th AOSD Workshop on Software Engineering
Properties of Languages and Aspect Technologies (AOSD-SPLAT ’06). ACM Press, 2006.

44

http://dx.doi.org/10.1145/1233901.1233910
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://dx.doi.org/10.1145/1217935.1217949
http://dx.doi.org/10.1145/1217935.1217949
http://dx.doi.org/10.1109/RTAS.2006.34
http://dx.doi.org/10.1145/1131322.1131333
http://dx.doi.org/10.1145/1167515.1167514

A.1. General Bibliography

[61] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. “FeatureC++: On the Symbiosis of Feature-
Oriented and Aspect-Oriented Programming.” In: Proceedings of the 4th International Conference on
Generative Programming and Component Engineering (GPCE ’05). 2005.

[62] Delta Software Technology GmbH. Angie – An Introduction. 2005. URL: http://www.d- s- t-
g.com/angie.

[63] M. Fiuczynski, R. Grimm, Y. Coady, and D. Walker. “patch(1) Considered Harmful.” In: Proceedings
of the 10th Workshop on Hot Topics in Operating Systems (HotOS ’05). USENIX Association, 2005.

[64] D. Gay, P. Levis, and D. Culler. “Software Design Patterns for TinyOS.” In: Proceedings of the 2005
ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems (LCTES
’05). ACM Press, 2005, pp. 40–49. ISBN: 1-59593-018-3. DOI: 10.1145/1070891.1065917.

[65] J. Lawall, H. Duchesne, G. Muller, and A.-F. L. Meur. “Bossa Nova: Introducing Modularity into the
Bossa Domain-Specific Language.” In: Proceedings of the 4th International Conference on Generative
Programming and Component Engineering (GPCE ’05). 2005, pp. 78–93.

[66] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E.
Brewer, and D. Culler. “TinyOS: An Operating System for Wireless Sensor Networks.” In: Ambient
Intelligence. Springer-Verlag, 2005.

[67] M. Mernik, J. Heering, and A. M. Sloane. “When and how to develop domain-specific languages.”
In: ACM Computing Surveys 37.4 (2005), pp. 316–344.

[68] G. Muller, J. L. Lawall, and H. Duchesne. “A Framework for Simplifying the Development of Kernel
Schedulers: Design and Performance Evaluation.” In: Proceedings of the 9th IEEE International
Symposium on High-Assurance Systems Engineering (HASE ’05). IEEE Computer Society Press, 2005,
pp. 56–65. ISBN: 0-7695-2377-3. DOI: 10.1109/HASE.2005.1.

[69] OSEK/VDX Group. Operating System Specification 2.2.3. Tech. rep. http://portal.osek-vdx.org/
files/pdf/specs/os223.pdf, visited 2011-08-17. OSEK/VDX Group, 2005.

[70] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari, and H. Rajan. “Information
Hiding Interfaces for Aspect-Oriented Design.” In: ESEC/FSE-13: Proceedings of the 10th European
Software Engineering Conference held jointly with the 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM Press, 2005, pp. 166–175. ISBN: 1-59593-014-0. DOI:
10.1145/1081706.1081734.

[71] TriCore 1 User’s Manual (V1.3.5), Volume 1: Core Architecture. Infineon Technologies AG. 2005.

[72] D. Batory. “Feature-Oriented Programming and the AHEAD Tool Suite.” In: Proceedings of the 26th
International Conference on Software Engineering (ICSE ’04). IEEE Computer Society Press, 2004,
pp. 702–703.

[73] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. “Variability management with feature
models.” In: Science of Computer Programming 53.3 (2004), pp. 333–352. ISSN: 0167-6423. DOI:
10.1016/j.scico.2003.04.005.

[74] C. Constantinides, T. Skotiniotis, and M. Störzer. “AOP Considered Harmful.” In: 1st European
Interactive Workshop on Aspects in Software (EIWAS ’04). 2004.

[75] C. L. Conway and S. A. Edwards. “NDL: A Domain-Specific Language for Device Drivers.” In:
Proceedings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools
for Embedded Systems (LCTES ’04). ACM Press, 2004, pp. 30–36. ISBN: 1-58113-806-7. DOI:
10.1145/997163.997169.

[76] OSEK/VDX Group. OSEK Implementation Language Specification 2.5. Tech. rep. http://portal.
osek-vdx.org/files/pdf/specs/oil25.pdf, visited 2009-09-09. OSEK/VDX Group, 2004.

[77] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. “Aspects and Components in Real-Time
System Development: Towards Reconfigurable and Reusable Software.” In: Journal of Embedded
Computing (2004).

45

http://www.d-s-t-g.com/angie
http://www.d-s-t-g.com/angie
http://dx.doi.org/10.1145/1070891.1065917
http://dx.doi.org/10.1109/HASE.2005.1
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://dx.doi.org/10.1145/1081706.1081734
http://dx.doi.org/10.1016/j.scico.2003.04.005
http://dx.doi.org/10.1145/997163.997169
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf

Bibliography

[78] A. Tešanović, K. Sheng, and J. Hansson. “Application-Tailored Database Systems: A Case of Aspects
in an Embedded Database.” In: Proceedings of the 8th International Database Engineering and
Applications Symposium (IDEAS ’04). IEEE Computer Society Press, 2004.

[79] E. Visser. “Program Transformation with Stratego/XT.” In: Domain-Specific Program Generation.
Vol. 3016/2004. Lecture Notes in Computer Science. Springer-Verlag, 2004, pp. 216–238. ISBN:
978-3-540-22119-7. DOI: 10.1007/b98156.

[80] R. A. Åberg, J. L. Lawall, M. Südholt, G. Muller, and A.-F. L. Meur. “On the Automatic Evolution
of an OS Kernel Using Temporal Logic and AOP.” In: Proceedings of the 18th IEEE International
Conference on Automated Software Engineering (ASE ’03). IEEE Computer Society Press, 2003,
pp. 196–204.

[81] C. Clifton and G. T. Leavens. Obliviousness, Modular Reasoning, and the Behavioral Subtyping
Analogy. Tech. rep. TR 03-01. http://archives.cs.iastate.edu/documents/disk0/00/00/02/
96/00000296-00/paper.pdf. Department of Computer Science, Iowa State University, 2003.

[82] Y. Coady and G. Kiczales. “Back to the Future: A Retroactive Study of Aspect Evolution in Operating
System Code.” In: Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development (AOSD ’03). ACM Press, 2003, pp. 50–59.

[83] A. Dunkels. “Full TCP/IP for 8-bit architectures.” In: Proceedings of the 1st International Conference
on Mobile Systems, Applications, and Services (MobiSys ’03). ACM Press. 2003, pp. 85–98.

[84] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. “The nesC language: A holistic
approach to networked embedded systems.” In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’03). ACM Press, 2003, pp. 1–11. ISBN:
1-58113-662-5.

[85] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. “XVCL: XML-based variant configuration language.”
In: Proceedings of the 25th International Conference on Software Engineering (ICSE ’03). IEEE
Computer Society Press, 2003, pp. 810–811. ISBN: 0-7695-1877-X.

[86] M. Barbeau and F. Bordeleau. “A Protocol Stack Development Tool Using Generative Programming.”
In: Proceedings of the 1st International Conference on Generative Programming and Component
Engineering (GPCE ’02). Lecture Notes in Computer Science. Springer-Verlag, 2002, pp. 93–109.
ISBN: 978-3-540-44284-4. DOI: 10.1007/3-540-45821-2_6. URL: http://dx.doi.org/10.1007/3-
540-45821-2_6.

[87] L. P. Barreto and G. Muller. “Bossa: a Language-based Approach to the Design of Real-time
Schedulers.” In: 10th International Conference on Real-Time Systems (RTS ’02). 2002, pp. 19–31.

[88] M. D. Ernst, G. J. Badros, and D. Notkin. “An Empirical Analysis of C Preprocessor Use.” In:
IEEE Transactions on Software Engineering 28.12 (2002), pp. 1146–1170. ISSN: 0098-5589. DOI:
10.1109/TSE.2002.1158288.

[89] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller. “THINK: A Software Framework for Component-
based Operating System Kernels.” In: Proceedings of the 2002 USENIX Annual Technical Conference.
USENIX Association, 2002, pp. 73–86.

[90] M. Golm, M. Felser, C. Wawersich, and J. Kleinöder. “The JX Operating System.” In: Proceedings
of the 2002 USENIX Annual Technical Conference. USENIX Association, 2002, pp. 45–58. ISBN:
1-880446-00-6.

[91] D. Mahrenholz, O. Spinczyk, A. Gal, and W. Schröder-Preikschat. “An Aspect-Oriented Implementa-
tion of Interrupt Synchronization in the PURE Operating System Family.” In: Proceedings of the 5th
ECOOP Workshop on Object Orientation and Operating Systems (ECOOP-OOOS ’02). 2002, pp. 49–54.
ISBN: 84-699-8733-X.

[92] A. Massa. Embedded Software Development with eCos. New Riders, 2002. ISBN: 978-0130354730.

[93] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Addison-
Wesley, 2001. ISBN: 0-20-17043-15.

46

http://dx.doi.org/10.1007/b98156
http://archives.cs.iastate.edu/documents/disk0/00/00/02/96/00000296-00/paper.pdf
http://archives.cs.iastate.edu/documents/disk0/00/00/02/96/00000296-00/paper.pdf
http://dx.doi.org/10.1007/3-540-45821-2_6
http://dx.doi.org/10.1007/3-540-45821-2_6
http://dx.doi.org/10.1007/3-540-45821-2_6
http://dx.doi.org/10.1109/TSE.2002.1158288

A.1. General Bibliography

[94] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. “Using AspectC to Improve the Modularity of
Path-Specific Customization in Operating System Code.” In: Proceedings of the 3rd Joint European
Software Engineering Conference and ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE ’01). 2001.

[95] T. Elrad, M. Aksits, G. Kiczales, K. Lieberherr, and H. Ossher. “Discussing aspects of AOP.” In:
Communications of the ACM 44.10 (2001), pp. 33–38.

[96] A. Fröhlich. Application-Oriented Operating Systems. GMD Research Series 17. GMD - Forschungszen-
trum Informationstechnik, 2001.

[97] L. Northrop and P. Clements. Software Product Lines: Practices and Patterns. Addison-Wesley, 2001.
ISBN: 978-0-201-70332-0.

[98] OSEK/VDX Group. Time-Triggered Operating System Specification 1.0. Tech. rep. http://portal.
osek-vdx.org/files/pdf/specs/ttos10.pdf. OSEK/VDX Group, 2001.

[99] H. Ossher and P. Tarr. “Using Multidimensional Separation of Concerns to (Re)shape Evolving
Software.” In: Communications of the ACM (2001), pp. 43–50.

[100] K. Czarnecki and U. W. Eisenecker. Generative Programming. Methods, Tools and Applications.
Addison-Wesley, 2000. ISBN: 0-20-13097-77.

[101] K. Czarnecki, U. Eisenecker, R. Glück, D. Vandevoorde, and T. Veldhuizen. “Generative Programming
and Active Libraries.” In: Generic Programming. Vol. 1766. Lecture Notes in Computer Science.
Springer-Verlag, 2000, pp. 25–39. ISBN: 978-3-540-41090-4. DOI: 10.1007/3-540-39953-4_3. URL:
http://dx.doi.org/10.1007/3-540-39953-4_3.

[102] A. Haeberlen, J. Liedtke, Y. Park, L. Reuther, and V. Uhlig. “Stub-code performance is becoming
important.” In: Proceedings of the 1st conference on Industrial Experiences with Systems Software -
Volume 1. USENIX Association, 2000, 4:1–4:8.

[103] Y. Hu, E. Merlo, M. Dagenais, and B. Lagüe. “C/C++ Conditional Compilation Analysis Using Sym-
bolic Execution.” In: Proceedings of the 16th IEEE International Conference on Software Maintainance
(ICSM’00). IEEE Computer Society Press, 2000, p. 196. ISBN: 0-7695-0753-0.

[104] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G. Muller. “Devil: an IDL for hardware
programming.” In: 4th Symposium on Operating System Design and Implementation (OSDI ’00).
USENIX Association, 2000, pp. 17–30.

[105] G. Muller, C. Consel, R. Marlet, L. P. Barreto, F. Mérillon, and L. Réveillère. “Towards robust OSes
for appliances: a new approach based on domain-specific languages.” In: Proceedings of the 9th
ACM SIGOPS European Workshop “Beyond the PC: New Challenges for the Operating System”. ACM
Press, 2000, pp. 19–24. DOI: 10.1145/566726.566732.

[106] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. “The Koala Component Model
for Consumer Electronics Software.” In: Computer 33.3 (2000), pp. 78–85. ISSN: 0018-9162. DOI:
10.1109/2.825699.

[107] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. “Knit: Component Composition for Systems
Software.” In: 4th Symposium on Operating System Design and Implementation (OSDI ’00). USENIX
Association, 2000, pp. 347–360.

[108] L. Réveillère, F. Mérillon, C. Consel, R. Marlet, and G. Muller. “A DSL Approach to Improve Pro-
ductivity and Safety in Device Drivers Development.” In: Proceedings of the 15th IEEE International
Conference on Automated Software Engineering (ASE ’00). IEEE Computer Society Press, 2000,
pp. 101–110. ISBN: 0-7695-0710-7.

[109] N. Wells. “BusyBox: A Swiss Army Knife for Linux.” In: Linux Journal 10 (78es 2000).

[110] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-Preikschat, O. Spinczyk, and U. Spinczyk. “The
PURE Family of Object-Oriented Operating Systems for Deeply Embedded Systems.” In: Proceedings
of the 2nd IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
’99). IEEE Computer Society Press, 1999, pp. 45–53.

47

http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf
http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf
http://dx.doi.org/10.1007/3-540-39953-4_3
http://dx.doi.org/10.1007/3-540-39953-4_3
http://dx.doi.org/10.1145/566726.566732
http://dx.doi.org/10.1109/2.825699

Bibliography

[111] S. Chandra, B. Richards, and J. R. Larus. “Teapot: A Domain-Specific Language for Writing Cache
Coherence Protocols.” In: IEEE Transactions on Software Engineering 25.3 (1999), pp. 317–333.
ISSN: 0098-5589. DOI: 10.1109/32.798322.

[112] A. Fröhlich and W. Schröder-Preikschat. “High Performance Application-oriented Operating Systems
– the EPOS Aproach.” In: Proceedings of the 11th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD ’99). IEEE Computer Society Press, 1999, pp. 3–9.

[113] D. B. Stewart. “Twenty-Five Most Common Mistakes with Real-Time Software Development.” In:
Proceedings of the 1999 Embedded Systems Conference (ESC ’99). 1999.

[114] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr. “N Degrees of Separation: Multi-Dimensional
Separation of Concerns.” In: Proceedings of the 21st International Conference on Software Engineering
(ICSE ’99). IEEE Computer Society Press, 1999, pp. 107–119.

[115] S. Thibault, R. Marlet, and C. Consel. “Domain-specific languages: from design to implementation
application to video device drivers generation.” In: IEEE Transactions on Software Engineering 25.3
(1999), pp. 363–377. ISSN: 0098-5589. DOI: 10.1109/32.798325.

[116] D. Box. Essential COM. Addison-Wesley, 1998. ISBN: 0-201-63446-5.

[117] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and E.-.-.-. N. Volanschi. “Tempo: Specializing
Systems Applications and Beyond.” In: ACM Computing Surveys 30.3es (1998).

[118] M. Hohmuth. The Fiasco kernel: System architecture. Technical report. TU Dresden, 1998.

[119] S. Thibault, C. Consel, and G. Muller. “Safe and Efficient Active Network Programming.” In:
Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems (SRDS ’98). IEEE Computer
Society Press, 1998, pp. 135–143. ISBN: 0-8186-9218-9. DOI: 10.1109/RELDIS.1998.740484.

[120] T. L. Veldhuizen and D. Gannon. “Active Libraries: Rethinking the Roles of Compilers and Libraries.”
In: Proceedings of the SIAM Workshop on Object-Oriented Methods for Inter-Operable Scientific and
Engineering Computing. SIAM Press, 1998.

[121] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom. “Flick: a flexible, optimizing IDL compiler.” In:
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’97). ACM Press, 1997, pp. 44–56. ISBN: 0-89791-907-6. DOI: 10.1145/258915.258921.

[122] J.-M. Favre. “A Rigorous Approach to Support the Maintenance of Large Portable Software.” In:
1st Euromicro Working Conference on Software Maintenance and Reengineering (CSMR ’97). IEEE
Computer Society Press, 1997, p. 44. ISBN: 0-8186-7892-5. DOI: 10.1109/CSMR.1997.583003.

[123] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. “The Flux OSKit: A Substrate for
Kernel and Language Research.” In: Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP ’97). ACM SIGOPS Operating Systems Review. ACM Press, 1997, pp. 38–51.

[124] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. “The Performance of µ-Kernel-
Based Systems.” In: Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP
’97). ACM Press, 1997. DOI: 10.1145/269005.266660.

[125] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
“Aspect-Oriented Programming.” In: Proceedings of the 11th European Conference on Object-Oriented
Programming (ECOOP ’97). Vol. 1241. Lecture Notes in Computer Science. Springer-Verlag, 1997,
pp. 220–242.

[126] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1997.

[127] K. Driesen and U. Hölzle. “The Direct Cost of Virtual Function Calls in C++.” In: Proceedings of
the 11th ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’96). 1996.

[128] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. “Extensibility safety and performance in the SPIN operating system.” In: Proceedings
of the 15th ACM Symposium on Operating Systems Principles (SOSP ’95). ACM SIGOPS Operating
Systems Review. ACM Press, 1995, pp. 267–283. DOI: 10.1145/224056.224077.

48

http://dx.doi.org/10.1109/32.798322
http://dx.doi.org/10.1109/32.798325
http://dx.doi.org/10.1109/RELDIS.1998.740484
http://dx.doi.org/10.1145/258915.258921
http://dx.doi.org/10.1109/CSMR.1997.583003
http://dx.doi.org/10.1145/269005.266660
http://dx.doi.org/10.1145/224056.224077

A.1. General Bibliography

[129] D. R. Engler, M. F. Kaashoek, and J. O’Toole. “Exokernel: An Operating System Architecture for
Application-Level Resource Management.” In: Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP ’95). ACM SIGOPS Operating Systems Review. ACM Press, 1995, pp. 251–
266. DOI: 10.1145/224057.224076.

[130] J. Liedtke. “On µ-Kernel Construction.” In: Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP ’95). ACM SIGOPS Operating Systems Review. ACM Press, 1995. DOI:
10.1145/224057.224075.

[131] M. A. Simos. “Organization Domain Modeling (ODM): Formalizing the Core Domain Modeling Life
Cycle.” In: Proceedings of the 1995 Symposium on Software Reusability (SSR ’95). ACM Press, 1995,
pp. 196–205. ISBN: 0-89791-739-1. DOI: 10.1145/211782.211845.

[132] T. Veldhuizen. “Template Metaprograms.” In: C++ Report (1995).

[133] B. N. Bershad, C. Chambers, S. J. Eggers, C. Maeda, D. McNamee, P. Pardyak, S. Savage, and
E. G. Sirer. “SPIN — An Extensible Microkernel for Application-specific Operating System Services.”
In: ACM SIGOPS European Workshop. 1994, pp. 68–71. URL: http://citeseer.ist.psu.edu/
article/chambers94spin.html.

[134] R. Campbell, N. Islam, P. Madany, and D. Raila. “Designing and Implementing Choices: An
Object-Oriented System in C++.” In: Communications of the ACM 36.9 (1993), pp. 117–126. DOI:
10.1145/162685.162717.

[135] J. Liedtke. “Improving IPC by Kernel Design.” In: Proceedings of the 14th ACM Symposium on
Operating Systems Principles (SOSP ’93). ACM Press, 1993. ISBN: 0-89791-632-8. DOI: 10.1145/
168619.168633.

[136] H. Spencer and G. Collyer. “#ifdef Considered Harmful, or Portability Experience With C News.”
In: Proceedings of the 1992 USENIX Annual Technical Conference. USENIX Association, 1992.

[137] N. Wirth and J. Gutknecht. Project Oberon: The Design of an Operating System and Compiler. ACM
Press/Addison-Wesley Publishing Co., 1992. ISBN: 0-201-54428-8.

[138] K. Kang, S. Cohen, J. Hess, W. Novak, and A. S. Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Tech. rep. Carnegie Mellon University, Software Engineering Institute, 1990.

[139] P. Freeman. “A conceptual analysis of the Draco approach to constructing software systems.” In:
IEEE Transactions on Software Engineering 13.7 (1987), pp. 830–844. ISSN: 0098-5589.

[140] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. “MACH: A New Kernel
Foundation for UNIX Development.” In: Proceedings of the USENIX Summer Conference. USENIX
Association, 1986, pp. 93–113.

[141] B. W. Lampson. “Hints for Computer System Design.” In: Proceedings of the 9th ACM Symposium on
Operating Systems Principles (SOSP ’83). ACM Press, 1983, pp. 33–48. ISBN: 0-89791-115-6. DOI:
10.1145/800217.806614.

[142] D. L. Parnas. “Designing Software for Ease of Extension and Contraction.” In: IEEE Transactions on
Software Engineering SE-5.2 (1979), pp. 128–138.

[143] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall PTR, 1978.

[144] A. N. Habermann, L. Flon, and L. W. Cooprider. “Modularization and Hierarchy in a Family of
Operating Systems.” In: Communications of the ACM 19.5 (1976), pp. 266–272.

[145] D. L. Parnas. “On the Design and Development of Program Families.” In: IEEE Transactions on
Software Engineering SE-2.1 (1976), pp. 1–9.

[146] D. L. Parnas. Some Hypothesis About the “Uses” Hierarchy for Operating Systems. Tech. rep. TH
Darmstadt, Fachbereich Informatik, 1976.

[147] D. L. Parnas. “On the Criteria to be used in Decomposing Systems into Modules.” In: Communications
of the ACM (1972), pp. 1053–1058.

49

http://dx.doi.org/10.1145/224057.224076
http://dx.doi.org/10.1145/224057.224075
http://dx.doi.org/10.1145/211782.211845
http://citeseer.ist.psu.edu/article/chambers94spin.html
http://citeseer.ist.psu.edu/article/chambers94spin.html
http://dx.doi.org/10.1145/162685.162717
http://dx.doi.org/10.1145/168619.168633
http://dx.doi.org/10.1145/168619.168633
http://dx.doi.org/10.1145/800217.806614

Bibliography

[148] E. W. Dijkstra. “The Structure of the THE-Multiprogramming System.” In: Communications of the
ACM 11.5 (1968), pp. 341–346.

50

A.2. Personal Bibliography

A.2. Personal Bibliography (90)

All journal, conference, and workshop papers listed in the following were selected for
publication by international program committees in a formal review process. They have
been published in printed journals, proceedings, or widely recognized digital libraries
(ACM, IEEE, USENIX).

Journal Papers (9)

[J1] D. Lohmann, O. Spinczyk, W. Hofer, and W. Schröder-Preikschat. “The Aspect-Aware Design and
Implementation of the CiAO Operating-System Family.” In: Transactions on AOSD IX. Lecture
Notes in Computer Science 7271. Springer-Verlag, 2012, pp. 168–215. DOI: 10.1007/978-3-642-
35551-6_5.

[J2] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. “Configuration Coverage in the
Analysis of Large-Scale System Software.” In: ACM SIGOPS Operating Systems Review 45.3 (2012),
pp. 10–14. ISSN: 0163-5980. DOI: 10.1145/2094091.2094095.

[J3] R. Tartler, J. Sincero, C. Dietrich, W. Schröder-Preikschat, and D. Lohmann. “Revealing and
Repairing Configuration Inconsistencies in Large-Scale System Software.” In: International Journal
on Software Tools for Technology Transfer (STTT) 14.5 (2012), pp. 531–551. DOI: 10.1007/s10009-
012-0225-2.

[J4] M. Urban, D. Lohmann, and O. Spinczyk. “PUMA: An Aspect-Oriented Code Analysis and Manip-
ulation Framework for C and C++.” In: Transactions on AOSD VIII. Lecture Notes in Computer
Science 6580. Springer-Verlag, 2011, pp. 141–162. DOI: 10.1007/978-3-642-22031-9_5.

[J5] R. Tartler, D. Lohmann, F. Scheler, and O. Spinczyk. “AspectC++: An integrated approach for
static and dynamic adaptation of system software.” In: Knowledge-Based Systems 2010.23 (2010),
pp. 704–720. DOI: 10.1016/j.knosys.2010.03.002.

[J6] W. Schröder-Preikschat, D. Lohmann, F. Scheler, and O. Spinczyk. “Dimensions of Variability in
Embedded Operating Systems.” In: Informatik - Forschung und Entwicklung 22.1 (2007), pp. 5–22.
DOI: 10.1007/s00450-007-0037-x.

[J7] O. Spinczyk and D. Lohmann. “The Design and Implementation of AspectC++.” In: Knowledge-
Based Systems, Special Issue on Techniques to Produce Intelligent Secure Software 20.7 (2007),
pp. 636–651. DOI: 10.1016/j.knosys.2007.05.004.

[J8] D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat. “Lean and Efficient System Software
Product Lines: Where Aspects Beat Objects.” In: Transactions on AOSD II. Lecture Notes in
Computer Science 4242. Springer-Verlag, 2006, pp. 227–255. DOI: 10.1007/11922827_8.

[J9] O. Spinczyk, D. Lohmann, and M. Urban. “AspectC++: An AOP Extension for C++.” In: Soft-
ware Developers Journal 5 (2005), pp. 68–76. URL: http://www.aspectc.org/fileadmin/
publications/sdj-2005-en.pdf.

Conference Papers (29)

[C1] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg, A. Ruprecht, W. Schröder-Preikschat,
D. Lohmann, and R. Kapitza. “Attack Surface Metrics and Automated Compile-Time OS Kernel
Tailoring.” In: Proceedings of the 20th Network and Distributed Systems Security Symposium.
(Feb. 24–27, 2013). The Internet Society, 2013. URL: http://www.internetsociety.org/sites/
default/files/03_2_0.pdf.

[C2] S. Nadi, C. Dietrich, R. Tartler, R. Holt, and D. Lohmann. “Linux Variability Anomalies: What
Causes Them and How Do They Get Fixed?” In: Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR ’13). (To appear). IEEE Computer Society Press, 2013.

51

http://dx.doi.org/10.1007/978-3-642-35551-6_5
http://dx.doi.org/10.1007/978-3-642-35551-6_5
http://dx.doi.org/10.1145/2094091.2094095
http://dx.doi.org/10.1007/s10009-012-0225-2
http://dx.doi.org/10.1007/s10009-012-0225-2
http://dx.doi.org/10.1007/978-3-642-22031-9_5
http://dx.doi.org/10.1016/j.knosys.2010.03.002
http://dx.doi.org/10.1007/s00450-007-0037-x
http://dx.doi.org/10.1016/j.knosys.2007.05.004
http://dx.doi.org/10.1007/11922827_8
http://www.aspectc.org/fileadmin/publications/sdj-2005-en.pdf
http://www.aspectc.org/fileadmin/publications/sdj-2005-en.pdf
http://www.internetsociety.org/sites/default/files/03_2_0.pdf
http://www.internetsociety.org/sites/default/files/03_2_0.pdf

Bibliography

[C3] J. Paul, W. Stechele, M. Kröhnert, T. Asfour, B. Oechslein, C. Erhardt, J. Schedel, D. Lohmann, and
W. Schröder-Preikschat. “A Resource-Aware Nearest Neighbor Search Algorithm for K-Dimensional
Trees.” In: Proceedings of the 2013 Conference on Design & Architectures for Signal and Image
Processing (DASIP ’13). IEEE Computer Society Press, 2013, pp. 80–87. ISBN: 979-10-92279-01-6.

[C4] I. Stilkerich, M. Strotz, C. Erhardt, M. Hoffmann, D. Lohmann, F. Scheler, and W. Schröder-
Preikschat. “A JVM for Soft-Error-Prone Embedded Systems.” In: Proceedings of the 2013 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems (LCTES ’13).
ACM Press, 2013, pp. 21–32. ISBN: 978-1-4503-2085-6. DOI: 10.1145/2465554.2465571.

[C5?] C. Borchert, D. Lohmann, and O. Spinczyk. “CiAO/IP: A Highly Configurable Aspect-Oriented
IP Stack.” In: Proceedings of the 10th International Conference on Mobile Systems, Applications,
and Services (MobiSys ’12). ACM Press, 2012, pp. 435–448. ISBN: 978-1-4503-1301-8. DOI:
10.1145/2307636.2307676.

[C6?] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and D. Lohmann. “A Robust Approach for
Variability Extraction from the Linux Build System.” In: Proceedings of the 16th Software Product
Line Conference (SPLC ’12). (Sept. 2–7, 2012). ACM Press, 2012, pp. 21–30. ISBN: 978-1-4503-
1094-9. DOI: 10.1145/2362536.2362544.

[C7?] W. Hofer, D. Danner, R. Müller, F. Scheler, W. Schröder-Preikschat, and D. Lohmann. “Sloth on
Time: Efficient Hardware-Based Scheduling for Time-Triggered RTOS.” In: Proceedings of the 33rd
IEEE International Symposium on Real-Time Systems (RTSS ’12). (Dec. 4–7, 2012). IEEE Computer
Society Press, 2012, pp. 237–247. ISBN: 978-0-7695-4869-2. DOI: 10.1109/RTSS.2012.75.

[C8] P. Ulbrich, M. Hoffmann, R. Kapitza, D. Lohmann, W. Schröder-Preikschat, and R. Schmid.
“Eliminating Single Points of Failure in Software-Based Redundancy.” In: Proceedings of the 9th
European Dependable Computing Conference (EDCC ’12). IEEE Computer Society Press, 2012,
pp. 49–60. ISBN: 978-1-4673-0938-7. DOI: 10.1109/EDCC.2012.21.

[C9] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte, S. Chakraborty, M. Engel, R. Ernst,
H. Härtig, L. Hedrich, A. Herkersdorf, R. Kapitza, D. Lohmann, P. Marwedel, M. Platzner, W.
Rosenstiel, U. Schlichtmann, O. Spinczyk, M. Tahoori, J. Teich, N. Wehn, and H.-J. Wunderlich.
“Design and Architectures for Dependable Embedded Systems.” In: Proceedings of the 9th IEEE/ACM
International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS ’11).
ACM Press, 2011, pp. 69–78. ISBN: 978-1-4503-0715-4. DOI: 10.1145/2039370.2039384.

[C10?] W. Hofer, D. Lohmann, and W. Schröder-Preikschat. “Sleepy Sloth: Threads as Interrupts as
Threads.” In: Proceedings of the 32nd IEEE International Symposium on Real-Time Systems (RTSS
’11). (Nov. 29–Dec. 2, 2011). IEEE Computer Society Press, 2011, pp. 67–77. ISBN: 978-0-7695-
4591-2. DOI: 10.1109/RTSS.2011.14.

[C11] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and J. Henkel. “DistRM: Distributed
Resource Management for On-chip Many-Core Systems.” In: Proceedings of the 9th IEEE/ACM
International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS ’11).
ACM Press, 2011, pp. 119–128. ISBN: 978-1-4503-0715-4. DOI: 10.1145/2039370.2039392.

[C12?] D. Lohmann, W. Hofer, W. Schröder-Preikschat, and O. Spinczyk. “Aspect-Aware Operating-
System Development.” In: Proceedings of the 10th International Conference on Aspect-Oriented
Software Development (AOSD ’11). ACM Press, 2011, pp. 69–80. ISBN: 978-1-4503-0605-8. DOI:
10.1145/1960275.1960285.

[C13] M. Stilkerich, J. Schedel, P. Ulbrich, W. Schröder-Preikschat, and D. Lohmann. “Escaping the
Bonds of the Legacy: Step-Wise Migration to a Type-Safe Language in Safety-Critical Embedded
Systems.” In: Proceedings of the 14th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC ’11). IEEE Computer Society Press, 2011, pp. 163–170. ISBN:
978-0-7695-4368-0. DOI: 10.1109/ISORC.2011.29.

52

http://dx.doi.org/10.1145/2465554.2465571
http://dx.doi.org/10.1145/2307636.2307676
http://dx.doi.org/10.1145/2362536.2362544
http://dx.doi.org/10.1109/RTSS.2012.75
http://dx.doi.org/10.1109/EDCC.2012.21
http://dx.doi.org/10.1145/2039370.2039384
http://dx.doi.org/10.1109/RTSS.2011.14
http://dx.doi.org/10.1145/2039370.2039392
http://dx.doi.org/10.1145/1960275.1960285
http://dx.doi.org/10.1109/ISORC.2011.29

Personal Bibliography

[C14?] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat. “Feature Consistency in Compile-
Time-Configurable System Software: Facing the Linux 10,000 Feature Problem.” In: Proceedings of
the ACM SIGOPS/EuroSys European Conference on Computer Systems 2011 (EuroSys ’11). ACM
Press, 2011, pp. 47–60. ISBN: 978-1-4503-0634-8. DOI: 10.1145/1966445.1966451.

[C15] C. Elsner, C. Schwanninger, W. Schröder-Preikschat, and D. Lohmann. “Multi-Level Product Line
Customization.” In: Proceedings of the 2010 Conference on New Trends in Software Methodologies,
Tools and Techniques (SoMeT ’10). Frontiers in Artificial Intelligence and Applications. IOS Press,
2010, pp. 37–58. ISBN: 978-1-60750-628-7. DOI: 10.3233/978-1-60750-629-4-37.

[C16] C. Elsner, P. Ulbrich, D. Lohmann, and W. Schröder-Preikschat. “Consistent Product Line Con-
figuration Across File Type and Product Line Boundaries.” In: Proceedings of the 14th Software
Product Line Conference (SPLC ’10). Vol. 6287. Lecture Notes in Computer Science. Best paper
award (out of 90 submissions). Springer-Verlag, 2010, pp. 181–195. ISBN: 978-3-642-15578-9.
DOI: 10.1007/978-3-642-15579-6_13.

[C17] J. Sincero, R. Tartler, D. Lohmann, and W. Schröder-Preikschat. “Efficient Extraction and Analysis
of Preprocessor-Based Variability.” In: Proceedings of the 9th International Conference on Generative
Programming and Component Engineering (GPCE ’10). ACM Press, 2010, pp. 33–42. ISBN: 978-1-
4503-0154-1. DOI: 10.1145/1868294.1868300.

[C18] M. Urban, D. Lohmann, and O. Spinczyk. “The aspect-oriented design of the PUMA C/C++
parser framework.” In: Proceedings of the 9th International Conference on Aspect-Oriented Software
Development (AOSD ’10). ACM Press, 2010, pp. 217–221. ISBN: 978-1-60558-958-9. DOI: 10.1145/
1739230.1739256.

[C19?] W. Hofer, D. Lohmann, F. Scheler, and W. Schröder-Preikschat. “Sloth: Threads as Interrupts.”
In: Proceedings of the 30th IEEE International Symposium on Real-Time Systems (RTSS ’09). (Dec. 1–
4, 2009). IEEE Computer Society Press, 2009, pp. 204–213. ISBN: 978-0-7695-3875-4. DOI:
10.1109/RTSS.2009.18.

[C20?] D. Lohmann, W. Hofer, W. Schröder-Preikschat, J. Streicher, and O. Spinczyk. “CiAO: An Aspect-
Oriented Operating-System Family for Resource-Constrained Embedded Systems.” In: Proceedings
of the 2009 USENIX Annual Technical Conference. USENIX Association, 2009, pp. 215–228. ISBN:
978-1-931971-68-3. URL: http://www.usenix.org/event/usenix09/tech/full_papers/
lohmann/lohmann.pdf.

[C21] F. Scheler, W. Hofer, B. Oechslein, R. Pfister, W. Schröder-Preikschat, and D. Lohmann. “Parallel,
Hardware-Supported Interrupt Handling in an Event-Triggered Real-Time Operating System.”
In: Proceedings of the 2009 International Conference on Compilers, Architectures, and Synthesis
for Embedded Systems (CASES ’09). ACM Press, 2009, pp. 59–67. ISBN: 0-7695-2400-1. DOI:
10.1145/1629395.1629419.

[C22] R. Tartler, D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. “Dynamic AspectC++: Generic
Advice at Any Time.” In: Proceedings of the 2009 Conference on New Trends in Software Methodolo-
gies, Tools and Techniques (SoMeT ’09). Frontiers in Artificial Intelligence and Applications 199.
IOS Press, 2009, pp. 165–186. ISBN: 978-1-60750-049-0. DOI: 10.3233/978-1-60750-049-0-165.

[C23] C. Gibbs, D. Lohmann, R. Liu, and Y. Coady. “Modular Integration through Aspects: Making Cents
of Legacy Systems.” In: Proceedings of the 40th Hawaii International Conference on System Sciences
(HICSS ’07) - Clinical Process and Data Integration and Evolution. IEEE Computer Society Press,
2007. DOI: 10.1109/HICSS.2007.390.

[C24] W. Gilani, F. Scheler, D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat. “Unification of
Static and Dynamic AOP for Evolution in Embedded Software Systems.” In: Proceedings of the
Sixth International Symposium on Software Composition. Lecture Notes in Computer Science 4829.
Springer-Verlag, 2007, pp. 216–234. ISBN: 978-3-540-77350-4. DOI: 10.1007/978-3-540-77351-
1.

53

http://dx.doi.org/10.1145/1966445.1966451
http://dx.doi.org/10.3233/978-1-60750-629-4-37
http://dx.doi.org/10.1007/978-3-642-15579-6_13
http://dx.doi.org/10.1145/1868294.1868300
http://dx.doi.org/10.1145/1739230.1739256
http://dx.doi.org/10.1145/1739230.1739256
http://dx.doi.org/10.1109/RTSS.2009.18
http://www.usenix.org/event/usenix09/tech/full_papers/lohmann/lohmann.pdf
http://www.usenix.org/event/usenix09/tech/full_papers/lohmann/lohmann.pdf
http://dx.doi.org/10.1145/1629395.1629419
http://dx.doi.org/10.3233/978-1-60750-049-0-165
http://dx.doi.org/10.1109/HICSS.2007.390
http://dx.doi.org/10.1007/978-3-540-77351-1
http://dx.doi.org/10.1007/978-3-540-77351-1

Bibliography

[C25] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schröder-Preikschat. “A Quantitative
Analysis of Aspects in the eCos Kernel.” In: Proceedings of the ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006 (EuroSys ’06). ACM Press, 2006, pp. 191–204. ISBN: 1-
59593-322-0. DOI: 10.1145/1218063.1217954.

[C26] W. Schröder-Preikschat, D. Lohmann, W. Gilani, F. Scheler, and O. Spinczyk. “Static and Dynamic
Weaving in System Software with AspectC++.” In: Proceedings of the 39th Hawaii International
Conference on System Sciences (HICSS ’06) - Track 9. IEEE Computer Society Press, 2006. DOI:
10.1109/HICSS.2006.437.

[C27] D. Lohmann and O. Spinczyk. “On Typesafe Aspect Implementations in C++.” In: Proceedings
of Software Composition 2005 (SC ’05). Vol. 3628. Lecture Notes in Computer Science. Springer-
Verlag, 2005, pp. 135–149. DOI: 10.1007/11550679.

[C28] O. Spinczyk, D. Lohmann, and M. Urban. “Advances in AOP with AspectC++.” In: New Trends in
Software Methodologies, Tools and Techniques (SoMeT ’05). Frontiers in Artificial Intelligence and
Applications 129. IOS Press, 2005, pp. 33–53. ISBN: 1-58603-556-8.

[C29] D. Lohmann, G. Blaschke, and O. Spinczyk. “Generic Advice: On the Combination of AOP with
Generative Programming in AspectC++.” In: Proceedings of the 3rd International Conference
on Generative Programming and Component Engineering (GPCE ’04). Vol. 3286. Lecture Notes in
Computer Science. Springer-Verlag, 2004, pp. 55–74. ISBN: 978-3-540-23580-4. DOI: 10.1007/978-
3-540-30175-2_4.

Workshop Papers (35)

[W1] M. Hoffmann, C. Dietrich, and D. Lohmann. “Failure by Design: Influence of the RTOS Interface
on Memory Fault Resilience.” In: Proceedings of the 2nd GI Workshop on Software-Based Methods
for Robust Embedded Systems (SOBRES ’13). Lecture Notes in Informatics. German Society of
Informatics, 2013.

[W2] K.-B. Schultis, C. Elsner, and D. Lohmann. “Moving Towards Industrial Software Ecosystems: Are
Our Software Architectures Fit for the Future?” In: Proceedings of the 4th International Workshop
on Product LinE Approaches in Software Engineering (ICSE-PLEASE ’13). 2013, pp. 9–12. DOI:
10.1109/PLEASE.2013.6608655.

[W3] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and D. Lohmann. “Understanding Linux Feature
Distribution.” In: Proceedings of the 2nd AOSD Workshop on Modularity in Systems Software (AOSD-
MISS ’12). (Mar. 27, 2012). ACM Press, 2012. ISBN: 978-1-4503-1217-2. DOI: 10.1145/2162024.
2162030.

[W4] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O. Spinczyk. “FAIL*: Towards a
Versatile Fault-Injection Experiment Framework.” In: 25th International Conference on Architecture
of Computing Systems (ARCS ’12), Workshop Proceedings. Vol. 200. Lecture Notes in Informatics.
Gesellschaft für Informatik, 2012, pp. 201–210. ISBN: 978-3-88579-294-9.

[W5?] R. Tartler, A. Kurmus, B. Heinloth, V. Rothberg, A. Ruprecht, D. Doreanu, R. Kapitza, W.
Schröder-Preikschat, and D. Lohmann. “Automatic OS Kernel TCB Reduction by Leveraging
Compile-Time Configurability.” In: Proceedings of the 8th International Workshop on Hot Topics in
System Dependability (HotDep ’12). USENIX Association, 2012, pp. 1–6.

[W6] C. Elsner, D. Lohmann, and W. Schröder-Preikschat. “An Infrastructure for Composing Build
Systems of Software Product Lines.” In: Proceedings of the 15th Software Product Line Conference
(SPLC ’11), Volume 2. (MAPLE/SCALE ’11 Proceedings). ACM Press, 2011, 18:1–18:8. ISBN:
978-1-4503-0789-5. DOI: 10.1145/2019136.2019157.

[W7] C. Erhardt, M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. “Exploiting Static Application
Knowledge in a Java Compiler for Embedded Systems: A Case Study.” In: JTRES ’11: Proceedings
of the 9th International Workshop on Java Technologies for Real-Time and Embedded Systems. ACM
Press, 2011, pp. 96–105. ISBN: 978-1-4503-0731-4. DOI: 10.1145/2043910.2043927.

54

http://dx.doi.org/10.1145/1218063.1217954
http://dx.doi.org/10.1109/HICSS.2006.437
http://dx.doi.org/10.1007/11550679
http://dx.doi.org/10.1007/978-3-540-30175-2_4
http://dx.doi.org/10.1007/978-3-540-30175-2_4
http://dx.doi.org/10.1109/PLEASE.2013.6608655
http://dx.doi.org/10.1145/2162024.2162030
http://dx.doi.org/10.1145/2162024.2162030
http://dx.doi.org/10.1145/2019136.2019157
http://dx.doi.org/10.1145/2043910.2043927

Personal Bibliography

[W8] B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J. Henkel, D. Lohmann, and W. Schröder-Preikschat.
“OctoPOS: A Parallel Operating System for Invasive Computing.” In: Proceedings of the International
Workshop on Systems for Future Multi-Core Architectures (SFMA’11). Vol. USB Proceedings. 2011,
pp. 9–14. URL: http://research.microsoft.com/en-us/um/people/tharris/sfma/papers/
sfma-final7.pdf.

[W9] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O. Spinczyk. “Revisiting Fault-Injection
Experiment-Platform Architectures.” In: Proceedings of the 17th International Symposium on
Dependable Computing (PRDC ’11). Fast abstract. IEEE Computer Society Press, 2011, pp. 284–285.
ISBN: 978-1-4577-2005-5. DOI: 10.1109/PRDC.2011.46.

[W10] H. Schirmeier, R. Kapitza, D. Lohmann, and O. Spinczyk. “DanceOS: Towards Dependability
Aspects in Configurable Embedded Operating Systems.” In: Proceedings of the 3rd HiPEAC Workshop
on Design for Reliability (DFR ’11). 2011, pp. 21–26.

[W11] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. “Configuration Coverage in the
Analysis of Large-Scale System Software.” In: Proceedings of the 6th Workshop on Programming
Languages and Operating Systems (PLOS ’11). ACM Press, 2011, 2:1–2:5. ISBN: 978-1-4503-0979-0.
DOI: 10.1145/2039239.2039242.

[W12] I. Thomm, M. Stilkerich, R. Kapitza, D. Lohmann, and W. Schröder-Preikschat. “Automated Appli-
cation of Fault Tolerance Mechanisms in a Component-Based System.” In: JTRES ’11: Proceedings
of the 9th International Workshop on Java Technologies for Real-Time and Embedded Systems. ACM
Press, 2011, pp. 87–95. ISBN: 978-1-4503-0731-4. DOI: 10.1145/2043910.2043925.

[W13] C. Elsner, G. Botterweck, D. Lohmann, and W. Schröder-Preikschat. “Variability in Time – Product
Line Variability and Evolution Revisited.” In: Proceedings of the 4th International Workshop on
Variability Modelling of Software-intensive Systems (VAMOS ’10). ICB Research Reports 37. 2010,
pp. 131–138.

[W14] M. Gernoth, D. Lohmann, W. Schröder-Preikschat, J. Sincero, R. Tartler, and D. Wischermann.
“Challenges in Operating-Systems Reengineering for Many Cores.” In: Proceedings of the 3rd
International Workshop on Multicore Software Engineering (IWMSE ’10). ACM Press, 2010, pp. 52–
53. ISBN: 978-1-60558-964-0. DOI: 10.1145/1808954.1808968.

[W15] W. Hofer, C. Elsner, F. Blendinger, W. Schröder-Preikschat, and D. Lohmann. “Toolchain-Independent
Variant Management with the Leviathan Filesystem.” In: Proceedings of the 2nd Workshop on
Feature-Oriented Software Development (FOSD ’10). ACM Press, 2010, pp. 18–24. ISBN: 978-1-
4503-0208-1. DOI: 10.1145/1868688.1868692.

[W16] M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. “Gradual Software-Based Memory Protec-
tion.” In: Proceedings of the Workshop on Isolation and Integration for Dependable Systems (IIDS
’10). ACM Press, 2010. ISBN: 978-1-4503-0120-6.

[W17] M. Stilkerich, D. Lohmann, and W. Schröder-Preikschat. “Memory Protection at Option.” In:
Proceedings of the 1st Workshop on Critical Automotive Applications: Robustness & Safety. ACM
Press, 2010, pp. 17–20. ISBN: 978-1-60558-915-2. DOI: 10.1145/1772643.1772649.

[W18] C. Elsner, D. Lohmann, and W. Schröder-Preikschat. “Product Derivation for Solution-Driven
Product Line Engineering.” In: Proceedings of the 1st Workshop on Feature-Oriented Software
Development (FOSD ’09). ACM Press, 2009, pp. 35–41. DOI: 10.1145/1629716.1629724.

[W19] C. Elsner, D. Lohmann, and C. Schwanninger. “Eine Infrastruktur für modellgetriebene hierarchis-
che Produktlinien.” In: Software Engineering 2009 - Workshopband. Vol. 150. Lecture Notes in
Informatics. Gesellschaft für Informatik, 2009, pp. 107–113. ISBN: 978-3-88579-244-4.

[W20] P. Stellwag, D. Lohmann, and W. Schröder-Preikschat. “An Asynchronous Nonblocking Coordina-
tion and Synchronization Protocol for a Parallel Robotic Control Kernel.” In: Proceedings of the 2nd
Workshop on Isolation and Integration in Embedded Systems (IIES ’09). ACM Press, 2009, pp. 7–12.
ISBN: 978-1-60558-464-5. DOI: 10.1145/1519130.1519132.

55

http://research.microsoft.com/en-us/um/people/tharris/sfma/papers/sfma-final7.pdf
http://research.microsoft.com/en-us/um/people/tharris/sfma/papers/sfma-final7.pdf
http://dx.doi.org/10.1109/PRDC.2011.46
http://dx.doi.org/10.1145/2039239.2039242
http://dx.doi.org/10.1145/2043910.2043925
http://dx.doi.org/10.1145/1808954.1808968
http://dx.doi.org/10.1145/1868688.1868692
http://dx.doi.org/10.1145/1772643.1772649
http://dx.doi.org/10.1145/1629716.1629724
http://dx.doi.org/10.1145/1519130.1519132

Bibliography

[W21] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann. “Dead or Alive: Finding zombie
features in the Linux kernel.” In: Proceedings of the 1st Workshop on Feature-Oriented Software
Development (FOSD ’09). ACM Press, 2009, pp. 81–86. ISBN: 978-1-60558-567-3. DOI: 10.1145/
1629716.1629732.

[W22] C. Elsner, D. Lohmann, and W. Schröder-Preikschat. “Towards Separation of Concerns in Model
Transformation Workflows.” In: Proceedings of the 12th Software Product Line Conference (SPLC ’08),
Second Volume. Lero International Science Centre, 2008, pp. 81–88. ISBN: 978-1-905952-06-9.

[W23] W. Hofer, D. Lohmann, and W. Schröder-Preikschat. “Concern Impact Analysis in Configurable
System Software—The AUTOSAR OS Case.” In: Proceedings of the 7th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (AOSD-ACP4IS ’08). ACM Press, 2008, pp. 1–6.
ISBN: 978-1-60558-142-2. DOI: 10.1145/1404891.1404897.

[W24] D. Lohmann, J. Streicher, W. Hofer, O. Spinczyk, and W. Schröder-Preikschat. “Configurable
Memory Protection by Aspects.” In: Proceedings of the 4th Workshop on Programming Languages
and Operating Systems (PLOS ’07). ACM Press, 2007, pp. 1–5. ISBN: 978-1-59593-922-7. DOI:
10.1145/1376789.1376794.

[W25] D. Lohmann, J. Streicher, O. Spinczyk, and W. Schröder-Preikschat. “Interrupt Synchronization in
the CiAO Operating System.” In: Proceedings of the 6th AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software (AOSD-ACP4IS ’07). ACM Press, 2007. ISBN: 1-59593-657-8.
DOI: 10.1145/1233901.1233907.

[W26] D. Lohmann, F. Scheler, W. Schröder-Preikschat, and O. Spinczyk. “PURE Embedded Operating
Systems – CiAO.” In: Proceedings of the ECRTS Workshop on Operating Systems Platforms for
Embedded Real-Time applications (ECRTS-OSPERT ’06). 2006.

[W27] O. Spinczyk, D. Lohmann, and W. Schröder-Preikschat. “Concern Hierarchies.” In: Proceedings for
First Workshop on Aspect-oriented Product Line Engineering (AOPLE-1). COMP-004-2007. 2006.

[W28] O. Spinczyk, D. Lohmann, and W. Schröder-Preikschat. “Concern Hierarchies.” In: 1st GPCE
Workshop on Aspect-Oriented Product Line Engineering (GPCE-AOPLE ’06). (published as Lancaster
University TR: COMP-004-2007). 2006, pp. 13–19.

[W29] D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. “Functional and Non-Functional Properties
in a Family of Embedded Operating Systems.” In: Proceedings of the 10th IEEE International
Workshop on Object-oriented Real-time Dependable Systems (WORDS ’05). 2005, pp. 413–420. DOI:
10.1109/WORDS.2005.37.

[W30] D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. “The Design of Application-Tailorable
Operating System Product Lines.” In: Proceedings of the International Workshop on Construction
and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS ’05). Vol. 3956. Lecture Notes
in Computer Science. Springer-Verlag, 2005, pp. 99–117. ISBN: 3-540-33689-3. DOI: 10.1007/
11741060_6.

[W31] D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat. “On the Configuration of Non-Functional
Properties in Operating System Product Lines.” In: Proceedings of the 4th AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software (AOSD-ACP4IS ’05). Northeastern
University, Boston (NU-CCIS-05-03), 2005, pp. 19–25.

[W32] D. Lohmann, W. Gilani, and O. Spinczyk. “On Adapable Aspect-Oriented Operating Systems.”
In: Proceedings of the 2004 ECOOP Workshop on Programming Languages and Operating Systems
(ECOOP-PLOS ’04). 2004, pp. 47–52.

[W33] D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. “On the Design and Development of a
Customizable Embedded Operating System.” In: Proceedings of the SRDS Workshop on Dependable
Embedded Systems (SRDS-DES ’04). IEEE Computer Society Press, 2004, pp. 1–6.

[W34] O. Spinczyk and D. Lohmann. “Using AOP to Develop Architecture-Neutral Operating System
Components.” In: Proceedings of the 11th ACM SIGOPS European Workshop. ACM Press, 2004,
pp. 188–192. DOI: 10.1145/1133572.1133582.

56

http://dx.doi.org/10.1145/1629716.1629732
http://dx.doi.org/10.1145/1629716.1629732
http://dx.doi.org/10.1145/1404891.1404897
http://dx.doi.org/10.1145/1376789.1376794
http://dx.doi.org/10.1145/1233901.1233907
http://dx.doi.org/10.1109/WORDS.2005.37
http://dx.doi.org/10.1007/11741060_6
http://dx.doi.org/10.1007/11741060_6
http://dx.doi.org/10.1145/1133572.1133582

Personal Bibliography

[W35] D. Lohmann and J. Ebert. “A Generalization of the Hyperspace Approach using Meta-Models.” In:
Proceedings of the 2003 AOSD Early Aspects Workshop (AOSD-EA ’03). 2003.

Book Chapters (1)

[B1] W. Hofer, J. Sincero, D. Lohmann, and W. Schröder-Preikschat. “Configuration of Non-Functional
Properties in Embedded Operating Systems: The CiAO Approach.” In: Methodologies for Non-
Functional Requirements in Service Oriented Architecture. IGI Global, 2011. Chap. 5, pp. 84–103.
DOI: 10.4018/978-1-60960-493-6.

Other Peer-Reviewed Contributions (8)

[O1] W. Hofer, C. Elsner, F. Blendinger, W. Schröder-Preikschat, and D. Lohmann. “Leviathan: SPL
Support on Filesystem Level.” In: Proceedings of the 14th Software Product Line Conference (SPLC
’10). Vol. 6287. Lecture Notes in Computer Science. Poster. Springer-Verlag, 2010, pp. 491–491.
ISBN: 978-3-642-15578-9. DOI: 10.1007/978-3-642-15579-6_43.

[O2] W. Hofer, C. Elsner, F. Blendinger, W. Schröder-Preikschat, and D. Lohmann. Leviathan: Tam-
ing the #ifdef Beast in Linux et al. 9th USENIX Symposium on Operating System Design and
Implementation (OSDI ’10). Poster. 2010.

[O3] J. Sincero, R. Tartler, C. Egger, W. Schröder-Preikschat, and D. Lohmann. Facing the Linux 8000
Feature Nightmare. ACM SIGOPS/EuroSys European Conference on Computer Systems 2009
(EuroSys ’09). Talk & Poster. 2010.

[O4] R. Tartler, J. Sincero, C. Egger, W. Schröder-Preikschat, and D. Lohmann. Configurability Bugs in
Linux: The 10000 Feature Challenge. 9th USENIX Symposium on Operating System Design and
Implementation (OSDI ’10). Poster. 2010.

[O5] W. Hofer, D. Lohmann, F. Scheler, and W. Schröder-Preikschat. Sloth: Let the Hardware Do the
Work. 22nd ACM Symposium on Operating Systems Principles (SOSP ’09). WiP Talk. 2009.

[O6] C. Elsner and D. Lohmann. Inter Product-Line-Reuse by Product-Line Families. 7th International
Conference on Aspect-Oriented Software Development (AOSD ’08). Poster. 2008.

[O7] F. Scheler, D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat. “Aspect-Oriented Real-Time
Architecture—AORTA.” In: Proceedings of the 27th IEEE International Symposium on Real-Time
Systems (RTSS ’06). Work-in-Progress Session. IEEE Computer Society Press, 2006, pp. 5–8.

[O8] D. Lohmann and O. Spinczyk. Architecture-Neutral Operating System Components. 19th ACM
Symposium on Operating Systems Principles (SOSP ’03). WiP Talk. 2003.

Theses (2)

[T1] D. Lohmann. “Aspect Awareness in the Development of Configurable System Software.” PhD thesis.
Friedrich-Alexander University Erlangen-Nuremberg, 2009. URL: http://www.opus.ub.uni-
erlangen.de/opus/volltexte/2009/1328/pdf/LohmannDissertation.pdf.

[T2] D. Lohmann. “Multidimensionales Trennen der Belange im Softwareentwurf.” Diplomarbeit.
Universität Koblenz-Landau, 2002. URL: http://www4.informatik.uni-erlangen.de/~lohmann/
download/Daniel-Lohmann_Diplomarbeit.pdf.

Technical Reports (2)

[R1] J. Sincero, R. Tartler, and D. Lohmann. An Algorithm for Quantifying the Program Variability
Induced by Conditional Compilation. Tech. rep. CS-2010-02. University of Erlangen, Department of
Computer Science, 2010.

57

http://dx.doi.org/10.4018/978-1-60960-493-6
http://dx.doi.org/10.1007/978-3-642-15579-6_43
http://www.opus.ub.uni-erlangen.de/opus/volltexte/2009/1328/pdf/LohmannDissertation.pdf
http://www.opus.ub.uni-erlangen.de/opus/volltexte/2009/1328/pdf/LohmannDissertation.pdf
http://www4.informatik.uni-erlangen.de/~lohmann/download/Daniel-Lohmann_Diplomarbeit.pdf
http://www4.informatik.uni-erlangen.de/~lohmann/download/Daniel-Lohmann_Diplomarbeit.pdf

Bibliography

[R2] O. Spinczyk and D. Lohmann. AspectC++ Quick Reference (Version 1.11). pure::systems GmbH.
2006. URL: http://www.aspectc.org/fileadmin/documentation/ac-quickref.pdf.

Workshop Readers and Proceedings (4)

[P1] Proceedings of the 2nd AOSD Workshop on Modularity in Systems Software (AOSD-MISS ’12).
(Mar. 27, 2012). ACM Press, 2012. ISBN: 978-1-4503-1217-2.

[P2] Proceedings of the 9th AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Soft-
ware (AOSD-ACP4IS ’10). Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtech-
nik an der Universität Potsdam 33. Universitätsverlag Potsdam, 2010. ISBN: 978-3-86956-043-4.
URL: http://pub.ub.uni-potsdam.de/volltexte/2010/4122/.

[P3] Proceedings of the 8th AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software (AOSD-ACP4IS ’09). ACM Press, 2009. ISBN: 978-1-60558-450-8.

[P4] Proceedings of the 7th AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software (AOSD-ACP4IS ’08). ACM Press, 2008. ISBN: 978-1-60558-142-2.

58

http://www.aspectc.org/fileadmin/documentation/ac-quickref.pdf
http://pub.ub.uni-potsdam.de/volltexte/2010/4122/

B. Paper Reprints

Out of my 82 peer-reviewed publications (see Appendix A.2 on pp. 51ff), the following 9
key contributions of my research are the main part of this cumulative habilitation treatise.
They are provided as personal reprints here, all copyrights remain with the respective
publishers (ACM, IEEE, USENIX).

CiAO

USENIX ’09
pp 61 ff

Lohmann, Hofer, Schröder-Preikschat, Streicher, and Spinczyk. “CiAO: An Aspect-
Oriented Operating-System Family for Resource-Constrained Embedded Systems”
(Acceptance rate: 16%)

[C20?]

AOSD ’11
pp 75 ff

Lohmann, Hofer, Schröder-Preikschat, and Spinczyk. “Aspect-Aware Operating-
System Development” (Acceptance rate: 23%)

[C12?]

MobiSys ’12
pp 87 ff

Borchert, Lohmann, and Spinczyk. “CiAO/IP: A Highly Configurable Aspect-Oriented IP
Stack” (Acceptance rate: 18%)

[C5?]

SLOTH

RTSS ’09
pp 101 ff

Hofer, Lohmann, Scheler, and Schröder-Preikschat. “Sloth: Threads as Interrupts”
(Acceptance rate: 21%)

[C19?]

RTSS ’11
pp 111 ff

Hofer, Lohmann, and Schröder-Preikschat. “Sleepy Sloth: Threads as Interrupts as
Threads” (Acceptance rate: 21%)

[C10?]

RTSS ’12
pp 123 ff

Hofer, Danner, Müller, Scheler, Schröder-Preikschat, and Lohmann. “Sloth on Time:
Efficient Hardware-Based Scheduling for Time-Triggered RTOS” (Acceptance rate: 22%)

[C7?]

VAMOS

EuroSys ’11
pp 135 ff

Tartler, Lohmann, Sincero, and Schröder-Preikschat. “Feature Consistency in Compile-
Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” (Ac-
ceptance rate: 15%)

[C14?]

SPLC ’12
pp 149 ff

Dietrich, Tartler, Schröder-Preikschat, and Lohmann. “A Robust Approach for Variability
Extraction from the Linux Build System” (Acceptance rate: 33%)

[C6?]

HotDep ’12
pp 159 ff

Tartler, Kurmus, Heinloth, Rothberg, Ruprecht, Doreanu, Kapitza, Schröder-Preikschat,
and Lohmann. “Automatic OS Kernel TCB Reduction by Leveraging Compile-Time
Configurability” (Acceptance rate: 42%)

[W5?]

59

CiAO: An Aspect-Oriented Operating-System Family
for Resource-Constrained Embedded Systems∗

Daniel Lohmann, Wanja Hofer, Wolfgang Schröder-Preikschat
{lohmann, hofer, wosch}@cs.fau.de

FAU Erlangen–Nuremberg

Jochen Streicher, Olaf Spinczyk
{jochen.streicher, olaf.spinczyk}@tu-dortmund.de

TU Dortmund

Abstract

This paper evaluates aspect-oriented programming (AOP)
as a first-class concept for implementing configurability
in system software for resource-constrained embedded
systems. To compete against proprietary special-purpose
solutions, system software for this domain has to be highly
configurable. Such fine-grained configurability is usually
implemented “in-line” by means of the C preprocessor.
However, this approach does not scale – it quickly leads to
“#ifdef hell” and a bad separation of concerns. At the same
time, the challenges of configurability are still increasing.
AUTOSAR OS, the state-of-the-art operating-system stan-
dard from the domain of automotive embedded systems,
requires configurability of even fundamental architectural
system policies.

On the example of our CiAO operating-system family
and the AUTOSAR-OS standard, we demonstrate that
AOP – if applied from the very beginning – is a pro-
found answer to these challenges. Our results show that
a well-directed, pragmatic application of AOP leads to
a much better separation of concerns than does #ifdef-
based configuration – without compromising on resource
consumption. The suggested approach of aspect-aware
operating-system development facilitates providing even
fundamental system policies as configurable features.

1 Introduction

The design and implementation of operating systems has
always been challenging. Besides the sheer size and the
inherent asynchronous and concurrent nature of operating-
system code, developers have to deal with lots of crucial
nonfunctional requirements such as performance, relia-
bility, and maintainability. Therefore, researchers have
always tried to exploit the latest advances in programming

∗This work was partly supported by the German Research Council
(DFG) under grants no. SCHR 603/4, SCHR 603/7-1, and SP 968/2-1.

languages and software engineering (such as object orien-
tation [6], meta-object protocols [26], or virtual execution
environments [14]) in order to reduce the complexity of
operating system development and to improve the sys-
tems’ nonfunctional properties.

1.1 Operating Systems for Small
Embedded Systems

This paper focuses on small (“deeply”) embedded sys-
tems. More than 98 percent of the worldwide annual
production of microprocessors ends up in small embed-
ded systems [24] – typically employed in products such
as cars, appliances, or toys. Such embedded systems are
subject to an enormous hardware-cost pressure. System
software for this domain has to cope not only with strict
resource constraints, but especially with a broad variety
of application requirements and platforms. So to allow
for reuse, an operating system for the embedded-systems
domain has to be developed as a system-software product
line that is highly configurable and tailorable. Further-
more, resource-saving static configuration mechanisms
are strongly favored over dynamic (re-)configuration.

A good example for this class of highly configurable
systems with small footprint is the new embedded
operating-system standard specified by AUTOSAR, a con-
sortium founded by all major players in the automotive
industry [3]. The goal of AUTOSAR is to continue the
success story of the OSEK-OS specification [19]. OSEK-
compliant operating systems have been used in almost
all European cars over the past ten years, which led to an
enormous productivity gain in automotive software devel-
opment. AUTOSAR extends the OSEK-OS specification
in order to cover the whole system-software stack includ-
ing communication services and a middleware layer.

Even in this restricted domain, there is already a huge
variety of application requirements on operating systems.
For instance, power-train applications are typically safety-
critical and have to deal with real-time requirements,

1

[C20?] Proceedings of the 2009 USENIX Annual Technical Conference

USENIX ’09 61

1 Cyg_Mutex::Cyg_Mutex() {
2 CYG_REPORT_FUNCTION();
3 locked = false;
4 owner = NULL;
5 #if defined(CYGSEM_PRI_INVERSION_PROTO_DEFAULT) && \
6 defined(CYGSEM_PRI_INVERSION_PROTO_DYNAMIC)
7 #ifdef CYGSEM_PRI_INVERSION_PROTO_DEFAULT_INHERIT
8 protocol = INHERIT;
9 #endif

10 #ifdef CYGSEM_PRI_INVERSION_PROTO_DEFAULT_CEILING
11 protocol = CEILING;
12 ceiling = CYGSEM_PRI_INVERSION_PROTO_DEFAULT_PRI;
13 #endif
14 #ifdef CYGSEM_PRI_INVERSION_PROTO_DEFAULT_NONE
15 protocol = NONE;
16 #endif
17 #else // not (DYNAMIC and DEFAULT defined)
18 #ifdef CYGSEM_PRI_INVERSION_PROTO_CEILING
19 #ifdef CYGSEM_DEFAULT_PRIORITY
20 ceiling = CYGSEM_DEFAULT_PRIORITY;
21 #else
22 ceiling = 0; // Otherwise set it to zero.
23 #endif
24 #endif
25 #endif // DYNAMIC and DEFAULT defined
26 CYG_REPORT_RETURN();
27 }

Figure 1: ”#ifdef hell” example from eCos [18]

while car body systems are far less critical. Hardware
platforms range from 8-bit to 32-bit systems. Some ap-
plications require a task model with synchronization and
communication primitives, whereas others are much sim-
pler control loops. In order to reduce the number of elec-
tronic control units (up to 100 in modern cars [5]), some
manufacturers have the requirement to run multiple appli-
cations on the same unit, which is only possible with guar-
anteed isolation; others do not have this requirement. To
fulfill all these varying requirements, the AUTOSAR-OS
specification [2] describes a family of systems defined by
so-called scalability classes. It not only requires config-
urability of simple functional features, but also of all poli-
cies regarding temporal and spatial isolation. To achieve
this within a single kernel implementation is challenging.
The decision about fundamental operating-system poli-
cies (like the question if and how address-space protection
boundaries should be enforced) is traditionally made in
the early phases of operating-system development and is
deeply reflected in its architecture, which in turn has an
impact on many other parts of the kernel implementation.
In AUTOSAR-OS systems, these decisions have to be
postponed until the application developer configures the
operating system.

1.2 The Price of Configurability

In a previous paper [17], we analyzed the implementation
of static configurability in the popular eCos operating
system [18], which also targets small embedded systems.

The system implements configurability in the familiar
way with #ifdef-based conditional compilation (in C++).
Even though eCos does not support configurability of
architectural concerns as required by AUTOSAR (such as
the memory or timing protection model), we have found
an “#ifdef hell”, which illustrates that these techniques do
not scale well enough. Maintainability and evolvability
of the implementation suffer significantly. As an example,
Figure 1 shows the “#ifdef hell” in the constructor of
the eCos mutex class, caused by just four variants of the
optional protcol for the prevention of priority inversion.
However, the configurability of this protocol does not only
affect the constructor code – a total of 34 #ifdef-blocks
is spread over 17 functions and data structures in four
implementation files.

As a solution, we proposed aspect-oriented program-
ming (AOP) [15] and analyzed the code size and perfor-
mance impact of applying AOP to factor out the scattered
implementation of configurable eCos features into distinct
modules called aspects.

1.3 Aspect-Oriented Programming

AOP describes a programming paradigm especially de-
signed to tackle the implementation of crosscutting con-
cerns – concerns that, even though conceptually distinct,
overlap with the implementation of other concerns in the
code by sharing the same functions or classes, such as the
mutex configuration options in eCos.

In AOP, aspects encapsulate pieces of code called ad-
vice that implement a crosscutting concern as a distinct
module. A piece of advice targets a number of join points
(points in the static program structure or in the dynamic
execution flow) described by a predicate called pointcut
expression. Pointcut expressions are evaluated by the
aspect weaver, which weaves the code from the advice
bodies to the join points that are matched by the respective
predicates.

As pointcuts are described declaratively, the target code
itself does not have to be prepared or instrumented to be
affected by aspects. Furthermore, the same aspect can
affect various and even unforeseen parts of the target code.
In the AOP literature [10], this is frequently referred to as
the obliviousness and quantification properties of AOP.

The AOP language and weaver used in the eCos study
and in the development of CiAO is AspectC++ [22],
a source-to-source weaver that transforms AspectC++
sources to ISO C++ code, which can then be compiled by
any standard-compliant C++ compiler.

Figure 2 illustrates the syntax of aspects written in
AspectC++. The (excerpted) aspect Priority_Ceiling
implements the priority ceiling variant of the eCos mu-
tex class. For this purpose, it introduces a slice of addi-
tional elements (the member variable ceiling) into the

2

“CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems” [C20?]

62 USENIX ’09

Figure 2: Syntactical elements of an aspect

class Cyg_Mutex and gives a piece of advice to initialize
ceiling after each construction of a Cyg_Mutex instance.
The targets of the introduction and the piece of construc-
tion advice are given by pointcut expressions.

In AspectC++, pointcut expressions are built from
match expressions and pointcut functions. The match
expression "Cyg_Mutex", for instance, returns a pointcut
containing just the class Cyg_Mutex. Match expressions
can also be fed into pointcut functions to yield pointcuts
that represent events in the control flow of the running
program, such as the event where some function is about
to be called (call() advice) or an object instance is about
to be constructed (see construction("Cyg_Mutex") in
Figure 2). In most cases, the join points for a given point-
cut can be derived statically by the aspect weaver so that
the respective advice is also inserted statically at compile
time without any run-time overhead.

The construction pointcut in the example is used to
specify some after advice – that is, additional behavior
to be triggered after the event occurrence. Other types
of advice include before advice (speaks for itself) and
around advice (replaces the original behavior associated
with the event occurrence).

Inside the advice body, the type and pointer JoinPoint
*tjp provide an interface to the event context. The aspect
developer can use this join-point API to retrieve (and
partly modify) contextual information associated with
the event, such as the arguments or return value of the
intercepted function call (tjp->arg(i), tjp->result()).
The tjp->that() in Figure 2 returns the this pointer
of the affected object instance, which is used here to
initialize the ceiling member variable (which in this
case was introduced by the aspect itself).

1.4 Contribution and Outline
The results of applying AOP to eCos were very promis-
ing [17]. The refactored eCos system was much better
structured than the original; the number of configuration
points per feature could be drastically reduced. At the
same time, we found that there is no negative impact on
the system’s performance or code size.

However, we also found that not all configurable fea-
tures could be refactored into a modular aspect-oriented
implementation. The main reason was that eCos did
not expose enough unambiguous join points. We took
this as a motivation to work on “aspect-aware operating
system design”. This led to the development of funda-
mental design principles and the implementation of the
CiAO1 OS family for evaluation purposes. The idea was
to build an operating system in an aspect-oriented way
from scratch, considering AOP and its mechanisms from
the very beginning of the development process. The re-
sulting CiAO system is aspect-aware in the sense that it
was analyzed, designed, and implemented with AOP prin-
ciples in mind. In order to avoid evaluation results biased
by the eCos implementation, CiAO was newly designed
after the AUTOSAR-OS standard introduced above [2].

Our main goal is to evaluate the suitability of aspect-
oriented software development as a first-class concept
for the design and implementation of highly configurable
embedded system software product-lines. The research
contributions of this work are the following:

• Deeper insights on reasons for the #ifdef hell and the
value of AOP in this context (Section 2).

• Design principles for aspect-aware operating system
development (Section 4).

• CiAO: The first complete implementation of an oper-
ating system kernel developed with AOP concepts2

(Section 5).

• A discussion of our results from CiAO (Section 6)
and general experiences with the approach (Sec-
tion 7).

For each of the topics, there is a dedicated section in the
remaining part of this paper. In addition to that, Section 3
discusses relevant related work. The paper ends with our
conclusions in Section 8.

2 Problem Analysis

Why exactly do state-of-the-art configurable systems like
eCos exhibit badly modularized code termed as “#ifdef
hell”? Is this an inherent property of highly configurable
operating systems or just a matter of implementation
means? In order to examine these questions, we took
a detailed look at an abstract system specification, namely
the AUTOSAR-OS standard introduced in Section 1.

1CiAO is Aspect-Oriented
2The CiAO-OS family is freely available for research purposes from

the authors.

3

[C20?] Proceedings of the 2009 USENIX Annual Technical Conference

USENIX ’09 63

!

System abstractions (functional) Callbacks Protection facilities (architectural) Internal

O
S

co
n
tr

o
l

Ta
sk

s

IS
R

s
ca

te
g
o
ry

1

IS
R

s
ca

te
g
o
ry

2

R
e
so

u
rc

e
s

E
ve

n
ts

A
la

rm
s

H
o
o
ks

... T
im

in
g

p
ro

te
ct

io
n

In
va

lid
p
a
ra

m
e
te

rs

W
ro

n
g

co
n
te

xt

In
te

rr
u
p
ts

d
is

a
b
le

d

F
o
re

ig
n

O
S

o
b
je

ct
s

... P
re

e
m

p
tio

n

...

... <3 OS services> ⊕ !" ... #" #" #" #"

ActivateTask() ⊕ !" ... #" #" #" #" ... !" ...

TerminateTask() ⊕ !" ... #" #" ... !" ...

Schedule() ⊕ !" ... #" #" ... !" ...

... <3 more task services> ⊕ !" ... #" #" #" #" ... !" ...

ResumeAllInterrupts() ⊕ ... #" #"

SuspendAllInterrupts() ⊕ ... !" #"

... <7 more ISR services> ⊕ ⊕ !" ... $ #" #" #" #"

GetResource() ⊕ !" ... !" #" #" #" #"

ReleaseResource() ⊕ !" ... #" #" #" #" #" ... !" ...

... <4 event services> ⊕ !" ... #" #" #" #" ... !" ...

... <6 alarm services> ⊕ !" ... #" #" #" #" ... !" ...

... <7 schedule table services> ⊕ !" ... #" #" #" #"

... <7 OS application services> !" ... #" #" #" #"

TaskType ⊕ ! ! ... ! ! ... ! ...

ResourceType ⊕ ... !

... <4 more structures> ⊕ ! ⊕ ! ⊕ ... ! !

System startup !" !" !"

Task switch $... $

Protection violation !"

... <4 more internal points> !" !" #" ... $!" ... !" ...

"

#

Table 1: Influence of configurable concerns (columns) on system services, system types, and internal events (rows) in
AUTOSAR OS [2, 19]; kind of influence: ⊕ = extension of the API by a service or type, � = extension of an existing
type, H# = modification after service or event, G# = modification before, = modification before and after

2.1 Why #ifdef Hell Appears
to Be Unavoidable

The AUTOSAR-OS standard proposes a set of scalability
classes for the purpose of system tailoring. These classes
are, however, relatively coarse-grained (there are only
four of them) and do not clearly separate between con-
ceptually distinct concerns. CiAO provides a much better
granularity; each AUTOSAR-OS concern is represented
as an individual feature in CiAO, subject to application-
dependent configuration.

In order to be able to grasp all concerns and their inter-
actions, we have developed a specialized analysis method
termed concern impact analysis (CIA) [13]. The idea be-
hind CIA is to consider requirement documents together
with domain-expert knowledge to develop a matrix of
concerns and their influences in an iterative way. In the
analysis of the AUTOSAR-OS standard, CIA yielded a
comprehensive matrix, which is excerpted in Table 1.

The rows show the AUTOSAR OS system services
(API functions) and system abstractions (types) in groups
that represent distinct features. AUTOSAR OS is a stat-
ically configured operating system with static task pri-
orities; hence, at run time, only services that alter the
status of a task (e.g., setting it ready or suspended) are
available. Interrupt service routines (ISRs), in contrast,
are triggered asynchronously; the corresponding system
functionality allows the application to prohibit their occur-

rence collectively or on a per-source basis. AUTOSAR
OS distinguishes between two categories of ISRs that are
somewhat comparable to top halves and bottom halves in
Linux: Category-1 ISRs are scheduled by the hardware
only and must not interact with the kernel. Category-2
ISRs, in contrast, run under the control of the kernel and
may invoke other AUTOSAR-OS services. The third type
of control flows supported by the AUTOSAR-OS kernel
are hooks. Hooks define a callback interface for applica-
tions to be notified about kernel-internal events, such as
task switch events or error conditions (see Column 8 in
Table 1).

Resources are the means for AUTOSAR applications
to ensure mutual exclusion to synchronize concurrent ac-
cess to data structures or hardware periphery. They are
comparable to mutex objects in other operating systems.
In order to avoid priority inversion and deadlocks, AU-
TOSAR prescribes a stack-based priority ceiling protocol,
which adapts task priorities at run time. Hence, a task
never blocks on GetResource(). The only way for ap-
plication tasks to become blocked is by waiting for an
AUTOSAR-OS event; another task or ISR that sets that
event can unblock that task.

Alarms allow applications to take action after a speci-
fied period of time; a schedule table is an abstraction that
encapsulates a series of alarms. Finally, tasks, ISRs, and
data can be partitioned into OS applications, which define
a spatial and temporal protection boundary to be enforced

4

“CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems” [C20?]

64 USENIX ’09

by the operating system.
The table lists selected identified concerns of AU-

TOSAR OS (column headings) and how we can expect
them to interact with the named entities of the specifi-
cation (row headings); that is, the 44 system services
(e.g., ActivateTask()) and the relevant system abstrac-
tions (e.g., TaskType) as specified in [19, 2]. Furthermore,
the lower third lists how we can expect concerns to im-
pact system-internal transitions, which are not visible
in the system API that is specified by the standard. Ta-
ble 1 thereby provides an overview of how we can expect
AUTOSAR-OS concerns to crosscut with each other in
the structural space (abstractions, services) and behavioral
space (control flow events) of the implementation.

The comprehensive table shows that a system that is
built according to that specification will inherently exhibit
extensive crosscutting between its concern implementa-
tions, leading to code tangling (many different concerns
implemented in a single implementation module) and
scattering (distribution of a single concern implementa-
tion across multiple implementation artifacts). This is
because services like ReleaseResource() (see Table 1,
row Ê) and types like TaskType (see Table 1, row Ë), for
instance, are affected by as many as nine different con-
cerns! That means that these implementations will exhibit
at least nine #ifdef blocks – in the ideal case that each
concern can be encapsulated in a single block, completely
independent of the other concerns (which is unrealistic,
of course). In fact, there is not a single AUTOSAR-OS
service that is influenced by only one concern, which
means that a straight-forward implementation using the C
preprocessor will have numerous #ifdefs in every imple-
mentation entity. Thus, “#ifdef hell” seems unavoidable
for the class of special-purpose, tailorable operating sys-
tems.

2.2 Why AOP Is a Promising Solution
There are several properties inherent in AOP that are
promising with respect to overcoming the drawbacks in
#ifdef-based configuration techniques that were detailed
above.

First, AOP introduces a new kind of binding between
modules. In traditional programming paradigms, the
caller module P (event producer) knows and has to know
the callee module C (event consumer); that is, its name
and interface (see Figure 3.a):

void C::callee() {

<additional feature>

}

void P::caller() {

...

C::callee(); // has to know C to bind feature

}

C

callee()

P

caller()

ca
lle

e

kn
ow

s

(a)

«aspect»
C

exec("caller")

P

caller()

know
s

"caller"

(b)

«aspect»
C

exec("%::caller")

P1

caller()

Pn

caller()
. . .

(c)

. . .

Figure 3: The mechanisms offered by AOP: advice-based
binding and implicit per–join-point instantiation of advice

The advice-based binding mechanism offered by AOP
can effectively invert that relationship: The callee (i.e.,
the aspect module C) can integrate itself into the caller
(i.e., the base code P) without the caller having to know
about the callee (see Figure 3.b):

advice execution("void P::caller()") : after() {

<additional feature>

}

void P::caller() {

...

// feature binds "itself"

}

If module C is optional and configurable, this loose cou-
pling is an ideal mechanism for integration, because the
call is implicit in the callee module. Using the tradi-
tional mechanisms, the call has to be included in the base
module P and therefore has to be explicitly omitted if
the feature implemented by module C is not in the cur-
rent configuration. This configurable omission is realized
by #ifdefs in state-of-the-art systems, bearing the signifi-
cant disadvantages described above. A similar advantage
of advice-based binding applies to configurable static
program entities like classes or structures; aspects can
integrate the state and operations needed to implement
the corresponding feature into those entities themselves
through slice introductions.

Second, by offering the mechanism of quantification
through pointcut-expression matching, AOP allows for
a modularized implementation of crosscutting concerns,
which is also one of its main proclaimed purposes. This
mechanism provides a flexible and implicit instantiation
of additional implementation elements at compile-time
(see Figure 3.c), ideally suited for the integration of con-
cern implementations into configurable base code where
the number of junction points (i.e., AOP join points) is
flexible, ranging from zero to n:

advice execution("void %::caller()") : after() {

<additional feature> // binds to any "caller()"

}

As we have seen in Table 1, most concerns in an
AUTOSAR-OS implementation have a crosscutting im-

5

[C20?] Proceedings of the 2009 USENIX Annual Technical Conference

USENIX ’09 65

pact on many different points in the system in a simi-
lar way. An example is the policy that system services
must not be called while interrupts are disabled (see Ta-
ble 1, column Ì). In the requirements specification of
AUTOSAR OS, this policy is defined by requirement
OS093:

If interrupts are disabled and any OS services,
excluding the interrupt services, are called out-
side of hook routines, then the operating system
shall return E_OS_DISABLEDINT. [2, p. 40]

This requirement can be translated almost “literally” to a
single, modularized AspectC++ aspect:

aspect DisabledIntCheck {

advice call(pcOSServices() && !pcISRServices())

&& !within(pcHooks()) : around() {

if(interruptsDisabled())

*tjp->result() = E_OS_DISABLEDINT;

else

tjp->proceed();

} };

For convenience and the sake of separation of concerns,
the aspect uses predefined named pointcuts, which are
defined separately from the aspects in a global header
file and specify which AUTOSAR-OS service belongs to
which group:

pointcut pcOSServices() = "% ActivateTask()" || ...

pointcut pcISRServices() = ...

...

Using these named pointcuts, the aspect gives advice to
all points in the system where any OS service but not the
interrupt services are called:

call(pcOSServices() && !pcISRServices()) ...

The resulting set of join points is further filtered to exclude
all events from within a hook routine:

... && !within(pcHooks())

Thus, we eventually get all calls outside of hook routines
that are made to any service that is not an ISR service.
The piece of around advice given to these join points
performs a test whether the interrupts are currently dis-
abled: If positive, the return code is set to the prescribed
error code and the call is aborted; if negative, the call is
performed as normal. (Around advice replaces the orig-
inal processing of the intercepted event; however, it is
possible to invoke the original processing explicitly with
tjp->proceed().)
The complete concern is encapsulated in this single aspect.
The result is an enhanced separation of concerns in the
system implementation. Layered, configurable systems
can especially benefit from AOP mechanisms by being
able to flexibly omit parts of the system without breaking
caller–callee relationships.

3 Related Work

There are several other research projects that investigate
the applicability of aspects in the context of operating
systems. Among the first was the α-kernel project [7], in
which the evolution of four scattered OS concern imple-
mentations (namely: prefetching, disk quotas, blocking,
and page daemon activation) between versions 2 and 4
of the FreeBSD kernel is analyzed retroactively. The re-
sults show that an aspect-oriented implementation would
have led to significantly better evolvability of these con-
cerns. Around the same time, our own group experi-
mented with AspectC++ in the PURE OS product line
and later with aspect-refactoring eCos [17]. Our results
from analyzing the AspectC++ implementation of var-
ious previously hard-wired crosscutting concerns show
that this new paradigm leads to no overhead in terms of
resource consumption per se.

Not a general-purpose AOP language but an AOP-
inspired language of temporal logic is used in the Bossa
project to integrate the Bossa scheduler framework into
the Linux kernel [1]. Another example for a special-
purpose AOP-inspired language is C4 [12, 21], which is
intended for the application of kernel patches in Linux.
The same goal of smarter patches (with a focus on “col-
lateral evolutions” – changes to the kernel API that have
to be caught up in dozens or hundreds of device drivers)
is followed by Coccinelle [20]. Although the input lan-
guage for the Coccinelle engine “SmPL” is not called
an AOP language, it supports the modular implementa-
tion of crosscutting kernel modifications (i.e., quantifi-
cation). Other related work concentrates on dynamic
aspect weaving as a means for run-time adaptation of
operating-system kernels: TOSKANA provides an infras-
tructure for the dynamic extension of the FreeBSD kernel
by aspects [9]; KLASY is used for aspect-based dynamic
instrumentation in Linux [25].

All these studies demonstrate that there are good cases
for aspects in system software. However, both Bossa and
our own work on eCos show that a useful application
of AOP to existing operating systems requires additional
AOP expressivity that results in run-time overheads (e.g.,
temporal logic or dynamic instrumentation). So far no
study exists that analyzes the effects of using AOP for the
development of an operating-system kernel from the very
beginning. This paper explores just that.

4 Aspect-Aware Operating-System
Development

The basic idea behind aspect-aware operating-system de-
velopment is the strict separation of concerns in the im-
plementation. Each implementation unit provides exactly
one feature; its mere presence or absence in the config-

6

“CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems” [C20?]

66 USENIX ’09

ured source tree decides on the inclusion of the particular
feature into the resulting system variant.

Technically, this comes down to a strict decoupling of
policies and mechanisms by using aspects as the primary
composition technique: Kernel mechanisms are glued
together and extended by aspects; they support aspects by
ensuring that all relevant internal control-flow transitions
are available as unambigious and statically evaluable join
points.

However, this availability cannot be taken for granted.
Improving the configurability of eCos even further did not
work as good as expected because of join-point ambigu-
ity [17]. For instance, eCos does not expose a dedicated
user API to invoke system services. This means that, on
the join-point level, user
kernel transitions are not stati-
cally distinguishable from the kernel-internal activation
and termination of system services. The consequence is
that policy aspects that need to hook into these events
become more expensive than necessary – for instance,
an aspect that implements a new kernel-stack policy by
switching stacks when entering/leaving the kernel. The
ideal implementation of the kernel-stack feature had a per-
formance overhead of 5% for the actual stack switches,
whereas the aspect implementation induced a total over-
head of 124% only because of unambiguous join points.
The aspect had to use dynamic pointcut functions to dis-
ambiguate at run time: It used cflow(), a dynamic point-
cut function that induces an extra internal control-flow
counter that has to be incremented, decremented, and
tested at run time to yield the join points.However, in
other cases it was not possible at all to disambiguate,
rendering an aspect-based implementation of new config-
uration options impossible.

We learned from this that the exposure of all relevant
gluing and extension points as statically evaluable and
unambigious join points has to be understood as a primary
design goal from the very beginning. The key premise
for such aspect awareness is a component structure that
makes it possible to influence the composition and shape
of components as well as all run-time control flows that
run through them by aspects [16].

4.1 Design Principles

The eCos experience led us to the three fundamental prin-
ciples of aspect-aware operating-system development:

The principle of loose coupling. Make sure that aspects
can hook into all facets of the static and dynamic
integration of system components. The binding of
components, but also their instantiation (e.g, place-
ment in a certain memory region) and the time and
order of their initialization should all be established
(or at least be influenceable) by aspects.

The principle of visible transitions. Make sure that as-
pects can hook into all control flows that run through
the system. All control-flow transitions into, out of,
and within the system should be influenceable by
aspects. For this they have to be represented on the
join-point level as statically evaluable, unambiguous
join points.

The principle of minimal extensions. Make sure that
aspects can extend all features provided by the sys-
tem on a fine granularity. System components and
system abstractions should be fine-grained, sparse,
and extensible by aspects.

Aspect awareness, as described by these principles, means
that we moderate the AOP ideal of obliviousness, which is
generally considered by the AOP community as a defining
characteristic of AOP [11]. CiAO’s system components
and abstractions are not totally oblivious to aspects – they
are supposed to provide explicit support for aspects and
even depend on them for their integration.

4.2 Role and Types of Classes and Aspects
The relationship between aspects and classes is asymmet-
rical in most AOP languages: Aspects augment classes,
but not vice versa. This gives rise to the question which
features are best to be implemented as classes and which
as aspects and how both should be applied to meet the
above design principles.

The general rule we came up with in the development
of CiAO is to provide some feature as a class if – and only
if – it represents a distinguishable instantiable concept of
the operating system. Provided as classes are:

1. System components, which are instantiated on be-
half of the kernel and manage its run-time state (such
as the Scheduler or the various hardware devices).

2. System abstractions, which are instantiated on be-
half of the application and represent a system object
(such as Task, Resource, or Event).

However, the classes for system components and system
abstractions are sparse and to be further “filled” by ex-
tension slices. The main purpose of these classes is to
provide a distinct scope with unambiguous join points for
the aspects (that is, visible transitions).

All other features are implemented as aspects. Dur-
ing the development of CiAO we came up with three
idiomatic roles of aspects:

1. Extension aspects add additional features to a sys-
tem abstraction or component (minimal extensions),
such as extending the scheduler by means for task
synchronization (e.g., AUTOSAR-OS resources).

7

[C20?] Proceedings of the 2009 USENIX Annual Technical Conference

USENIX ’09 67

2. Policy aspects “glue” otherwise unrelated system
abstractions or components together to implement
some kernel policy (loose coupling), such as activat-
ing the scheduler from a periodic timer to implement
time-triggered preemptive scheduling.

3. Upcall aspects bind behavior defined by higher lay-
ers to events produced in lower layers of the system,
such as binding a driver function to interrupt events.

The effect of extension aspects typically becomes visible
in the API of the affected system component or abstrac-
tion. Policy aspects, in contrast, lead to a different system
behavior. We will see examples for extension and pol-
icy aspects in the following section. Upcall aspects do
not contribute directly to a design principle, but have a
more technical purpose: they exploit advice-based bind-
ing and the fact that AspectC++ inlines advice code at
the respective join point for flexible, yet very efficient
upcalls.

5 Case Study: CiAO-AS

CiAO is designed and implemented as a family of operat-
ing systems and has been developed from scratch using
the principles of aspect-aware operating-system devel-
opment. Note, however, that the application developer
does not have to have any AOP expertise to use the OS.
A concrete CiAO variant is configured statically by se-
lecting features from a feature model in an Eclipse-based
graphical configuration tool [4].

The CiAO-AS family member implements an operating-
system kernel according to the AUTOSAR-OS stan-
dard3 [2], including configurable protection policies
(memory protection, timing protection, service protec-
tion). The primary target platform for CiAO is the Infi-
neon TriCore, an architecture of 32-bit microcontrollers
that also serves as a reference platform for AUTOSAR
and is widely used in the automotive industry.

5.1 Overview

Figure 4 shows the basic structure of the CiAO-AS kernel.
Like most operating systems, CiAO is designed with a
layered architecture, in which each layer is implemented
using the functionality of the layers below. The only ex-
ceptions to this are the aspects implementing architectural
policies, which may affect multiple layers.

On the coarse level, we have three layers. From bottom
up these are: the hardware access layer, the system layer
(the operating system itself), and the API layer.

3Because of legal issues, we do not claim full conformance; we have
not performed any formal conformance testing.

Figure 4: Structure of the CiAO-AS kernel

In CiAO, however, layers do not just serve conceptual
purposes, but also are a means of aspect-aware develop-
ment. With regard to the principle of visible transitions,
each layer is represented as a separate C++ namespace
in the implementation (hw::hal, os::krn, AS). Thereby,
cross-layer control-flow transitions (especially into and
out of os::krn) can be grasped by statically evaluable
pointcut expressions. The following expression, for in-
stance, yields all join points where a system-layer compo-
nent accesses the hardware:

pointcut pcOStoHW() = call("% hw::hal::%(...)")

&& within("% os::krn::%(...)");

5.2 The Kernel

In its full configuration, the system layer bears three
logical system components (displayed as columns in Fig-
ure 4):

1. The scheduler (Scheduler) takes care of the dis-
patching of tasks and the scheduling strategy.

2. The synchronization facility (Synchronizer) takes
care of the management of events, alarms, and the
underlying (hardware / software) counters.

3. The OS control facility (OSControl) provides ser-
vices for the controlled startup and shutdown of the
system and the management of OSEK/AUTOSAR
application modes.

However, as pointed out in Section 4.2, these classes are
sparse or even empty. If at all, they implement only a
minimal base of their respective concern. All further con-
cerns and variants (depicted in dark grey in Figure 4) are
brought into the system by aspects, most of which touch
multiple system components and system abstractions.

8

“CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems” [C20?]

68 USENIX ’09

«policy aspect»
MixedPreemption

exec(...)

«slice»
MixedPreemption_Task

preemptable_

M
ixedP

reem
ption_Task

«policy aspect»
ResourceSupport_PIP

exec("getResource)
exec("releaseResource)

Scheduler

activate()
reschedule()
setNeedReschedule()

«extension aspect»
ResourceSupport

intro("Sched")
intro("Task")
...

«policy aspect»
FullPreemption

call(...)

Task

priority_

«slice»
ResourceSupport_Sched

getResource()
releaseResource()

«slice»
ResourceSupport_Task

occupied_
originalPri_

«policy aspect»
ResourceSupport_PCP

exec("getResource)
exec("releaseResource)

ResourceSupport_Task Resource-
Support_Sched

"getResource"

"releaseResource"

"activate"
"releaseResource"
"setEvent"

Figure 5: Interactions between optional policies and extensions of the CiAO scheduler

5.3 Aspect-Aware Development Applied
Figure 5 demonstrates how components, abstractions, and
aspects engage with each other on a concrete example.
The central element is the system component Scheduler.
However, Scheduler provides only the minimal base of
the scheduling facility, which is nonpreemptive schedul-
ing:

class Sched {

Tasklist ready_;

Task::Id running_;

public:

void activate(Task::Id whom);

void reschedule();

void setNeedReschedule();

...

};

Support for preemption and further abstractions is pro-
vided by additional extension aspects and policy aspects.

ResourceSupport is an example for an extension as-
pect. It extends the Task system abstraction Scheduler

system component with support for resources. For this
purpose, it introduces some state variables (occupied_,
originalPri_) and operations (getResource(), re-

leaseResource()).4 The elements to introduce are given
by respective extension slices:

slice struct ResourceSupport_Task {

ResourceMask occupied_;

Pri originalPri_;

};

4ResourceSupport furthermore extends the API on the inter-
face layer (it introduces the respective AUTOSAR-OS services
Get-/ReleaseResource() and the ResourceType abstraction) so that
applications can use the new functionality. For the sake of simplicity,
this cross-layer extension is omitted here.

slice struct ResourceSupport_Sched {

void getResource(Resource::Id resid) {...}

void releaseResource(Resource::Id resid) {...}

};

aspect ResourceSupport {

advice "Task" : slice ResourceSupport_Task;

advice "Scheduler" : slice ResourceSupport_Sched;

};

FullPreemption is an example for a policy aspect. It
implements the full-preemption policy as specified in [19],
according to which every point where a higher-priority
task may become ready is a potential point of preemption:

pointcut pcPreemptionPoints() =

"% Scheduler::activate(...)" ||

"% Scheduler::setEvent(...)" ||

"% Scheduler::releaseResource(...)";

aspect FullPreemption {

advice execution(pcPreemptionPoints()) : after() {

tjp->that()->reschedule();

} };

The named pointcut pcPreemptionPoints() (defined
in a global header file) specifies the potential preemp-
tion points. To these points, if present, the aspect
FullPreemption binds the invocation of reschedule().
This demonstrates the benefits of loose coupling by the
AOP mechanisms, which makes it easy to cope with
conceptually different, but technically interacting fea-
tures: In a fully-preemptive system without resource sup-
port, Scheduler::releaseResource() is just not present,
thus does not constitute a join point for FullPreemption.
However, if the ResourceSupport extension aspect is
part of the current configuration, Scheduler::release-

9

[C20?] Proceedings of the 2009 USENIX Annual Technical Conference

USENIX ’09 69

concern ex
te

ns
io

n

po
lic

y

up
ca

ll

ad
vi

ce

jo
in

po
in

ts

extension of | advice-based binding to

ISR cat. 1 support 1 m 2+m 2+m API, OS control | m ISR bindings
ISR cat. 2 support 1 n 5+n 5+n API, OS control, scheduler | n ISR bindings
Resource support 1 1 3 5 scheduler, API, task | PCP policy implementation
Resource tracking 1 3 4 task, ISR | monitoring of Get/ReleaseResource
Event support 1 5 5 scheduler, API, task, alarm | trigger action JP
Full preemption 1 2 6 | 3 points of rescheduling
Mixed preemption 1 3 7 task | 3 points of rescheduling for task / ISR
Wrong context check 1 1 s | s service calls
Interrupts disabled check 1 1 30 | all services except interrupt services
Invalid parameters check 1 1 25 | services with an OS object parameter
Error hook 1 2 30 scheduler | 29 services
Protection hook 1 1 2 2 API | default policy implementation
Startup / shutdown hook 1 2 2 | explicit hooks
Pre-task / post-task hook 1 2 2 | explicit hooks

Table 2: Selected CiAO-AS kernel concerns implemented as aspects with number of affected join points. Listed are
selected kernel concerns that are implemented as extension, policy, or upcall aspects, together with the related pieces of
advice (not including order advice), the affected number of join points, and a short explanation for the purpose of each
join point (separated by “|” into introductions of extension slices | advice-based binding).

Resource() implicitly triggers the advice. The separation
of policy invocation from mechanism implementation
makes it easy to integrate additional features, such as
the ResourceSupport_PCP aspect, which implements a
stack-based priority ceiling protocol for resources. As
AspectC++ inlines advice code at the matching join point,
this flexibility does not cause overhead at run time.

6 Discussion of Results

By following the principles of aspect-aware operating
system development, policies and mechanisms are cleanly
separated in the CiAO implementation. This separation
is a golden rule of system-software development, but in
practice difficult to achieve. While on the design level it
is usually possible to describe a policy in a well-separated
manner from underlying mechanisms, the implementation
often tends to be crosscutting. The reason is that many
system policies, such as the preemption policy, not only
depend on decisions but also on the specific points in the
control flow where these decisions are made. Here, the
modularization into aspects shows some clear advantages.

6.1 Modularization of the System

Table 2 displays an excerpt of the list of AUTOSAR-OS
concerns that are implemented as aspects in CiAO-AS.
The first three columns list for each concern the number of
extension, policy, and upcall aspects that implement the
concern. (The resource-support aspect and the protection-
hook aspect have both an extension and a policy facet.)

An interesting point is the realization of synergies by
means of AOP quantification. If for some concern the
number of pieces of advice is lower than the number of
affected join points, we have actually profited from the
AOP concept of quantification by being able to reuse
advice code over several join points. For 8 out of the 14
concerns listed in Table 2, this is the case.

The net amount of this profit depends on the type of
concern and aspect. Extension aspects typically cross-
cut heterogeneously with the implementation of other
concerns, which means that they have specific pieces of
advice for specific join points. These kinds of advice do
not leave much potential for synergies by quantification.
Policy aspects on the other hand – especially those for ar-
chitectural policies – tend to crosscut homogeneously with
the implementation of other concerns, which means that a
specific piece of advice targets many different join points
at once. In these cases, quantification creates significant
synergies.

For all concerns, however, the implementation is real-
ized as a distinct set of aspect modules, thereby reaching
complete encapsulation and separation of concerns. Thus,
any given feature configuration demanded by the appli-
cation developer can be fulfilled by only including the
implementation entities belonging to that configuration in
the configured source tree to be compiled.

6.2 Scalability of the System
Execution Time. The effects of the achieved configura-
bility also become visible in the CPU overhead. Table 3
displays the execution times of the micro-benchmark sce-

10

“CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems” [C20?]

70 USENIX ’09

narios5 (a) to (j) and the comprehensive application (k)
on CiAO and a commercial OSEK implementation6. For
each scenario, we first configured both systems to sup-
port the smallest possible set of features (min colums
in Table 3). The differences between CiAO and OSEK
are considerable: CiAO is noticeably faster in all test
scenarios.

One reason for this is that CiAO provides a much better
configurability (and thereby granularity) than OSEK. As
the micro-benchmark scenarios utilize only subsets of the
OSEK/AUTOSAR features, this has a significant effect
on the resulting execution times. The smallest possible
configurations of the commercial OSEK still contained
a lot of unwanted functionality. The scheduler is syn-
chronized with ISRs, for instance; however, most of the
application scenarios do not include any ISRs that could
possibly interrupt the kernel.

To judge these effects, we performed additional mea-
surements with an “artifically enriched” version of CiAO
that provides the same amount of unwanted functionality
as OSEK (column full in Table 3). This reduces the per-
formance differences; however, CiAO is still faster in six
out of eleven test cases. This is most notable in test case
(k), which is a comprehensive application that actually
uses the full feature set.

Another reason for the relative advantage of CiAO is
that OSEK’s internal thread-abstraction implementation
is less efficient. This is mainly due to particularities of the
TriCore platform, which renders standard context-switch
implementations ported to that platform very inefficient.
CiAO, however, has a highly configurable and adaptable
thread abstraction, therefore not only providing for an
upward tailorability (i.e., to the needs of the application),
but also downward toward the deployment platform.

Memory Requirements. In embedded systems, tai-
lorability is crucial – especially with respect to memory
consumption, because RAM and ROM are typically lim-
ited to sizes of a few kilobytes. Since system software
does not directly contribute to the business value of an
embedded system, scalability is of particular importance
here. Thus, we also investigated how the memory require-
ments of the CiAO-AS kernel scale up with the number
of selected configurable features; the condensed results

5All variants were woven and compiled for the Infineon TriCore plat-
form with AC++-1.0PRE3 and TRICORE-G++-3.4.3 using -O3 -fno-rtti
-funit-at-a-time -ffunction-sections -Xlinker --gc-sections optimization
flags. Memory numbers are retrieved byte-exact from the linker-map
files. Run-time numbers are measured with a high-resolution hardware
trace unit (Lauterbach PowerTrace TC1796).

6ProOSEK is the leading commercial implementation of the OSEK
standard and part of the BMW and Audi/VW standard cores. We com-
pare CiAO against ProOSEK since (1) AUTOSAR is a true superset
of OSEK and (2) we do not yet have access to a complete AUTOSAR
implementation.

test scenario CiAO OSEK
min full min

(a) voluntary task switch 160 178 218
(b) forced task switch 108 127 280
(c) preemptive task switch 192 219 274
(d) system startup 194 194 399
(e) resource acquisition 19 56 54
(f) resource release 14 52 41
(g) resource release with preemption 240 326 294
(h) category 2 ISR latency 47 47 47
(i) event blocking with task switch 141 172 224
(j) event setting with preemption 194 232 201
(k) comprehensive application 748 748 1216

Table 3: Performance measurement results [clock ticks]

are depicted in Table 4. Listed are the deltas in code, data,
and BSS section size per feature that is added to the CiAO
base system.

Each Task object, for instance, takes 20 bytes of data
for the kernel task context (priority, state, function, stack,
interrupted flag) and 16 bytes (bss) for the underlying
CiAO thread abstraction structure. Aspects from the im-
plementation of other features, however, may extend the
size of the kernel task context. Resource support, for
instance, crosscuts with task management in the imple-
mentation of the Task structure, which it extends by 8
bytes to accommodate the occupied resources mask and
the original priority.

The cost of several features does not simply induce
a constant cost, but depends on the number of affected
join points, which in turn can depend on the presence
of other features, as explained in Section 5.3 with the
example of full preemption and resource support. This
effect underlines again the flexibility of loose coupling by
advice-based binding.

7 Experiences with the Approach

The CiAO results show that the approach of aspect-aware
operating-system development is both feasible and ben-
eficial for the class of configurable embedded operating
systems. The challenge was to implement a system in
which almost everything is configurable. In the following,
we describe our experience with the approach.

7.1 Extensibility

We are convinced that the three design principles of
aspect-aware operating-system development (loose cou-
pling, visible transitions, minimal extensions) also lead to
an easy extensibility of the system for new, unanticipated
features. While it is generally difficult to prove the sound-
ness of an approach for unanticipated change, we have at
least some evidence that our approach has clear benefits

11

[C20?] Proceedings of the 2009 USENIX Annual Technical Conference

USENIX ’09 71

feature with feature or instance text data bss

Base system (OS control and tasks)
per task + func + 20 + 16 + stack
per application mode 0 + 4 0

ISR cat. 1 support 0 0 0
per ISR +func 0 0
per disable–enable + 4 0 0

Resource support + 128 0 0
per resource 0 + 4 0
per task 0 + 8 0

Event support + 280 0 0
per task 0 + 8 0
per alarm 0 + 12 0

Full preemption 0 0 0
per join point + 12 0 0

Mixed preemption 0 0 0
per join point + 44 0 0
per task 0 + 4 0

Wrong context check 0 0 0
per void join point 0 0 0
per StatusType join point + 8 0 0

Interrupts disabled check 0 0 0
per join point + 64 0 0

Invalid parameters check 0 0 0
per join point + 36 0 0

Error hook 0 0 + 4
per join point + 54 0 0

Startup hook or shutdown hook 0 0 0
Pre-task hook or post-task hook 0 0 0

Table 4: Scalability of CiAO’s memory footprint. Listed
are the increases in static memory demands [bytes] of
selected configurable CiAO features.

here:
In a specific real-time application project that we im-

plemented using CiAO, minimal and deterministic event-
processing latencies were crucial. The underlying hard-
ware platform was the Infineon TriCore, which actually
is a heterogeneous multi-processor-system-on-chip that
comes with an integrated peripheral control processor
(PCP). This freely-programmable co-processor is able to
handle interrupts independently of the main processor.
We decided to extend CiAO in a way that the PCP pre-
handles all hardware events (interrupts) in order to map
them to activations of respective software tasks, thereby
preventing the real-time problem of rate-monotonic prior-
ity inversion [8]. This way, the CPU is only interrupted
when there actually is a control flow of a higher priority
than the currently executing one ready to be dispatched.

This relatively complex and unanticipated extension
could nevertheless be integrated into CiAO by a sin-
gle extension aspect, which is shown in Figure 6. The
PCP_Extension aspect is itself a minimal extension; its
implementation profited especially from the fact that all
other CiAO components are designed according to the
principle of visible transitions. This ensures here that all
relevant transitions of the CPU, such as when the kernel
is entered or left (lines 9 and 14, respectively) or when

the running CPU task is about to be preempted (line 17),
are available as statically evaluable and unambigious join
points to which the aspect can bind.

Note, that the aspect in Figure 6 is basically the com-
plete code for that extension, except for some initializa-
tion code (10 lines of code) and the PCP code, which is
written in assembly language due to the lack of a C/C++
compiler for the PCP instruction set.

7.2 The Role of Language
We think that the expressiveness of the base language (in
our case C++) plays an important role for the effective-
ness of the approach. Thanks to modularization through
namespaces and classes, C++ has some clear advantages
over C with respect to visible transitions: the more of the
base program’s purpose and semantics is expressed in its
syntactic structure, the more unambigious and “semanti-
cally rich” join points are available to which the aspects
can bind.

Note, however, that even though CiAO is using C++, it
is not developed in an object-oriented manner. We used
C++ as a purely static language and stayed away from any
language feature that induces a run-time overhead, such as
virtual functions, exceptions, run-time type information,
and automatic construction of global variables.

7.3 Technical Issues
Aspects for Low-Level Code. A recurring challenge in
the development of CiAO was that the implementation of
fundamental low-level OS abstractions, such as interrupt
handlers or the thread dispatcher, requires more control
over the resulting machine code than is guaranteed by
the semantics of ISO C++. Such functions are typically
(1) written entirely in external assembly files or (2) use a
mixture of inline assembly and nonstandard language ex-
tensions (such as __attribute__((interrupt)) in gcc).
For the sake of visible transitions, we generally opted
for (2). However, the resulting join points often have
to be considered as fragile – if advice is given to, for
instance, the context switch function, the transforma-
tions performed by the aspect weaver might break the
programmer’s implicit assumptions about register us-
age or the stack layout. The workaround we came up
with for these cases is to provide explicit join points
to which the aspects can bind instead. Technically, an
explicit join point is represented by an empty inline
function that is invoked from the fragile code when
the execution context is safe. CiAO’s context switch
functionality, for instance, exposes four explicit join
points to which aspects can bind: before_CPURelease(),
before_LastCPURelease(), after_CPUReceive(), and
after_FirstCPUReceive(). Because of function inlin-

12

“CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems” [C20?]

72 USENIX ’09

1 aspect PCP_Extension {
2 advice execution("void hw::init()") : after() {
3 PCP::init();
4 }
5 advice execution("% Scheduler::setRunning(...)") :
6 before() {
7 PCP::setPrio(os::krn::Task::getPri(tjp->args<0>()));
8 }
9 advice execution("% enterKernel(...)") : after() {

10 // wait until PCP has left kernel (Peterson)
11 PCP_FLAG0 = 1; PCP_TURN = 1;
12 while ((PCP_FLAG1 == 1) && (PCP_TURN == 1)) {}
13 }
14 advice execution("% leaveKernel(...)") : before() {
15 PCP_FLAG0 = 0;
16 }
17 advice execution("% AST0::ast(...)") : around() {
18 // AST0::ast() is the AST handler that activates
19 // the scheduler (bound by an upcall aspect)
20

21 // wait until PCP has left kernel (Peterson)
22 PCP_FLAG0 = 1; PCP_TURN = 1;
23 while ((PCP_FLAG1 == 1) && (PCP_TURN == 1)) {}
24

25 // proceed to aspect that activates scheduler
26 tjp->proceed();
27 PCP_FLAG0 = 0;
28 }
29 advice execution("% Scheduler::schedule(...)") : after() {
30 // write priority of running task to PCP memory
31 PCP::setPrio(Task::getPri(
32 Scheduler::Inst().getRunning()));
33 }
34 };

Figure 6: PCP co-processor extension aspect

ing, this does not induce an overhead and the aspect code
is still embedded directly into the context switch function-
ality.

Aspect–Aspect Interdependencies. In several cases
we had to deal with subtle interdependencies between
aspects that affect the same join points. For instance,
the following aspect implements the ErrorHook feature,
which exempts the application developer from manually
testing the result code of OS services:

aspect ErrorHook {

advice execution(pcOSServices() ...) : after() {

if(*tjp->result() != E_OK)

invokeErrorHook(*tjp->result());

} };

Later we figured that, depending on the configuration,
there are also other aspects that modify the result code.
To fulfill its specification, ErrorHook has to be invoked
after these other aspects. Whereas detecting such interde-
pendencies was sometimes tricky (especially those that
emerge only in certain configurations), they were gener-
ally easy to resolve by order advice:

advice execution(pcOSServices() ...) : order(

"ErrorHook", !"ErrorHook");

This type of advice allows the developer to define a (par-
tial) order of aspect invocation for a pointcut. The prece-
dence of aspects is specified as a sequence of match ex-
pressions, which are evaluated against all aspect identi-
fiers. In the above example, the aspect yielded by the
expression "ErrorHook" has precedence (is invoked last
of all aspects that give after advice to the pointcut) over
all other aspects (the result of !"ErrorHook"). Very help-
ful was that order advice does not necessarily have to be
given by one of the affected aspects, instead it can be
given by any aspect. This made it relatively easy to en-
capsulate and deal with configuration-dependent ordering
constraints.

Join-Point Traceability. An important factor for the
development were effective tools for join-point traceabil-
ity. From the viewpoint of an aspect developer, the set of
join points offered by some class implementation consti-
tutes an interface. However, these interfaces are “implicit
at best” [23]; a simple refactoring, such as renaming a
method, might silently change the set of join points and
thereby break some aspect. To prevent such situations, we
used the Eclipse-based AspectC++ Development Toolkit
(ACDT7), which provides a join-point–set delta analysis
(very helpful after updating from the repository) and visu-
alizes code that is affected by aspects. Thereby, unwanted
side effects of code changes could be detected relatively
easy.

8 Summary and Conclusions

Operating systems for the domain of resource-constrained
embedded systems have to be highly configurable. Typ-
ically, such configurability is implemented “in line” by
means of the C preprocessor. However, due to feature
interdependencies and the fact that system policies and
system mechanisms tend to crosscut with each other in
the implementation, this approach leads to “#ifdef hell”
and a bad separation of concerns. Our analysis of the
AUTOSAR-OS specification revealed that these effects
can already be found in the requirements; they are an in-
herent phenomenon of complex systems. If fundamental
architectural policies have to be provided as configurable
features, “#ifdef hell” appears to be unavoidable.

We showed that a pragmatic application of aspect-
oriented programming (AOP) provides means for solving
these issues: The advice mechanism of AOP effectively
reverses the direction of feature integration; an (optional)
feature that is implemented as an aspect integrates itself
into the base code. Thanks to AOP’s pointcut expressions,
the integration of features through join points is declara-
tive – it scales implicitly with the presense or absence of

7http://acdt.aspectc.org/

13

[C20?] Proceedings of the 2009 USENIX Annual Technical Conference

USENIX ’09 73

other features. A key prerequisite is, however, that the sys-
tem’s implementation exhibits enough unambigious and
statically evaluable join points. This is achieved by the
three design principles of aspect-aware operating-system
development.

By following this design approach in the development
of CiAO, we did not only achieve the complete separation
of concerns in the code, but also excellent configurability
and scalability in the resulting system. We hope that our
results encourage developers who start from scratch with
a piece of configurable system software to follow the
guidelines described in this paper.

Acknowledgments

We wish to thank the anonymous reviewers for EuroSys
and USENIX for their helpful comments. Special thanks
go to Robert Grimm, whose demanding and encouraging
shepherding helped us tremendously to improve content
and clarity of this paper.

References
[1] ÅBERG, R. A., LAWALL, J. L., SÜDHOLT, M., MULLER, G.,

AND MEUR, A.-F. L. On the automatic evolution of an OS
kernel using temporal logic and AOP. In 18th IEEE Int. Conf. on
Automated Software Engineering (ASE ’03) (Montreal, Canada,
Mar. 2003), IEEE, pp. 196–204.

[2] AUTOSAR. Specification of operating system (version 2.0.1).
Tech. rep., Automotive Open System Architecture GbR, June
2006.

[3] AUTOSAR homepage. http://www.autosar.org/, visited 2009-
03-26.

[4] BEUCHE, D. Variant management with pure::variants. Tech.
rep., pure-systems GmbH, 2006. http://www.pure-systems.

com/fileadmin/downloads/pv-whitepaper-en-04.pdf, visited
2009-03-26.

[5] BROY, M. Challenges in automotive software engineering. In
28th Int. Conf. on Software Engineering (ICSE ’06) (New York,
NY, USA, 2006), ACM, pp. 33–42.

[6] CAMPBELL, R., ISLAM, N., MADANY, P., AND RAILA, D.
Designing and implementing Choices: An object-oriented system
in C++. CACM 36, 9 (1993).

[7] COADY, Y., AND KICZALES, G. Back to the future: A retroac-
tive study of aspect evolution in operating system code. In 2nd
Int. Conf. on Aspect-Oriented Software Development (AOSD ’03)
(Boston, MA, USA, Mar. 2003), M. Akşit, Ed., ACM, pp. 50–59.

[8] DEL FOYO, L. E. L., MEJIA-ALVAREZ, P., AND DE NIZ, D.
Predictable interrupt management for real time kernels over con-
ventional PC hardware. In 12th IEEE Int. Symp. on Real-Time
and Embedded Technology and Applications (RTAS ’06) (Los
Alamitos, CA, USA, 2006), IEEE, pp. 14–23.

[9] ENGEL, M., AND FREISLEBEN, B. TOSKANA: a toolkit for
operating system kernel aspects. In Transactions on AOSD II
(2006), A. Rashid and M. Aksit, Eds., no. 4242 in LNCS, Springer,
pp. 182–226.

[10] FILMAN, R. E., ELRAD, T., CLARKE, S., AND AKSIT, M.
Aspect-Oriented Software Development. AW, 2005.

[11] FILMAN, R. E., AND FRIEDMAN, D. P. Aspect-oriented program-
ming is quantification and obliviousness. In W’shop on Advanced
SoC (OOPSLA ’00) (Oct. 2000).

[12] FIUCZYNSKI, M., GRIMM, R., COADY, Y., AND WALKER, D.
patch(1) considered harmful. In 10th W’shop on Hot Topics in
Operating Systems (HotOS ’05) (2005), USENIX.

[13] HOFER, W., LOHMANN, D., AND SCHRÖDER-PREIKSCHAT, W.
Concern impact analysis in configurable system software—the
AUTOSAR OS case. In 7th AOSD W’shop on Aspects, Compo-
nents, and Patterns for Infrastructure Software (AOSD-ACP4IS

’08) (New York, NY, USA, Mar. 2008), ACM, pp. 1–6.

[14] HUNT, G. C., AND LARUS, J. R. Singularity: Rethinking the
software stack. SIGOPS Oper. Syst. Rev. 41, 2 (2007), 37–49.

[15] KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,
LOPES, C., LOINGTIER, J.-M., AND IRWIN, J. Aspect-oriented
programming. In 11th Eur. Conf. on OOP (ECOOP ’97) (June
1997), M. Aksit and S. Matsuoka, Eds., vol. 1241 of LNCS,
Springer, pp. 220–242.

[16] LOHMANN, D. Aspect Awareness in the Development of Config-
urable System Software. PhD thesis, Friedrich-Alexander Univer-
sity Erlangen-Nuremberg, 2009.

[17] LOHMANN, D., SCHELER, F., TARTLER, R., SPINCZYK, O.,
AND SCHRÖDER-PREIKSCHAT, W. A quantitative analysis of
aspects in the eCos kernel. In ACM SIGOPS/EuroSys Eur. Conf.
on Computer Systems 2006 (EuroSys ’06) (New York, NY, USA,
Apr. 2006), ACM, pp. 191–204.

[18] MASSA, A. Embedded Software Development with eCos. New
Riders, 2002.

[19] OSEK/VDX GROUP. Operating system specification 2.2.3. Tech.
rep., OSEK/VDX Group, Feb. 2005. http://portal.osek-vdx.
org/files/pdf/specs/os223.pdf, visited 2009-03-26.

[20] PADIOLEAU, Y., LAWALL, J. L., MULLER, G., AND HANSEN,
R. R. Documenting and automating collateral evolutions in Linux
device drivers. In ACM SIGOPS/EuroSys Eur. Conf. on Computer
Systems 2008 (EuroSys ’08) (Glasgow, Scotland, Mar. 2008).

[21] REYNOLDS, A., FIUCZYNSKI, M. E., AND GRIMM, R. On the
feasibility of an AOSD approach to Linux kernel extensions. In
7th AOSD W’shop on Aspects, Components, and Patterns for In-
frastructure Software (AOSD-ACP4IS ’08) (New York, NY, USA,
Mar. 2008), ACM, pp. 1–7.

[22] SPINCZYK, O., AND LOHMANN, D. The design and implementa-
tion of AspectC++. Knowledge-Based Systems, Special Issue on
Techniques to Produce Intelligent Secure Software 20, 7 (2007),
636–651.

[23] STEIMANN, F. The paradoxical success of aspect-oriented pro-
gramming. In 21st ACM Conf. on OOP, Systems, Languages, and
Applications (OOPSLA ’06) (New York, NY, USA, 2006), ACM,
pp. 481–497.

[24] TURLEY, J. The two percent solution. embedded.com (Dec.
2002). http://www.embedded.com/story/OEG20021217S0039,
visited 2009-03-26.

[25] YANAGISAWA, Y., KOURAI, K., CHIBA, S., AND ISHIKAWA,
R. A dynamic aspect-oriented system for OS kernels. In 6th Int.
Conf. on Generative Programming and Component Engineering
(GPCE ’06) (New York, NY, USA, Oct. 2006), ACM, pp. 69–78.

[26] YOKOTE, Y. The Apertos reflective operating system: the concept
and its implementation. In 7th ACM Conf. on OOP, Systems,
Languages, and Applications (OOPSLA ’92) (New York, NY,
USA, 1992), ACM, pp. 414–434.

14

“CiAO: An Aspect-Oriented Operating-System Family for Resource-Constrained Embedded Systems” [C20?]

74 USENIX ’09

Aspect-Aware Operating System Development∗

Daniel Lohmann1 Wanja Hofer1 Wolfgang Schröder-Preikschat1 Olaf Spinczyk2

1Friedrich–Alexander University Erlangen–Nuremberg
2Technische Universität Dortmund

{lohmann,hofer,wosch}@cs.fau.de
olaf.spinczyk@tu-dortmund.de

ABSTRACT
The domain of operating systems has often been mentioned as an
“ideal candidate” for the application of AOP; fundamental policies
we find in these systems, such as synchronization or preemption,
seem to be inherently cross-cutting in their implementation. Their
clear separation into dedicated aspect modules should facilitate bet-
ter evolvability and – the focus of this paper – configurability. Our
experience with applying AOP to the domain of highly configurable
embedded operating systems has shown, however, that these advan-
tages can by no means be taken for granted. To reveal maximum
configurability of central system policies, aspects and their potential
interactions with the system have to be taken into account much
earlier, that is, “from the very beginning”. We propose the analy-
sis and design process of aspect-aware development, which leads
to such an “aspect-friendly” system structure and demonstrate its
feasibility on the example of CiAO, an AUTOSAR-OS-compliant
operating system that provides configurability of all fundamental
system policies by means of AOP.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems; D.2.2 [Software Engineering]:
Design Tools and Techniques—Modules and Interfaces; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms
Languages, Measurement, Experimentation, Design

Keywords
Aspect-Aware Design, Aspect-Oriented Programming (AOP), As-
pectC++, CiAO

∗This work was partly supported by the German Research Council
(DFG) under grants no. SCHR 603/4, SCHR 603/7-1, SP 968/2-1,
SP 968/4-1, and LO 1719/1-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’11, March 21–25, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0605-8/11/03 ...$10.00.

1. INTRODUCTION

Throughout the entire operating-system design cycle,
we must be careful to separate policy decisions from
implementation details (mechanisms). This separation
allows maximum flexibility if policy decisions are to be
changed later. (Silberschatz et al., “Operating System
Concepts”, p. 72, 2005)

When, more than a decade ago, the advent of aspect-oriented pro-
gramming (AOP) promised a new dimension of separation of con-
cerns in software systems, operating systems were among the targets
that were first mentioned for the new approach [16]. AOP is ap-
pealing for this domain, as fundamental operating-system concerns,
such as synchronization, preemption, prefetching, or monitoring
seem to be inherently cross-cutting. Their clear separation into
dedicated aspect modules would facilitate better evolvability and
configurability of operating-system policies [5, 8, 1]. As operating-
system engineers in the domain of embedded systems – a domain
for which configurability is of utmost importance – we immediately
became excited when we first heard about AOP at ECOOP ’97. This
triggered the design and development of the AspectC++ language
and tool suite [26] and extensive studies with aspects in the PURE
and eCos operating system families [25, 21].

Now, ten years later, our research activities on applying AOP
to the domain of configurable operating systems have culminated
in the development of CiAO (CiAO is Aspect-Oriented) – the first
operating system family that has been designed and developed with
AOP concepts from scratch. By the application of AOP, CiAO
reaches excellent configurability, a good separation of concerns,
and very low resource consumption in the resulting systems, which
outperforms leading commercial implementations [20]. On the
path to CiAO, however, we had to learn a lot. The separation and
configuration of fundamental operating system policies by aspects
turned out to be surprisingly challenging. To reveal maximum
benefits, the incorporation of AOP (as a programming paradigm)
had to be reflected in the system’s design much deeper than we had
initially expected; the no-overhead integration and configuration
of even low-level operating system concerns by aspects required a
decent level of pragmatism.

About This Paper
In this paper, we describe our experiences with applying AOP to the
domain of configurable operating systems for resource-constrained
embedded devices – and how they led to the analysis and design
method of aspect-aware operating system development that we came
up with for CiAO. In particular, we make the following contribu-
tions:

69

[C12?] Proceedings of the 10th International Conference on Aspect-Oriented Software Development (AOSD ’11)

AOSD ’11 75

• We describe, on the example of two case studies, typical
particularities of system software that in practice hinder better
configurability by AOP and analyze the fundamental issues
behind them (Section 2).

• We provide a new analysis and design method and a set of
fundamental design principles to improve on the situation
(Section 3). We have evaluated our method with AUTOSAR
OS [4], the dominant operating system standard for automo-
tive applications.

Our contribution is rounded up by a detailed discussion of the partic-
ularities of and requirements on AOP in general for the development
of configurable system software (Section 4). In Section 5 we de-
scribe related work and finally conclude with the pros and cons that
AOP offers for this particular domain (Section 6).

2. ANALYSIS AND BACKGROUND
System software provides no business value of its own. Its sole

purpose is to ease the development and integration of applications
– that is, to serve application developers and integrators with the
“right” set of abstractions for their particular problems.

2.1 Embedded Operating Systems
This is a challenge especially in the domain of small (“deeply”)

embedded systems, which are subject to an enormous hardware-
cost pressure. System software for this domain has to cope not
only with strict resource constraints, but also with a broad variety
of application requirements and platforms. For instance, power-
train applications are typically safety-critical and have to deal with
real-time requirements, while car body systems are far less criti-
cal. Hardware platforms range from 8-bit to 32-bit systems. Some
applications require a task model with synchronization and commu-
nication primitives, whereas others are much simpler control loops.
Thus, to allow for reuse, an operating system for the embedded sys-
tems domain has to be designed and developed as a software family
– that is, for configurability (provide alternatives) and tailorabil-
ity (leave out as much as possible). Furthermore, resource-saving
static configuration mechanisms are strongly favored over dynamic
(re-)configuration.

This necessity for best-possible configurability and tailorability
was the reason we considered AOP to be so promising: It facil-
itates separation of many more concerns than the traditional im-
plementation techniques. We especially sought for a technique to
implement even fundamental internal “architectural” policies of an
operating system kernel in a configurable and tailorable manner.
Some examples for such fundamental policies are: Synchronization
of kernel components (explicit vs. implicit, fine-grained vs. coarse-
grained, hardware-supported), Interaction between kernel compo-
nents (message-based vs. procedure-based), Preemption of control
flows inside the kernel (fully-preemptive, at dedicated preemption
points, no preemption until the kernel is left), and Protection of ker-
nel components against invalid access and behavior (coarse-grained
vs. fine-grained vs. no memory protection, deadline monitoring,
parameter validation).

Such fundamental internal policies define what is commonly re-
ferred to as the architecture of an operating system, like micro-kernel
(message-based interaction, implicit synchronization, fine-grained
protection) or monolith (procedure-based interaction, explicit syn-
chronization, coarse-grained protection). Their implementation,
however, is notoriously cross-cutting and, hence, often hard-wired
into the system – our call for AOP.

2.2 Early AOP Experiences
Our initial experiences with employing aspect to improve on the

situation in the PURE and eCos operating system families, were,
despite many success stories [25, 21], double edged: When it comes
to the actual implementation, apparently orthogonal concerns (such
as Interaction, Synchronization, and Preemption) often turned out to
induce hidden functional dependencies and unexpected ambiguities
on the join-point level. The following two examples from PURE
and eCos illustrate some of the more problematic cases.

2.2.1 Device-Driver Invocation in PURE
In the late nineties, our research group developed the PURE

family of operating systems for deeply embedded devices [6]. With
more than 250 configurable features and a kernel memory footprint
between 434 B and >100 KiB, PURE offers excellent scalability.
We achieved this scalability without a single #ifdef in the C++
code by a design approach that put old ideas from HABERMANN
and PARNAS (functional dependencies and functional hierarchies
[13, 23]) to an extreme and that mapped functional layers to C++
classes.

PURE, however, did not offer configurability of fundamental
system policies. Later, we applied AspectC++ to improve on the
configurability of its architectural system policies, among them
Interrupt Synchronization and Interaction between application code
and device drivers [25]. This worked successfully in the first case;
however, we ran into unexpected difficulties in the second case.

The scenario was as follows: In the default config-
uration, the invocation of device-driver services (such as
FloppyDriver::readBlock()) is implemented by plain method
calls, explicitly synchronized on a per-driver basis by mutex ob-
jects. A (more micro-kernel–like) architectural alternative for
this implementation of Interaction and Synchronization is to em-
ploy message passing and active servers: Each device driver is
a mini server that runs a message loop in its own thread. In [25],
the ServerSync aspect implements this alternative (well encapsu-
lated and transparently for application and device-driver develop-
ers) by the introduction of a Thread object into each driver class
plus a piece of around-advice that intercepts all noninternal calls
to device-driver services (call(“% FloppyDriver::%(...)”) &&

!within(“FloppyDriver”)) to transform them into messages that
are sent to and dispatched by the introduced thread.

A significant side effect of the ServerSync aspect is that
(by employing threads) it induces a new functional dependency
FloppyDriver → Scheduler, which had not been reflected in the
original PURE design. Such ex post changes to the functional hier-
archy of an operating system are risky; they may induce dependency
cycles or otherwise invalidate correctness assumptions of the sys-
tem’s design [13, 23].

In our initial tests and analyses for [25], this new dependency
was apparently compatible to the existing design; FloppyDriver
and Scheduler were completely unrelated before. Later, however,
we realized that both concerns indirectly interact with each other –
via another policy we had not explicitly considered before: Initial-
ization. If device drivers employ threads, the Scheduler has to be
initialized before the driver objects – whereas in the default con-
figuration the order of initialization does not matter. The latter is
the correctness assumption that is invalidated by the ServerSync

aspect. The problem: PURE implements the Initialization of system
components (such as Scheduler and FloppyDriver) by means of
C++ global instance construction, for which the order is undefined
across different compilation units; it cannot be influenced by as-
pects, such as ServerSync. In the end it turned out to be technically
impossible to turn Interaction (and several other architectural poli-

70

“Aspect-Aware Operating-System Development” [C12?]

76 AOSD ’11

void Cyg_Alarm::enable() {
// Prevent DSR execution
Cyg_Scheduler::lock();
if(!enabled){
// ensure the alarm time is in our future:
synchronize();
enabled = true;
counter->add_alarm(this);

}
// Unlock the scheduler and propagate
// DSRs. (No thread was set ready, so
// this is no point of preemption.)
Cyg_Scheduler::unlock();

}

void Cyg_Mutex::unlock() {
// Prevent preemption and DSR execution
Cyg_Scheduler::lock();
if(!queue.empty()) {
Cyg_Thread *thread = queue.dequeue();
thread->set_wake_reason(Cyg_Thread::DONE);
thread->wake();

}
locked = false;
owner = NULL;
// Unlock the scheduler, propagate DSRs
// and maybe switch threads
Cyg_Scheduler::unlock();

}

Figure 1: Join point ambiguity in the eCos kernel. Because Cyg_Scheduler::unlock() is not only used to enforce Synchronization, but
also Preemption, the related execution join points are ambiguous.

cies) into fully configurable features by means of aspects due to (1)
hidden dependencies to other policies that (2) were designed in an

“AOP-unfriendly” way.

2.2.2 Synchronization and Preemption in eCos
eCos, the embedded Configurable operating system [9, 22] is

an industry-strength and broadly accepted open-source operating
system family for the embedded systems domain. Including all
optional packages, eCos offers more than 750 configuration options;
the kernel itself consists of 5,000 lines of C++ code and offers nearly
100 configuration options, which are technically implemented by
means of the C preprocessor – an “#ifdef hell”.

As part of a larger case study about the run-time and memory
effects of AOP, we refactored 16 eCos configuration options and ker-
nel policies from conditional compilation into aspects – and thereby
achieved a much better separation of concerns without extra run-time
and memory costs [21]. One of these polices was Synchronization,
which in eCos enforces mutual exclusion between threads and in-
kernel interrupt handlers (called deferred service routines, DSRs) in
order to ensure consistency of kernel state. Although only required
if both threads and DSRs are actually employed by the application
(many embedded applications use only either one), Synchronization
is a mandatory feature in eCos that always causes run-time and
memory costs. This is probably due to its implementation, which
homogeneously cross-cuts large parts of the kernel source base:
Each kernel function (as shown in Figure 1) is wrapped by calls
to Cyg_Scheduler::lock() and Cyg_Scheduler::unlock() (187
invocations in total).

Extracting and separating Synchronization into an aspect was
straightforward and clearly improved the clarity of the code [21].
However, our further attempts to thereby also improve the tailorabil-
ity of eCos (turning Synchronization into a truly optional feature
should be simple if implemented by an aspect) have failed. The
eCos developers exploited the fact that Cyg_Scheduler::unlock()
is called by all kernel functions immediately before the kernel is left
to piggyback the enforcement of another central kernel policy on
it. Cyg_Scheduler::unlock() does not only re-enable DSR propa-
gation (Synchronization), it also activates the scheduler to possibly
preempt the running thread (Preemption). The result of this “clever
optimization” is ambiguity: Apparently, all 101 invocations of
Cyg_Scheduler::unlock() that can be found in the kernel sources
represent a point of Synchronization (like in Cyg_Alarm::enable()

in Figure 1), but only 51 of them also represent a point of Pre-
emption, for which the scheduler activation is actually necessary
(like in Cyg_Mutex::unlock()). However, both concerns are not
distinguishable on the join-point level; leaving out the enforcement
of Synchronization would partly remove Preemption as well – even

though both policies are conceptually independent concerns and all
Synchronization code has been well encapsulated into an aspect.

2.3 Lessons Learned – A Summary
The respective “show stoppers” we encountered in the described

PURE and eCos problem cases may appear to be very specific.
Nevertheless, they exemplify some general issues we have found
over the years in our attempts to achieve the configurability of even
fundamental system policies in operating systems:

Hidden concerns caused by correctness assumptions that mani-
fest only implicitly in the specification, in the design and –
especially – in the implementation of the operating system.

Missing join points caused by optimizations, low-level code, and
a generally “aspect-unfriendly” design and implementation.

The Initialization and Preemption policies in PURE and eCos, re-
spectively, are examples for (partly) hidden concerns. Conceptually
orthogonal to the rest of the system, their concrete realization causes
hidden functional dependencies with respect to other concerns. How-
ever, even though eventually revealed and theoretically resolvable, it
turned out as technically impossible to actually resolve these issues
by the aspects, because of missing join points in the system’s design
and implementation.

2.3.1 Hidden Concerns
Hidden concerns can probably be found in any type of software,

but operating systems are particularly prone to them. In our ex-
perience, they are often caused by the (comparatively complex)
internal control-flow interaction schemes: With interrupts, DSRs,
and threads, even small operating systems, like PURE and eCos,
support at least three different types of control flows, all of which
bear specific (and often subtle) interaction constraints. Interrupts
and DSRs, for instance, must never block, whereas threads have
to be aware of preemption and interruption at any time. Features
that have been designed and implemented with implicit assump-
tions in this respect (like “this code is {never | always} invoked
on {interrupt | thread | ...} level”) can be found in every operating
system. These assumptions, however, are often invalidated if we
implement fundamental system policies as configurable features: A
developer implementing the Threading concern, for instance, typi-
cally does this under the assumption that the context-switching code
is never invoked from the interrupt level; hence, it does not have
to be interrupt-safe. Now consider a IRQThreads policy aspect that
reduces interrupt latencies by mapping interrupt requests to thread
activations (a strategy implemented, for instance, by Solaris [17]).
If IRQThreads is applied, the original assumption is no longer valid.
This is not per se an issue if (1) the aspect developer is aware of
this fact, and (2) it is possible to resolve the new dependency by

71

[C12?] Proceedings of the 10th International Conference on Aspect-Oriented Software Development (AOSD ’11)

AOSD ’11 77

augmenting the context-switching code by an aspect in order to
make it interrupt-safe.

2.3.2 Missing Join Points
The latter could be achieved, for instance, by a piece of advice that

disables (re-enables) interrupts before (after) each context switch
– but only if all respective thread transitions are exposed as unam-
biguous join-points to which aspects safely can bind. In theory,
missing join-points should never be an issue: “Just program like
you always do, and we’ll be able to add the aspects later” [11]. In
practice, the obliviousness principle in the form as postulated by
FILMAN and FRIEDMAN has probably not passed the reality check
for any type of software. However, in our experience, the problem of
missing join-points is particularly challenging in operating systems:
The context-switching code, for instance, may be scattered over the
scheduler implementation for optimization purposes (the case in
eCos). Parts of it are typically written in assembly language, which
does not expose join-points for aspects written in a high-level lan-
guage, such as AspectC++. In other cases, join-points are exposed
by fragile near-hardware code – to which aspects better do not bind,
because the transformations performed by the aspect weaver will
probably break this code. A further issue are join-point ambiguities
like we found in eCos.

Join-point ambiguities seem to be a general problem of optimized
systems code: ÅBERG and colleagues found a similar situation in
the Linux scheduling code and had to enhance their pointcut lan-
guage by temporal logic [1] to disambiguate scheduling events at
run time with stateful aspects (very similar to the later tracematches
[2]). Besides the additional run-time overhead such approach in-
duces it also effectively results in some sort of late binding of the
respective features (such as Preemption and Synchronization). This
spoils dead-code elimination and, thereby, the original goal: To
remove unneeded functionality from the resulting binary. Embed-
ded systems engineers consider such overheads as unacceptable –
especially if a static solution would be possible.

We expected all these problems to become even more severe if
we want to configure many fundamental policies.

3. THE CIAO APPROACH
Based on our experiences with using AOP in the PURE and

eCos operating systems, we have developed an integrated analysis
and development approach for operating systems. Our approach
provides for (1) the early identification of hidden concerns and (2)
their aspect-aware design and implementation.

The overall goal is to reach configurability even of fundamental
system policies, whose implementation is highly cross-cutting and
interacting in traditional operating systems. Furthermore, by using
aspects for the implementation of system configurability, we want
to reach a more fine-grained level of configuration possibilities –
without trading off efficiency in terms of resource usage. Since
hardware resource usage is crucial in most embedded systems, our
precondition here is to aim at overhead-free configurability, as it
would be possible with traditional conditional compilation.

In order to keep the investigation of the suitability of AOP for
operating system engineering as independent as possible, we de-
cided to start with a publicly available standard in the domain –
AUTOSAR OS [4, 3]. This way, the choice of OS abstractions and
system services and their functionality is not biased by the intended
AOP implementation. In fact, AUTOSAR OS is very C-focused,
and most implementations are therefore also in C, configured by
some kind of code preprocessor. We briefly introduce AUTOSAR
in Section 3.1, followed by a description of how we analyzed the
specification for crosscutting with a method called Concern Impact

Analysis (see Section 3.2). After that, we present our concept of
aspect-aware operating system development in Section 3.3.

3.1 AUTOSAR OS
AUTOSAR is an initiative formed by all major automotive manu-

facturers and suppliers like BMW, Ford, Toyota, and Bosch. Their
goal is to standardize the interfaces and functionality of the oper-
ating system and drivers in automotive microcontrollers in order
to facilitate application development in the domain. The operating
system standard, AUTOSAR OS [4, 3] describes a kernel that is
completely statically configured; the overall system configuration is
known at compile time.

AUTOSAR OS offers different kinds of abstractions to the ap-
plication programmer. Among the control flows, there are tasks
(named threads in other operating systems) and hooks, which are
callback functions invoked when the corresponding internal point
in the system is reached (e.g., upon a task switch, or upon a pro-
tection violation). Interrupt services routines (ISRs) are invoked
asynchronously by the hardware; ISRs of category 1 must not use
OS services, whereas ISRs of category 2 are allowed to invoke the
kernel and must therefore be synchronized with the kernel in order
not to corrupt kernel state. Tasks and ISRs themselves can synchro-
nize by acquiring and releasing AUTOSAR resources; AUTOSAR
events can be used for task and ISR notification. AUTOSAR alarms
allow the application to take action after a specified amount of time
has elapsed.

The main point that distinguishes AUTOSAR OS from other
operating systems in the domain is its configurable support for
properties of architectural kinds. These include the decision to make
the system fully-, mixed-, or non-preemptable, and different levels
of protection between AUTOSAR applications. Protection entails
memory protection to prevent memory corruption, timing protection
to ensure that applications will not miss their deadlines because
of another, misbehaving application, and service protection, which
checks for correct usage and context of system-service invocation.

3.2 Concern Impact Analysis
In order to be able to design an aspect-aware system, the developer

not only has to scope the system’s functionality in the analysis phase,
but he also needs to assess the effect of configurable concerns on
the system. This raised awareness of the different concerns in the
system and their relationships to each other are the main goal of
our specialized analysis process named Concern Impact Analysis
(CIA; see Figure 2). CIA eventually aims to provide the information
necessary to map the initially abstract concerns (c and d in Figure 2)
to design and implementation artifacts such as classes or aspects
(g–l in Figure 2).

In a first step, the developer scrutinizes the given requirements
in the form of a specification or abstract requirements list, mining
it for distinguishable concerns in the target domain. This includes
concerns that will be kept configurable (and therefore omissible) in
the final program family, but also concerns that are fundamental to
all system variants. To some extent, this subprocess requires the
knowledge of a domain expert, who will also be able to identify con-
cerns that are internal to a system. Such internal concerns are rarely
mentioned explicitly in a requirements or specification document;
nevertheless, many of them are vital to a working software system.
The overall outcome of the first step is a list of identified explicit con-
cerns plus a preliminary list of identified internal concerns, both of
which serve as a basis for the following impact analysis. Obviously,
the concern list is a super set of all features that could be present
in a system; it is subject to tailoring by the system configurator by
excluding features from the configuration.

72

“Aspect-Aware Operating-System Development” [C12?]

78 AOSD ’11

Figure 2: The process of Concern Impact Analysis (CIA) to aid aspect awareness in the system design

System abstractions (functional) Callbacks Protection facilities (architectural) Internal

O
S

co
nt

ro
l

Ta
sk

s

IS
R

s
ca

te
go

ry
1

IS
R

s
ca

te
go

ry
2

R
es

ou
rc

es

E
ve

nt
s

A
la

rm
s

A
la

rm
ca

llb
ac

ks

H
oo

ks

O
S

ap
pl

ic
at

io
ns

M
em

or
y

pr
ot

ec
tio

n

S
ta

ck
m

on
ito

rin
g

T
im

in
g

pr
ot

ec
tio

n

In
va

lid
pa

ra
m

et
er

s

O
ut

of
ra

ng
e

W
ro

ng
co

nt
ex

t

M
is

si
ng

ta
sk

en
d

E
na

bl
e

w
/o

di
sa

bl
e

In
te

rr
up

ts
di

sa
bl

ed

N
on

tr
us

te
d

sh
ut

do
w

n

F
or

ei
gn

O
S

ob
je

ct
s

P
re

em
pt

io
n

K
er

ne
ls

yn
c

GetActiveApplicationMode() ⊕ �� �� ��
StartOS() ⊕ �� �� �� ��
ShutdownOS() ⊕ �� �� �� ��
ActivateTask() ⊕ �� �� �� �� �� ��
TerminateTask() ⊕ �� �� �� ��
ChainTask() ⊕ �� �� �� �� �� ��
Schedule() ⊕ �� �� �� ��
GetTaskID() ⊕ �� �� ��
GetTaskState() ⊕ �� �� �� �� ��
EnableAllInterrupts() ⊕ �� �� ��
DisableAllInterrupts() ⊕ �� ��
ResumeAllInterrupts() ⊕ �� �� ��
SuspendAllInterrupts() ⊕ �� ��
ResumeOSInterrupts() ⊕ �� �� ��
SuspendOSInterrupts() ⊕ �� ��
GetISRID() ⊕ �� ��
DisableInterruptSource() ⊕ �� �� �� �� ��
EnableInterruptSource() ⊕ �� �� �� �� ��
GetResource() ⊕ �� �� �� �� �� ��
ReleaseResource() ⊕ �� �� �� �� �� �� ��
SetEvent() ⊕ �� �� �� �� �� ��
ClearEvent() ⊕ �� �� ��
GetEvent() ⊕ �� �� �� �� ��
WaitEvent() ⊕ �� �� �� ��
IncrementCounter() ⊕ �� �� �� �� �� ��
GetAlarmBase() ⊕ �� �� �� �� ��
GetAlarm() ⊕ �� �� �� �� ��
SetRelAlarm() ⊕ �� �� �� �� �� ��
SetAbsAlarm() ⊕ �� �� �� �� �� ��
CancelAlarm() ⊕ �� �� �� �� ��
StartScheduleTableRel() ⊕ �� �� �� �� �� ��
StartScheduleTableAbs() ⊕ �� �� �� �� �� ��
StopScheduleTable() ⊕ �� �� �� �� ��
NextScheduleTable() ⊕ �� �� �� �� ��
SetScheduleTableAsync() ⊕ �� �� �� �� ��
SyncScheduleTable() ⊕ �� �� �� �� ��
GetScheduleTableStatus() ⊕ �� �� �� �� ��
GetApplicationID() ⊕ �� ��
TerminateApplication() �� ⊕ �� ��
CallTrustedFunction() �� ⊕ �� ��
CheckObjectAccess() ⊕ �� �� �� ��
CheckObjectOwnership() ⊕ �� ��
CheckISRMemoryAccess() ⊕ �� �� �� ��
CheckTaskMemoryAccess() ⊕ �� �� �� ��
AppModeType ⊕ � �
TaskType ⊕ � � � � � � � �
ISR category 2 ⊕ � � �
ResourceType ⊕ � �
AlarmType /ScheduleTableType � � ⊕ � � � �
ApplicationType ⊕ �
alarm expiry �� �� �� ��
category 2 ISR execution � � ��
system startup �� �� ��
system shutdown ��
protection violation ��
task switch � �� �� �
application switch �� ��
uncontrolled task end ��
user �→ kernel transition �� ��
kernel �→ user transition �� ��

Table 1: Influence of configurable concerns (columns) on system services, system types, and internal events (rows) in AUTOSAR OS.
Kind of influence: ⊕ = introduction of a service or type, � = impact on a type, �� /�� /� = impact before / after / around a service or internal
event.

73

[C12?] Proceedings of the 10th International Conference on Aspect-Oriented Software Development (AOSD ’11)

AOSD ’11 79

3.2.1 Cross-Cut Table
The main CIA step is the actual analysis of the impact each

concern has on the system to be built (see step 2 in Figure 2). The
impact is classified and visualized in a cross-cut table matrix (e
in Figure 2) as exemplified in Table 1 with the analysis of the
AUTOSAR OS specification and the design of CiAO.

As a starting point for the cross-cut table (which is, to some
degree, comparable to a design structure matrix [7]), the columns
list the concerns as identified in the first step, whereas the rows
above the double line list the API of the system to be built, in this
case AUTOSAR OS. The API includes both system services (listed
in semantic groups in Table 1) as well as instantiable system types.
The events listed below the double line include system-internal
transitions that are of importance to one concern or the other. This
list of transitions does not form until the actual analysis of the
concerns takes place, which is when the need to list these transitions
emerges.

In order to populate the cross-cut table, in an iterative process,
each concern is analyzed for its impact on the system to be. This
mainly entails three types of impact:

1. Extension of the system API by a service or a type. Some
concerns are reflected in a system’s interface to the using
components, since without them, certain services cannot be
offered by the system. Thus, those concerns introduce API
services and types, denoted by a ⊕ sign in the cross-cut table.

2. Modification of a system service or its functionality. Sev-
eral concerns will not affect the system’s external interface,
but they will alter or adapt its functionality. Usually, this
adaptation only affects the execution or invocation of well-
selected services, which is denoted by a ��, ��, or � sign in
the corresponding row and column in the table. If besides
that, a concern needs to be notified of additional events that
are internal to the system, that event is listed in an additional
row below the double line and marked to be influenced by the
given concern.

3. Extension of a system type. In some cases, a concern will not
introduce a new type to be able to fulfill its duty, but it will
instead need to extend an existing API type as introduced by
another concern. This type-internal extension is denoted by
a � sign in the cross-cut table.

We are aware of the fact that producing the cross-cut table means
thinking about the concerns’ implementation to some degree already
in the analysis phase. However, we think that this is crucial to be
able to design a complex configurable software system in an aspect-
aware manner, because it is the cross-cut table that enables the
developer to make informed decisions about the system architecture.
Furthermore, forcing the developer to think about the impact of
each concern will reveal additional internal concerns that were
previously hidden in the requirements (see feedback loop from
step 2 in Figure 2). A typical example from the operating systems
domain is kernel synchronization, which is rarely mentioned but
vital to keeping kernel state consistent if interrupt service routines
are allowed to call system services. Revealing and analyzing such
concerns in the early analysis stage makes the subsequent design
process respect them explicitly.

Consider, for instance, the different sets of concerns as depicted
in Table 1 (vertical analysis view). The system abstraction concerns
each canonically extend the system API by the corresponding sys-
tem services and types of the given abstraction, since they extend the
system functionally. Note that each system service is introduced by

exactly one concern (i.e., exactly one ⊕ sign per service/type row).
The architectural concerns, however, which all implement some
form of protection mechanism, mostly influence and enhance exist-
ing system services. Some of them are highly cross-cutting (e.g.,
consider the column corresponding to the concern “wrong context”,
which checks for the correct invocation context of a system service
call), whereas others have a very selective influence on the system
(e.g., consider the concern “nontrusted shutdown”, which prevents
nontrusted application from shutting down the whole system). By
making the type of influence and its locality and dimension explicit
in the cross-cut table diagram, the concerns can be directly consid-
ered to be modeled as a class or an aspect in the aspect-aware design
step (see Section 3.3). Highly cross-cutting concerns, for instance,
will probably benefit the most from AOP quantification mechanisms
and are likely candidates for an aspect module implementation.

On the other hand, consider the system services and types as
depicted in Table 1 (horizontal analysis view). Note that not a
single service is influenced by only one concern; in fact, system
services such as ReleaseResource() are influenced by as many as
eight concerns! Hence, such “hot spot” services require special
attention in the design, and potential aspect implementations of
influencing concerns need to be carefully ordered not to break each
other’s functionality.

Ultimately, a comprehensive analysis with a comprehensive im-
pact table like the one in Table 1 will provide an ideal basis for the
aspect-aware design of the system concerns, making the implemen-
tation a straight-forward step.

3.2.2 Concern Hierarchy
The second artifact to be output by the impact analysis step be-

sides the cross-cut table is a concern hierarchy (f in Figure 2). Due
to space constraints, we have omitted the resulting concern hier-
archy of CiAO from this paper. However, a concern hierarchy is
basically a functional hierarchy [13] enriched by influence relation-
ships between the different (sub) concerns. It describes, on the one
hand, which concern uses which other concerns: This means that the
respective concerns are tightly coupled – the functional correctness
of the using concern depends on the one of the used concern. On the
other hand, an extension to functional hierarchies, a concern might
only influence other concerns: This indicates a loose coupling; if
one of the target concerns is not included in a given system configu-
ration, the source concern will still be able to fulfill its specification
semantically.

We found that a concern that extends one or more system types
(denoted by a � sign in the cross-cut table) typically uses the con-
cerns that introduce the respective types. In AUTOSAR OS, for
instance, events are generally task bound, hence, the Events concern
uses the Tasks concern. This is already indicated in Table 1 by the
fact that Events extends TaskType, which is introduced by Tasks.

A concern that modifies system services only, on the other hand,
usually influences the respective target concerns. The Interrupts dis-
abled concern, for instance, ensures for a number of system services
(among them GetResource() and ReleaseResource()) that they
are not invoked while running on interrupt level (with interrupts dis-
abled). If some influenced concern (e.g., Resources) is not present
in the current configuration, this property is implicitly true for its
services.

3.3 Aspect-Aware Design
Eventually, the system’s concerns and their interactions have been

identified and described as far as possible. The goal of the following
step 3 (Figure 2) is then to compose the gained knowledge into a
model of classes, aspects, and, where necessary, explicit join points

74

“Aspect-Aware Operating-System Development” [C12?]

80 AOSD ’11

Figure 3: Layered structure of CiAO. Depicted are the three
fundamental layers of the CiAO architecture with a selection of their
sublayers, components, abstractions, and aspects (depicted with
rounded corners).

(documents g–l). Based on our experience with PURE and eCos, this
process is guided by three fundamental principles of aspect-aware
software development:

The principle of loose coupling. Make sure that aspects can hook
into all facets of the static and dynamic integration of system
components. The binding of components, but also their instan-
tiation (e.g, placement in a certain memory region) and the
time and order of their initialization should all be established
(or at least be influenceable) by aspects.

The principle of visible transitions. Make sure that aspects can
hook into all control flows that run through the system. All
control-flow transitions into, out of, and within the system
should be influenceable by aspects. For this they have to
be represented on the join-point level as statically evaluable,
unambiguous join-point shadows.

The principle of minimal extensions. Make sure that aspects can
extend all features provided by the system on a fine granularity.
System components and system abstractions should be fine-
grained, sparse, and extensible by aspects.

All subsequent design and implementation decisions are evaluated
with respect to these three principles.

3.3.1 CiAO Architecture
The first steps towards aspect-awareness are already made in the

architecture of the system: Like most operating systems, CiAO is
based on a layered architecture, in which each layer is implemented
using the functionality of the layers below (Figure 3). The only
exceptions from this are the aspects implementing architectural
policies, which may take effect across multiple layers.

On the coarse level, we have three layers. From bottom up these
are: the hardware layer (hw, hardware programming interface), the
system layer (os, the operating system itself), and the interface layer
(ciao or as, the (configurable) application programming interface).

This architecture is aspect-aware in the sense that layers do not
only serve as conceptual levels of abstraction, but also as a means
to provide cross-layer control-flow transitions on the join-point
level (visible transitions). Each layer is modeled as a top-level C++
namespace or class, which makes it easy to grasp such transitions
by pointcuts, like the following AspectC++ pointcut yields all join
points where a system-layer component (namespace os) accesses
the hardware (namespace hw):

pointcut OStoHW() = call("% hw::...::%(...)")

&& within("% os::...::%(...)");

Control-flow transitions down the layer hierarchy (such as the
invocation of some system service) are established by method calls;
aspects can interfere with these transitions by giving advice to a
pointcut like OStoHW. Transitions up the hierarchy (upcalls, such as
a thread start or a signal delivery) are modeled as explicit join-point
shadows and only established by aspects (loose coupling). In the
case of CiAO, aspects thereby can hook into all transitions into and
out of the system layer that are visible on the static join-point level
(visible transitions).

3.3.2 Classes and Aspects
With respect to the three design principles: Which concerns are

best to be implemented as classes and which as aspects? With
respect to loose coupling, we came up with the following general
rule: Some concern is implemented as a class if – and only if – it
represents a distinguishable run-time–instantiable concept of the
system, otherwise it is realized as an aspect.

In the case of CiAO, this holds in particular for the system ab-
stractions taken from the system specification document and iden-
tified during concern analysis. System abstractions (AppModeType,
TaskType, and so on) are directly listed in the cross-cut table (Ta-
ble 1, column 1) and represent the OS-managed entities that are
instantiated on behalf of the application. Furthermore modeled as
classes are the system components, which horizontally subdivide
the architectural layers and represent its functional sub-domains
(such as the Scheduler or the AlarmManager in the system layer,
see Figure 3). Their identification is guided by the concern hierarchy,
but also requires a decent amount of expert knowledge regarding
(potential) synchronization and protection domains. The point, how-
ever, is: All classes that represent system abstractions and system
components are sparse or even empty, that is, they implement only
the minimal base of the respective concern (minimal extensions).
Their major purpose is to provide a distinct scope for introductions
of cross-component interactions (visible transitions). All further
features are “filled in” by the aspects. During the development of
CiAO we came up with three idiomatic roles of aspects:

1. Extension aspects add additional features to a system abstrac-
tion or component (minimal extensions), such as extending
the scheduler by means for task synchronization (e.g., AU-
TOSAR OS resources).

2. Policy aspects “glue” otherwise unrelated system abstrac-
tions or components together to implement some kernel policy
(loose coupling), such as activating the scheduler from a peri-
odic timer to implement time-triggered preemptive schedul-
ing.

3. Upcall aspects bind behavior defined by higher layers to
events produced in lower layers of the system, such as binding
a driver function to interrupt events.

Extension aspects can be identified in the cross-cut table by the fact
that they affect especially the static structure, typically by intro-
ducing some system services. Most extension aspects accompany
some system abstraction (e.g., ResourceType); they integrate the
actual implementation of the respective concern (Resources) into the
system components (Scheduler) and extend the interface layer by
the corresponding services (GetResource(), ReleaseResource()).

Policy aspects, in contrast, lead to a different system behavior. In
the cross-cut table they can be identified by seeking concerns that
(mostly) affect the dynamic structure of the system, like Preemption.

75

[C12?] Proceedings of the 10th International Conference on Aspect-Oriented Software Development (AOSD ’11)

AOSD ’11 81

concern ex
te

ns
io

n

po
lic

y

up
ca

ll

ad
vi

ce

jo
in

po
in

ts

extension of | advice-based binding to

ISR cat. 1 support 1 m 2+m 2+m API, OS control | m ISR bindings
ISR cat. 2 support 1 n 5+n 5+n API, OS control, scheduler | n ISR bindings
Resource support 1 1 3 5 scheduler, API, task | PCP policy implementation
Resource tracking 1 3 4 task, ISR | monitoring of Get/ReleaseResource
Event support 1 5 5 scheduler, API, task, alarm | trigger action JP
Full preemption 1 2 6 | 3 points of rescheduling
Mixed preemption 1 3 7 task | 3 points of rescheduling for task / ISR
Wrong context check 1 1 s | s service calls
Interrupts disabled check 1 1 30 | all services except interrupt services
Invalid parameters check 1 1 25 | services with an OS object parameter
Error hook 1 2 30 scheduler | 29 services
Protection hook 1 1 2 2 API | default policy implementation
Startup / shutdown hook 1 2 2 | explicit hooks
Pre-task / post-task hook 1 2 2 | explicit hooks

Table 2: Selected CiAO-AS kernel concerns implemented as aspects with number of affected join points. Listed are selected kernel
concerns that are implemented as extension, policy, or upcall aspects, together with the related pieces of advice (not including order advice),
the affected number of join points, and a short explanation for the purpose of each join point (separated by “|” into introductions of extension
slices | advice-based binding).

Upcall aspects realize loose coupling with respect to upcalls, as
described in Section 3.3.1. They are invisible in the cross-cut table,
as most of them do not manifest before the implementation phase.

Table 2 displays an excerpt of the list of AUTOSAR OS concerns
that are implemented as aspects in CiAO. The first three columns list
for each concern the number of extension, policy, and upcall aspects
that implement the concern. (The resource-support aspect and the
protection-hook aspect have both an extension and a policy facet.)
The majority of concerns contribute to the set of policy aspects
(12 aspects), which is followed by the set of extension aspects (9
aspects). The number of upcall aspects (3+n+m) differs from these
in so far as it does not only depend on the system configuration,
but also on the application configuration: Each specified ISR in
the application is bound with the respective interrupt source in the
kernel or hardware access layer (HAL) by its own upcall aspect.
These aspects are, however, not to be provided by the application
developer; they are generated automatically from the application
configuration.

3.3.3 Explicit Join Points
By consequent application of the fundamental principles of aspect-

aware development in the architecture and design of the system,
CiAO already offers a rich join-point interface “by structure”. Nev-
ertheless, in many cases the implicit join-point interface is not ample
enough. This has conceptual as well as technical reasons:

1. Implicit join points are inherently implementation dependent.
Their amount – but especially their semantics – may be in-
consistent between different implementations of the same
concept. This is absolutely acceptable for component-specific
extension aspects, as these aspects have to know the compo-
nent they extend anyway. It is, however, not satisfying for
system aspects that implement more general policies.

2. Some semantically important control-flow transitions are not
visible at the join-point level because they do not occur on the
boundary of function calls or executions. In other cases, their
place of occurrence is configuration-dependent, or there are
multiple places of occurrence. For example, user �→ kernel
transitions might occur if a kernel function is called, when a

trap handler is activated, or during task switching to another
task. However, in CiAO, this is a matter of configuration.

3. Several semantically important control-flow transitions are
not available as join points because of technical reasons. This
is often the case with low-level system abstractions, such as
interrupt handlers or the implementation of the context switch
mechanism.

For these reasons, many CiAO components and layers provide fur-
thermore a well-defined explicit join-point interface that defines
one or several explicit join points. An explicit join point is a named
join point in the kernel control flow that bears precisely defined
semantics and can safely be advised. Technically, explicit join
points are implemented as empty methods – provided for the sole
purpose that aspects can bind to them. The join-point provider
invokes these methods at run time, either directly or indirectly by
component-specific adapter aspects.

Conceptually, explicit join-point interfaces can be compared to
hooks or interceptor interfaces in other component models. An
advantage of explicit join points is, however, their low overhead. In
most cases (that is, when they do not have to be triggered from parts
written in assembly language) they can be implemented as empty
inline methods, which get optimized away by the compiler if no
aspect binds to them. Another advantage is the inherent support for
1 : n relationships – handler chaining for shared interrupt sources,
for instance, is supported “out of the box”.

We distinguish between upcall join points and transition join
points. The former are the interface that upcall aspects bind to;
the incarnations of hardware interrupts or threads, for instance, are
provided in this realm. Another example is the system initialization
handler hw::hal::init(), which is invoked during system startup.
Upcall join points manifest naturally in a bottom-up development
process.

Transition join points, in contrast, mark events that are important
for the implementation of system policies. They are typically iden-
tified during concern analysis and can be taken directly from the
bottom of the cross-cut table. An example we can find there (Ta-
ble 1) are the already mentioned user �→ kernel transitions, which in
CiAO are provided as explict join points os::krn::enterKernel()
and os::krn::leaveKernel(). Other examples include transitions

76

“Aspect-Aware Operating-System Development” [C12?]

82 AOSD ’11

Serial0

init()

Sched

init()

Timer0

init()
. . .

«upcall aspect»
Serial0_Init

exec("init")

«upcall aspect»
Sched_Init

exec("init")

«upcall aspect»
Timer0_Init

exec("init")

. . .

in
it

in
it

in
it

init() •

"init"

. . .
os::krn

hw::hal

Figure 4: Self-integration of components. Depicted is the
CiAO component initialization scheme. Every system com-
ponent integrates itself into the system initialization handler
hw::hal::init() by an accompanying _Init upcall aspect.

from thread level to interrupt level, or the context switch from
one thread to another. These transitions often have multiple and
implementation-dependent sources (m : n relationships); or they oc-
cur in fragile, low-level parts of the implementation. By representing
them as explicit join points, providers and publishers of transition
events can be decoupled.

3.4 Problems Revisited in CiAO
The following two examples from CiAO resemble some of the

issues we encountered in PURE and eCos (namely, hidden concerns
and missing join points, see Section 2.3), in the sense that they
demonstrate how such problems can be avoided by applying the
principles of aspect-aware software development.

3.4.1 Self-Integration of Components
The key to loose coupling of policies and components is to pro-

vide the necessary explicit join points and then establish all bind-
ings by advice. Figure 4 shows this on the example of component
initialization: Every system component (which are singletons by
definition) has an accompanying _Init aspect that gives advice
to the system initialization handler hal::init() (an explicit join
point) to invoke the component’s init() method at system startup
time. Thereby, the startup code does not have to know which com-
ponents are present in the actual CiAO configuration. Nevertheless
this flexibility does not come at a price, as all initialization code
gets bound and inlined at compile time. This is not only more effi-
cient than the initialization concept used in PURE (which was based
on global instance construction, see Section 2.2.1), it also is a lot
more flexible. Component initialization thereby becomes a visible
transition, which we can further influence it by additional aspects:
Consider, for instance, an (optional) extension aspect Serial0Ext
that extends the serial driver from Figure 4 by a task of its own (e.g.,
for some background protocol handling). Similar to the ServerSync
aspect in the PURE study (Section 2.2.1), this aspect effectively
inserts a new functional dependency between the serial driver and
the scheduler; the serial driver now uses the scheduler. The con-
sequence for the implementation is that the scheduler has now to
be initialized before the serial driver. In AspectC++, we can real-
ize this new constraint relatively easy by employing order-advice
[26]. Additional to the extension of the class Serial0, the aspect
Serial0Ext can specify a partial invocation order for the foreign as-
pects Sched_Init and Serial0_Init at the join point execution(
"void hw::hal::init()"):

aspect Serial0Ext {

...

advice execution("void hw::hal::init()"): order(

"Sched_Init", "Serial0_Init");

};

Essentially, the aspect thereby re-establishes a correct functional
hierarchy of the system. This is possible because of the application
of the principles of loose coupling and visible transitions.

3.4.2 Self-Integration of Policies
Another common use case for advice-based binding in CiAO

is the self-integration of policies. Self-integration of policies is
crucial for the aspired decoupling of policies and mechanisms. Most
policy implementations induce new interactions between (otherwise
unrelated) components. This may, again, lead to new functional
dependencies that we also have to deal with. Figure 5 demonstrates
self-integration of policies by the example of two variants of the
CiAO preemption policy (which, to some degree, resembles the
issues we found in eCos, see Section 2.2.2):

Generally, system components report the need for rescheduling
(and, thus, potential preemption of the running task) by calling
Sched::setNeedReschedule(). The actual activation of the sched-
uler is, however, delayed:

(a) The aspect Sched_LeaveBinding in Figure 5.a implements
a simple delayed activation policy for a cooperative system; with
this policy, preemption is only possible at the return from some
system service. Technically, this is realized by binding the scheduler
activation (Sched::reschedule()) to the explicit tranistion join
point leaveKernel(), which is guaranteed to be triggered if some
thread returns from the kernel.

(b) The aspect Sched_ASTBinding in Figure 5.b implements a
more sophisticated delayed activation policy for an interruptive sys-
tem; with this policy, preemption can also be triggered by interrupts.
Technically, this is realized by binding the scheduler activation to the
function AST0::ast(), which is the handler of an asynchronous sys-
tem trap1 (AST). Additionally, the triggering of the AST is bound to
setNeedReschedule(). The fact that the scheduler is now activated
from AST0::ast() leads to a new functional dependency, which
has the consequence that the kernel now has to be synchronized on
AST level. We can, however, easily enforce this constraint with
additional pieces of advice that are given by the Kernel_ASTSync

aspect:
aspect Kernel_ASTSync {

advice execution("os::krn::enterKernel()") : before() {

AST0::Inst().disable(); // delay scheduling

}

advice execution("os::krn::leaveKernel()") : after() {

AST0::Inst().enable(); // point of rescheduling

}

};

By visible transitions and advice-based binding we have achieved
a completley loose coupling of the scheduler component and the
preemption policy in the implementation. This makes it very easy to
provide numerous variants of either concern an embedded systems
engineer can choose from.

4. DISCUSSION
We discuss the combination of AOP and operating systems in

general, how our approach can be applied to other system software,
and the lessons learned with respect to language and tooling.

1An AST is a low-priority interrupt that can be triggered by higher-
prority interrupts or the kernel to delay activities, such as scheduling,
to a later point in time (e.g., when the kernel is left).

77

[C12?] Proceedings of the 10th International Conference on Aspect-Oriented Software Development (AOSD ’11)

AOSD ’11 83

os::krn

os::krn

hw::hal

«policy aspect»
Sched_LeaveBinding

exec("leaveKernel")

Sched

reschedule()
setNeedReschedule()

enterKernel() •
leaveKernel() •

(a)

reschedule

"le
av
eK

er
ne
l"

Sched

reschedule()
setNeedReschedule()

enterKernel() •
leaveKernel() •

«policy aspect»
Sched_ASTBinding

exec("ast")
exec("setNeedReschedule")

«policy aspect»
Kernel_ASTSync

exec("enterKernel()")
exec("leaveKernel()")

AST0

trigger()
disable()
enable()

ast() •

(b)

reschedule

"setNeedReschedule"

"ast"

trigger

uses

disable
/enable

"leaveKernel"

"enterKernel"

Figure 5: Self-integration of policies. Depicted are two alternatives for the delayed preemption policy in CiAO. (a) The aspect
Sched_LeaveBinding binds to leaveKernel() to activate the scheduler when some task leaves the kernel (cooperative system). (b) The
aspect Sched_LeaveBinding binds to the handler of an asynchronous system trap (AST) to activate the scheduler when all (potentially nested)
interrupt handlers have terminated (interruptive system).

4.1 AOP and Operating Systems

4.1.1 Aspects as First-Class Entities
AOP has been facing much critique in the sense that aspects (in

contrast to classes) do not represent real domain concepts, but (only)
“aspects of programming”. STEIMANN details this in [27]: “literally
all aspects discussed in the literature are technical in nature: authen-
tication, caching, distribution, logging, persistence, synchronization,
transaction management, etc.”

There might be some truth in this for the kind of software
STEIMANN had in mind when writing his paper, but for the domain
of system software, we have to clearly rebut this argument: System
software is very technical in nature, too; the above mentioned “tech-
nical” aspects are text-book examples for the dominant concerns of
system-software development! In the specification of AUTOSAR
OS [3], for instance, we can find the requirement OS093:

If interrupts are disabled and any OS services, ex-
cluding the interrupt services, are called outside of
hook routines, then the operating system shall return
E_OS_DISABLEDINT.

This requirement (which maps to the Interrupts disabled concern in
Table 1) translates almost “literally” to an AspectC++ aspect:

aspect DisabledIntCheck { // implements OS093

advice call(pcOSServices() && !pcInterruptServices())

&& !within(pcHookRoutines()) : around() {

if(interruptsDisabled())

*tjp->result() = E_OS_DISABLEDINT;

else

tjp->proceed();

} };

So for our domain, we can assess that aspects lead to a much more
natural separation of domain-specific concepts – if considered as
first-class design elements from the very beginning.

4.1.2 Quantification and Obliviousness
The DisabledIntCheck aspect is also a good example for the ben-

efits of quantification because of homogeneous cross-cutting. Given

that other studies [14] about applying AOP for the fine-grained
configuration of system software (in this case embedded databases)
came to the conclusion that quantification is “rarely applicable”,
these benefits seem to be domain-specific to a certain degree. How-
ever, for the implementation of operating system policies, especially
architectural ones, quantification clearly creates synergies. For 8 out
of the 14 aspects listed in Table 2 this is the case.

With respect to obliviousness, the situation is less clear. In [11],
FILMAN and FRIEDMAN describe the obliviousness ideal of AOP,
according to which obliviousness can be a bidirectional relationship
between components and aspects: The programmers of the base sys-
tem and the aspect developers can work completely independently
of each other. However, in actual applications of AOP, obliviousness
is usually understood to be unidirectional: The components of the
base system are kept oblivious of aspects – at the price that the
aspects have to be perfectly aware of the components they affect.
This often involves knowledge about certain implementation details,
which in turn leads to fragile pointcuts if the component developers
are kept oblivious of the aspects, too. Furthermore, this approach
hits its limits when the base code just does not offer the required
join-point shadows. The ambiguity problems we found in eCos are
a good example here.

Aspect-aware operating system development moderates these
issues by pragmatically considering obliviousness and awareness as
two ends of a continuum: The more oblivious a component should
be of the aspects that potentially engage with it, the more aware the
aspects have to be of the component – and vice versa. Much of the
flexibility and configurability of CiAO stems from the freedom to
decide for each relationship about the placement on this continuum.

In our opinion, the advantage of the advice-mechanism of AOP is
not so much quantification and obliviousness, but loose coupling:
Essentially, advice inverts the direction in which control-flow rela-
tionships are specified. This facilitates the self-integration of the
implementation of optional features into the control flows of the
base system. Furthermore, advice-based binding is inherently loose
– if the addressed join point is not present, the binding is sliently
dropped. This property is useful for the implementation of inter-

78

“Aspect-Aware Operating-System Development” [C12?]

84 AOSD ’11

acting optional features, which are difficult to tackle with other
decomposition approaches [15].

4.2 Applicability to Other Domains
The presented methodology emerged from experiences in a spe-

cial domain – highly-configurable system software for resource-
constrained embedded systems. Nevertheless, it is at least partly
applicable to a wider range of domains. For example, PUMA is a
product line of C/C++ code analysis and transformation frameworks
[28]. In this project we have not conducted the concern identification
and impact analysis steps, but the principles of aspect-aware design
and the underlying AspectC++ idioms including the three roles of
aspects were applied and turned out to be generic and helpful.

4.3 Language and Tooling – Lessons Learned

4.3.1 AspectC++ – How the Language Is Evolving
When we started with the development of AspectC++ it seemed

“natural to use AspectJ as a foundation when creating a set of ex-
tensions for the C/C++ language”. This led to many similarities
between the two languages such as advice code that is anonymous
and, thereby, cannot be overridden by a derived aspect or the explicit
interface for accessing join-point context information within advice
code (thisJoinPoint-API).

However, it turned out that there are more differences between
C++ and Java than initially expected, and also our application do-
main of deeply embedded systems forced us to rethink the language
design with resource consumption in mind. In contrast to the begin-
ning, AspectC++ now has a much stronger focus on static typing and
language features that can be implemented completely at compile
time. Run-time mechanisms such as the dynamic thisJoinPoint-API,
which is typically used in combination with run-time reflection, are
too expensive and, thus, have been mostly replaced by a static coun-
terpart. For instance, the “join point API” of AspectC++ provides
static type information for advice code. As a consequence, multiple
variants of the same advice code can be instantiated at compile time,
which depend on the matched set of join points. Additionally the
advice can use the type information to instantiate C++ templates or
even template meta-programs. Thereby, a complex chain of code
generation steps can be triggered. It turned out that this combination
of aspects and C++ templates is a very powerful mechanism that is
a unique feature of AspectC++ [19].

Currently, a complete static introspection mechanism for all pro-
gram entities – and not only join points – is under development. This
will, for instance, allow generic aspects to very efficiently marshal-
l/unmarshall any objects in order to transparently perform remote
method invocations or to manage a persistent state. In the context
of CiAO this feature shall be used to transparently copy objects
between address spaces when isolation is turned on and tasks in
different address spaces interact.

Even though AspectC++ is already very useful, we identified
the following missing features, which are on the agenda for future
enhancements:

Free variables in pointcut expressions. This is a language fea-
ture that is already known from LogicAJ [18]. It would significantly
enhance the expressiveness of AspectC++ pointcut expressions.

Extensible pointcuts. Self integration of components such as
device drivers would be easier if named pointcuts could be extended
or composed from collected fragments. For instance, a driver has
certain properties: It services interrupts, it handles a block device,
and it needs a helper thread. Aspects should be able to affect all
components with a specific property. However, the system configu-
ration – including the set of configured drivers – is unknown before

compile time. AspectJ 5 users can achieve this goal by exploiting
Java 5 annotations. For AspectC++ a similar mechanism shall be
integrated.

More control over code generation. When low-level assembler
code and AspectC++ are combined it is often necessary to control
the code generation very precisely. For instance, in a function or
advice that implements a context switch between tasks and that
contains inline assembler code, it is crucial to know whether the
function will be inlined by the compiler. If the compiler behaves
unexpectedly, a machine crash will be unavoidable.

Non join points. Some parts of the CiAO operating system
should simply be guaranteed to never be touched by any aspect. We
aim at providing mechanisms to specify these parts in a modular
manner and a weaver extension that obeys these rules.

4.3.2 User Experience – AOP for “Hackers”
More than a dozen master students were involved in the devel-

opment of PURE, the aspectized version of eCos, and CiAO, and
contributed a significant amount of the aspect code to these systems.
All of them were advanced C/C++ hackers, the majority already had
some experience in low-level kernel programming, and all of them
carried on with R&D in the domain of low-level system software
after finishing their studies. So, to a certain degree this group rep-
resents the typical “kernel hacker”, whose take on AOP might be
interesting to the AOSD community. While we have not evaluated
this in a systematic way, we nevertheless observed some recurring
peculiarities:

AOP semantics is generally easy to grasp. To our (pleasant)
surprise, the students generally had, after a brief introduction into
the topic (a three hour lecture plus a “toy” exercise), little to no
problems in understanding AOP concepts, the AspectC++ language,
and the particularities of its application to embedded systems. They
grasped the CiAO development idioms and application patterns by
examining the existing code and were quickly able to contribute
their own aspects.

Technical side effects of aspect weaving are more challeng-
ing. In theory, aspect weaving should be a transparent process, but
in practice it is not – due to technical side effects. A frequent and
always challenging issue, for instance, was the understanding and
resolving of #include cycles. Such a cycle appears if two header
files (indirectly) #include each other, which in most cases leads
to uncompilable code. Unexpected #include cycles are a tough
problem for any larger C/C++ project. The point is that they appear
a lot more frequently with aspect weaving: An aspect that itself
#includes some external module (a property that holds for any
nontrivial aspect) thereby also contributes to the list of #include
files of the modules it affects in the weaving process, which often
results in #include cycles that are very hard to hunt down. As a
consequence, we have improved the AspectC++ weaver to detect
and report #include cycles caused by aspects already at weaving
time. While this has certainly improved on the situation, it is still up
to the developer to resolve the conflict (e.g., by means of forward
declarations or by splitting larger aspects into smaller pieces).

“Hackers hate IDEs.” Even though all students at some point ran
into difficulties with respect to join-point tracking, it turned out to be
more than difficult to convince them to use the AspectC++ plug-in
for ECLIPSE (ACDT), which provides features (such as join-point
visualization) for exactly this kind of problem. Even the majority
of students working on CiAO – who had to use ECLIPSE anyway
to configure the operating system – did not use it for anything
else. They considered it to be “too clumsy” compared to the shell
and their favorite VIM editor, and preferred hunting for join-point
mismatches by analyzing the woven source code or by GREP’ing

79

[C12?] Proceedings of the 10th International Conference on Aspect-Oriented Software Development (AOSD ’11)

AOSD ’11 85

through the (XML-based) join-point repository that AC++ generates
for the ECLIPSE plug-in. We have learned from this that (even in
the case of relatively young students) tool support has to fit the –
domain-specific – habits of the developers to get accepted. As a
consequence, we are now working on a more generic interface to
the join-point repository and a set of command-line tools to query
and analyze it in a “no-frills” fashion.

5. FURTHER RELATED WORK
There are several other research projects that investigate the ap-

plicability of aspects in the context of operating systems. Among
the first was the α-kernel project [8], in which the evolution of four
scattered OS concern implementations (namely: prefetching, disk
quotas, blocking, and page daemon activation) between versions
2 and 4 of the FreeBSD kernel was analyzed retroactively. The
results show that an aspect-oriented implementation would have led
to significantly better evolvability of these concerns.

C4 [12, 24] is an example for a special-purpose AOP-inspired
language. It is intended for the application of kernel patches in
Linux. Other related work concentrates on dynamic aspect weaving
as a means for run-time adaptation of operating system kernels:
TOSKANA provides an infrastructure for the dynamic extension
of the FreeBSD kernel by aspects [10]; KLASY is used for aspect-
based dynamic instrumentation in Linux [29].

All of these studies demonstrate that there are good cases for
aspects in system software. However, the work of ÅBERG in Linux
[1] and our own work on eCos [21] show that a useful application
of AOP to existing operating systems requires additional AOP ex-
pressivity that results in run-time overheads (e.g., temporal logic or
dynamic instrumentation).

6. SUMMARY AND CONCLUSIONS
The CiAO project contributes a large-scale case study for the

application of aspect technology in the domain of system software.
From a systems researcher’s perspective, the properties (such as
code size, performance, and especially configurability) of the result-
ing systems are convincing [20, 21]. This paper has focused on the
development methodology, which evolved over years. Two main
insights can be learned: (1) Operating systems for the domain of
resource-constrained embedded systems have to be highly config-
urable. Our analysis of the AUTOSAR OS specification revealed
that these effects can already be found in the requirements; they are
an inherent phenomenon of complex systems. (2) AOP is very well
suited for the design and implementation of such systems under the
premise that it is applied with the aspect awareness principles in
mind. This paper has shown how this aspect awareness can be put
into practice.

7. REFERENCES
[1] ÅBERG, R. A., LAWALL, J. L., SÜDHOLT, M., MULLER, G., AND

MEUR, A.-F. L. On the automatic evolution of an OS kernel using
temporal logic and AOP. In ASE ’03 (Mar. 2003), IEEE, pp. 196–204.

[2] ALLAN, C., AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L.,
KUZINS, S., LHOTÁK, O., DE MOOR, O., SERENI, D.,
SITTAMPALAM, G., AND TIBBLE, J. Adding trace matching with free
variables to AspectJ. In OOPSLA ’05 (Oct. 2005), ACM, pp. 345–364.

[3] AUTOSAR. Requirements on operating system (version 2.0.1). Tech.
rep., Automotive Open System Architecture GbR, June 2006.

[4] AUTOSAR. Specification of operating system (version 2.0.1). Tech.
rep., Automotive Open System Architecture GbR, June 2006.

[5] BEUCHE, D., FRÖHLICH, A. A., MEYER, R., PAPAJEWSKI, H.,
SCHÖN, F., SCHRÖDER-PREIKSCHAT, W., SPINCZYK, O., AND
SPINCZYK, U. On architecture transparency in operating systems. In
9th SIGOPS European Workshop (Sept. 2000), ACM, pp. 147–152.

[6] BEUCHE, D., GUERROUAT, A., PAPAJEWSKI, H.,
SCHRÖDER-PREIKSCHAT, W., SPINCZYK, O., AND SPINCZYK, U.
The PURE family of object-oriented operating systems for deeply
embedded systems. In ISORC ’99 (May 1999), pp. 45–53.

[7] CAI, Y., AND SULLIVAN, K. J. Modularity analysis of logical design
models. In ASE ’06 (2006), IEEE, pp. 91–102.

[8] COADY, Y., AND KICZALES, G. Back to the future: A retroactive
study of aspect evolution in operating system code. In AOSD ’03 (Mar.
2003), ACM, pp. 50–59.

[9] eCos homepage. http://ecos.sourceware.org/.
[10] ENGEL, M., AND FREISLEBEN, B. TOSKANA: a toolkit for

operating system kernel aspects. In TAOSD II (2006), no. 4242 in
LNCS, Springer, pp. 182–226.

[11] FILMAN, R. E., AND FRIEDMAN, D. P. Aspect-oriented
programming is quantification and obliviousness. In OOPSLA ’00
Workshop on Advanced SoC (Oct. 2000).

[12] FIUCZYNSKI, M., GRIMM, R., COADY, Y., AND WALKER, D.
patch(1) considered harmful. In HotOS ’05 (2005), USENIX.

[13] HABERMANN, A. N., FLON, L., AND COOPRIDER, L. W.
Modularization and hierarchy in a family of operating systems. CACM
19, 5 (1976), 266–272.

[14] KÄSTNER, C., APEL, S., AND BATORY, D. A case study
implementing features using AspectJ. In SPLC ’07 (2007), IEEE,
pp. 223–232.

[15] KÄSTNER, C., APEL, S., UR RAHMAN, S. S., ROSENMÜLLER, M.,
BATORY, D., , AND SAAKE, G. On the impact of the optional feature
problem: Analysis and case studies. In SPLC ’09 (2009), IEEE.

[16] KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,
LOPES, C. V., LOINGTIER, J.-M., AND IRWIN, J. Aspect-oriented
programming. In ECOOP ’97 (June 1997), vol. 1241 of LNCS,
Springer, pp. 220–242.

[17] KLEIMAN, S., AND EYKHOLT, J. Interrupts as threads. ACM OSR 29,
2 (Apr. 1995), 21–26.

[18] KNIESEL, G., AND RHO, T. A definition, overview and taxonomy of
generic aspect languages. L’Objet, Special Issue on Aspect-Oriented
Software Development 11, 2–3 (Sept. 2006), 9–39.

[19] LOHMANN, D., BLASCHKE, G., AND SPINCZYK, O. Generic advice:
On the combination of AOP with generative programming in
AspectC++. In GPCE ’04 (Oct. 2004), vol. 3286 of LNCS, Springer,
pp. 55–74.

[20] LOHMANN, D., HOFER, W., SCHRÖDER-PREIKSCHAT, W.,
STREICHER, J., AND SPINCZYK, O. CiAO: An aspect-oriented
operating-system family for resource-constrained embedded systems.
In USENIX ’09 (June 2009), USENIX, pp. 215–228.

[21] LOHMANN, D., SCHELER, F., TARTLER, R., SPINCZYK, O., AND
SCHRÖDER-PREIKSCHAT, W. A quantitative analysis of aspects in the
eCos kernel. In EuroSys ’06 (Apr. 2006), ACM, pp. 191–204.

[22] MASSA, A. Embedded Software Development with eCos. New Riders,
2002.

[23] PARNAS, D. L. Some hypothesis about the “uses” hierarchy for
operating systems. Tech. rep., TH Darmstadt, Fachbereich Informatik,
1976.

[24] REYNOLDS, A., FIUCZYNSKI, M. E., AND GRIMM, R. On the
feasibility of an AOSD approach to Linux kernel extensions. In
AOSD-ACP4IS ’08 (Mar. 2008), ACM, pp. 1–7.

[25] SPINCZYK, O., AND LOHMANN, D. Using AOP to develop
architecture-neutral operating system components. In 11th SIGOPS
European Workshop (Sept. 2004), ACM, pp. 188–192.

[26] SPINCZYK, O., AND LOHMANN, D. The design and implementation
of AspectC++. Knowledge-Based Systems 20, 7 (2007), 636–651.

[27] STEIMANN, F. Domain models are aspect free. In MoDELS ’05
(2005), vol. 3713 of LNCS, Springer, pp. 171–185.

[28] URBAN, M., LOHMANN, D., AND SPINCZYK, O. PUMA: An
aspect-oriented code analysis and manipulation framework for C and
C++. In TAOSD VIII (2011), no. 6580 in LNCS, Springer. To appear.

[29] YANAGISAWA, Y., KOURAI, K., CHIBA, S., AND ISHIKAWA, R. A
dynamic aspect-oriented system for OS kernels. In GPCE ’06 (Oct.
2006), ACM, pp. 69–78.

80

“Aspect-Aware Operating-System Development” [C12?]

86 AOSD ’11

CiAO/IP: A Highly Configurable Aspect-Oriented IP Stack

Christoph Borcherta Daniel Lohmannb Olaf Spinczyka

christoph.borchert@tu-dortmund.de lohmann@cs.fau.de
olaf.spinczyk@tu-dortmund.de

aTechnische Universität Dortmund
bFriedrich-Alexander-Universität Erlangen-Nürnberg

ABSTRACT
Internet protocols are constantly gaining relevance for the domain
of mobile and embedded systems. However, building complex
network protocol stacks for small resource-constrained devices is
more than just porting a reference implementation. Due to the
cost pressure in this area especially the memory footprint has to be
minimized. Therefore, embedded TCP/IP implementations tend to
be statically configurable with respect to the concrete application
scenario. This paper describes our software engineering approach
for building CiAO/IP – a tailorable TCP/IP stack for small embedded
systems, which pushes the limits of static configurability while
retaining source code maintainability. Our evaluation results show
that CiAO/IP thereby outperforms both lwIP and uIP in terms of
code size (up to 90% less than uIP), throughput (up to 20% higher
than lwIP), energy consumption (at least 40% lower than uIP) and,
most importantly, tailorability.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems; C.2.2 [Computer-Communication
Networks]: Network Protocols—TCP/IP; D.2.2 [Software Engi-
neering]: Design Tools and Techniques—Modules and Interfaces;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures

Keywords
AOP, Aspect-Oriented Programming, AspectC++, Operating Sys-
tems, Embedded Systems, TCP/IP, Internet Protocol, Network Pro-
tocol Stacks

1. INTRODUCTION
Communication has become an integral part of today’s computer

systems. Every personal computer is equipped with a built-in net-
work interface and there is a clear trend towards smart (computer-
ized) devices, which very often have the ability to interact with the
Internet, such as modern TVs. Hence, small and, in the future, even
smaller devices need to implement the TCP/IP protocol suite, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1301-8/12/06 ...$10.00.

is the de-facto standard for data communication and by definition
used in the Internet in order to achieve interoperability.

However, there is still a huge gap between vision and reality: Sci-
ence and industry are thinking about Service-Oriented Architectures
(SOA) for embedded devices [3], small devices being connected
with the Internet using a lightweight middleware such as Universal
Plug’n’Play (UPnP)1 or its successor Devices Profile for Web Ser-
vices (DPWS)2. Both are based on TCP/IP. On the other hand, the
resource contraints of embedded microcontroller units often forbid
to use the software-intensive Internet protocols, which in practice
leads to hybrid systems and a “reinvention of the wheel”.

Whether a full-featured TCP/IP stack is well suited for deeply
embedded systems with tight resource constraints, has already been
debated in great detail [11, 13]. The purpose of this paper is not to
give the final answer. However, we can show how the TCP/IP proto-
col suite could be used in nearly any device, despite of the enormous
diversity in hardware platforms and application requirements.

Today, many TCP/IP implementations are available. Most of
them were designed as a component of a PC or server operating
system – such as BSD, Linux, or Windows – and are quite resource
intensive.

Common examples for TCP/IP stacks for resource-constrained
embedded systems are micro-IP (uIP) and lightweight-IP (lwIP) [8].
uIP proved that a full TCP/IP implementation fits even into a small 8-
bit microcontroller unit by leaving out all optional features, wheras
lwIP provides better performance at the cost of higher memory
consumption. It is remarkable that both, uIP and lwIP, stem from the
same author and have been presented together in [8]. This underlines
that a “one size fits all” TCP/IP implementation is not well suited
for embedded systems. However, is a “two sizes fit all” solution so
much better?

1.1 Contribution and Outline
In this paper we present the design approach of the CiAO/IP3

stack and a comparison of CiAO/IP with uIP and lwIP. Our approach
is to construct CiAO/IP as a highly configurable Software Product
Line [26] that provides for very tailored stack implementations for
embedded applications. In order to keep the highly configurable
code maintainable, Aspect-Oriented Software Development [18] has
been exercised not only for the implementation but already during
the design phase.

In summary, our contribution is to show that applying aspect-
oriented design and implementation techniques to a new domain –
networked embedded systems – is promising from a code mainte-

1http://www.upnp.org/
2http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01/
3The source code is available under the terms of the GNU GPL at:
http://ess.cs.tu-dortmund.de/Software/CiAO-IP

[C5?] Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys ’12)

MobiSys ’12 87

nance perspective without incurring energy and performance over-
head.

Moreover, the fine-grained configurability of CiAO/IP allows
developers to tailor the IP stack at compile time to their actual
usage scenario, so that memory footprint, performance, and energy
consumption are even improved over the state-of-the-art. We regard
that knowledge of how to build network stacks for small-footprint
devices as a useful contribution that deserves to be communicated
more broadly.

The outline of this paper is as follows:

• We show that configurability is an important requirement on
system software for networked embedded systems, which is
not sufficiently fulfilled by other state-of-the-art IP stacks in
this domain (Section 2). Despite the tension between source
code maintainability and fine-grained configurability, the pa-
per shows that CiAO/IP achieves both objectives (Section 6).

• We apply our unique design methodology, which is based on
several years of experience with the aspect-oriented operating
system CiAO4 [22], to the domain of the Internet Protocol
stack. Starting from requirements with explicit variability
we step-by-step derive an aspect-oriented software design.
Reusable programming idioms help to turn the design into
code (Section 3 and Section 4).

• We show how the methodology led to our CiAO/IP design
and implementation. Thereby, we document the structure of
CiAO/IP, which is the first aspect-oriented TCP/IP stack we
are aware of.

• By comparing CiAO/IP with uIP and lwIP we prove the im-
plementation’s scalability (8 to 64-bit systems) and high con-
figurability (in terms of functional features), which we could
achieve without any drawbacks in terms of code size, perfor-
mance, and energy consumption (Section 5).

2. CONFIGURABILITY OF IP STACKS
The development of an IP stack for small mobile and embedded

devices is more than just porting a reference implementation.

2.1 Diversity of Platforms and Requirements
The first challenge is that two embedded systems rarely look the

same. The microcontroller market is heterogeneous and offers many
entirely different devices. Simple control tasks can be performed by
small 8-bit CPUs, which are still dominating the market in terms
of shipped units [34]. At the other end of the spectrum, complex
signal-processing often requires high-performance 32-bit or even
64-bit devices. The memory sizes are as diverse as their layouts,
but share the commonality that they define hard constraints that a
software developer must fulfill. When it comes down to networking,
the number of possible interfaces seems to be vast. Both wired and
wireless technologies are available in many different kinds, such as
Ethernet, wireless LAN, GSM, and IEEE 802.15.x.

System software that should support and cope with all this vari-
ability has to be exceptionally flexible and portable, and must be
minimalistic in order to fit into the tiny memories of even the most
miniaturized devices – often only a few KiB of RAM!

The second challenge is that the requirements on system software
vary a lot in different embedded systems. Depending on the ap-
plication scenario, the operating system has to support best-effort
scheduling for concurrent tasks, while other scenarios require strict

4CiAO is Aspect-Oriented

spacial and temporal isolation of each task in order to meet certain
dependability properties. The requirements on network stacks are
diverse as well: Multimedia applications, such as Voice over IP, call
for low latencies and guaranteed quality of service. Video streaming,
on the other hand, requires high throughput and is not tied to low
latency constraints. Furthermore, systems differ in the protocols
they use. Information exchange such as E-Mail requires a reliable
transport protocol that confirms data reception, whereas best-effort
data delivery is sufficient for sensor applications. In short: the func-
tionality required from the network stack strongly depends on the
concrete application.

The big challenge from a software engineer’s point of view is
to overcome this multi-dimensional diversity and to design soft-
ware that fits into all those situations in an optimal way. Static
(compile-time) configurability is the key to support a broad vari-
ety of hardware platforms and application requirements without
sacrificing efficiency.

The CiAO/IP stack aims at a very high degree of configurability
to tailor the stack for the chosen hardware platform and application
scenario. The goal is to be able to leave everything off that is not
needed – in order to achieve minimal resource consumption.

2.2 State of the Art
Table 1 gives an overview on the features provided by our imple-

mentation of CiAO/IP and those of uIP and lwIP5 [8].
A configurable feature that can be omitted if not needed, is de-

noted byX. This kind of feature contributes to functional scalability.
A fixed feature, which is always present and not removable by the
end-user, hinders scalability and is denoted by ∗. Unimplemented
features of each IP stack are shown as whitespace.

uIP has by far the most reduced feature set. It supports solely a
single networking interface, manages a single buffer for exactly one
packet and provides no support for an operating system. The vari-
ability of uIP is very limited, too, for instance the protocols ICMP
and TCP are fixed6. Furthermore, uIP does not implement a sliding
window for TCP, so that poor throughput can be expected. Thus,
uIP is only suited for application scenarios on deeply embedded
devices that require TCP connectivity .

lwIP provides rich functionality in terms of features. As shown
in Table 1, lwIP implements almost every feature that we consider
for this comparison. Nevertheless, the configurability of networking
protocols is coarse-grained. For example, the feature TCP includes
client and server functionality (often only one side is needed), a
sliding window (again, only for both Tx and Rx) and a bunch of
common optimization algorithms, such as Silly Window Syndrome
(SWS) avoidance, Round-Trip Time estimation and congestion con-
trol. None of these optional protocol features is actually optional in
the lwIP implementation – TCP can only be included and excluded
at a whole. Because of this fixed set of rich functionality, which
might be welcome on powerful devices, lwIP does not scale to de-
vices with tighter resource constraints. The large number of fixed
features sacrifices scalability.

The CiAO/IP implementation differs substantially from the pre-
ceding ones: In CiAO/IP every feature is optional and, thus, config-
urable by the application developer. We abstain from fixed features
in favor of scalability. Thereby, the developer has full control and
does not have to pay for features that are not needed. The overall
functionality of CiAO/IP is comparable to lwIP, but configurability
is much more fine-grained.

5versions 1.0 and 1.32 respectively
6Contiki 2.5 (http://www.contiki-os.org/) includes an updated
version of uIP that provides configurability of TCP and ICMP by
#ifdef directives.

“CiAO/IP: A Highly Configurable Aspect-Oriented IP Stack” [C5?]

88 MobiSys ’12

Feature uIP lwIP CiAO/IP
Multiple Networking Interfaces ∗ X
Checksum Offloading per Interface X
Multiple Connections (Concurrency) ∗ ∗ X
Buffers per Connection (Isolation) X
Operating System Support X X
IPv4 X X X
IPv4 Tx ∗ ∗ X
IPv4 Rx ∗ ∗ X
IPv4 Fragment Reassembly X X X
IPv4 Fragmentation X
IPv6 (X)a (X)a (X)b

ARP X X X
ARP Reply ∗ ∗ X
ARP Request ∗ ∗ X
ARP Cache Timeout ∗ ∗ X
Static ARP Cache Entries X
ICMP ∗ X X
UDP X X X
UDP Tx ∗ ∗ X
UDP Rx ∗ ∗ X
UDP Checksumming X X X
TCP ∗ X X
Client (Connect) X ∗ X
Server (Listen) ∗ ∗ X
Sliding Window (Tx) ∗ X
Sliding Window (Rx) ∗ X
Avoid Silly Window Syndrome (Tx) ∗ X
Avoid Silly Window Syndrome (Rx) ∗ X
Round-Trip Time Estimation ∗ X
Congestion Control (Slow-Start) ∗ X
TCP Urgent Data X ∗
Limit Excessive Retransmissions ∗ ∗ X
MSS Option ∗ ∗ X
Timestamp Option X

aprovided by a different code base, no dual stack
bunder development

Table 1: Features provided by uIP, lwIP and CiAO/IP

2.3 A Software Engineering Challenge
Traditionally, configurability in system software has been ex-

pressed by the use of the C preprocessor. It supports textual substi-
tution by macro expansion and conditional compilation by means
of #ifdef directives. The preprocessor transforms the source code
before it is parsed by the C compiler. A typical idiom is to represent
all configurable features as macros in common header file, which
controls the source code adaptation process of the system.

Expressing software variability in that way has been heavily criti-
cized as error-prone, unreadable and unmaintainable [29]. A recent
study of Linux kernel code shows that #ifdef-based configuration
led to hundreds of bugs [33]. There are two main problems:

1. Dependencies between features are represented on the source-
code level: This leads to a mix of abstraction levels within
the code, because for each particular feature the high-level
requirements and dependencies become intermixed with low-
level implementation details.

2. The implementation of features often “crosscuts” various
modules (functions, files, etc.): For many configurable fea-
tures, the implementation is “scattered” over many modules
and “tangled” with the implementation of other features. The
consequence is that configurable features lead to code that is

tcp_
in.c

etharp.c

etharp.h

icmp.c
inet.c

inet_
chksum.c

inet.h
ip_
addr.h

ip.c

ip_
frag.c

ip.h

tcp.c

tcp.h

tcp_
out.c

udp.c

Figure 1: Scattered implementation of byte order conversion in
lwIP. Each bar represents a source code file of lwIP; a horizontal
line indicates the use of a conversion macro (htons, ntohs,. . .) in
the respective source line.

bloated with lots of macros and #ifdef directives. The whole
code base becomes hard to understand and maintain.

Figure 1 illustrates these problems on the example of byte ordering
in lwIP: In lwIP (as in uIP, Linux, and BSD) the conversion of 16-bit
and 32-bit words to the network byte order is performed by dedicated
preprocessor macros (htons, ntohs, htonl, ntohl). Access to
network protocol headers is coupled to these macros – their use
is compulsory to ensure data correctness. Hence, these macros
appear 210 times in 15 files of the analyzed lwIP configuration.
This implementation of the byte order conversion is tedious and
error-prone, as a single forgotten macro call can already lead to data
corruption in terms of swapped bytes.

The conclusion is that traditional preprocessor-based configu-
ration does not scale: Software with lots of configurable features
almost automatically leads to a maintenance nightmare [33]. This is
a software engineering challenge. The problems can only be solved
by using a configurability-oriented design approach combined with
suitable programming language abstractions.

3. DESIGN APPROACH
The CiAO/IP stack is a generic platform for IP networking soft-

ware. It supports the automatic derivation of custom IP implemen-
tations that fulfill application-specific constraints. An application
developer just has to specify the relevant constraints by selecting
software features in a graphical user interface. After that, he in-
stantly gets a highly optimized IP implementation that meets his
requirements. Even architectural properties, such as simultaneous
support for different link layers, are configurable and do not cause
any overhead if not needed.

CiAO/IP has been developed as an aspect-oriented software prod-
uct line. A software product line is “a family of systems in a domain,
rather than a single system” [15]. Due to systematic reuse, the soft-
ware is better tested and, thus, less error-prone. From an economic
perspective, the effort for maintaining a software product-line is
much less than for several individual products.

One of the key ideas from the product-line engineering com-
munity is to strictly separate the so called problem space from the
solution space. This addresses and solves the first problem identified
in Section 2.3, namely the mix of abstraction levels in the source
code. Typically a problem-space model of a product line describes
the common and variable features and their dependencies in an ab-
stract and problem-oriented manner. The problem-space model is
independent from the product line’s implementation. The solution
space is the set of code artifacts that form the implementation.

Aspect-Oriented Programming is a paradigm that provides pro-

[C5?] Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys ’12)

MobiSys ’12 89

gramming language means to modularize the implementation of
crosscutting concerns [18]. This allows us to avoid the second prob-
lem from Section 2.3. As a result the highly configurable code of
CiAO/IP is completely free of #ifdef directives.

In the following, we will first explain feature modeling, which is
the methodology that we used to model the problem space of the
CiAO/IP product line. Then we briefly introduce the concept of
Aspect-Oriented Programming.

3.1 Feature Modeling
Feature modeling [15] is a mature technique for formalizing vari-

ability. The idea is to identify and document requirements in terms
of features. A feature is a requirement of a specification or an infor-
mal demand of a stakeholder. Each feature can be either mandatory
or optional – the latter case is where variability comes into play. Fur-
thermore, features may have restrictions and dependencies among
each other. A feature model encompasses all requirements, both
mandatory and optional, that are imposed for the product being
developed. The success of a fine-grained configurable software
product-line relies mainly on high-quality feature models: It is cru-
cial to have detailed information about the expected variability in
advance in order to guide the subsequent design and implementation
process.

We believe that the methodology of feature modeling is well
suited for analyzing the complex requirements that IP networking
software must fulfill. As a starting point for a feature model of
the Internet TCP/IP protocol suite, we use the official specification
published by the Internet Engineering Task Force (IETF). There
are several RFC documents which define requirements for each
protocol. In RFC1122 [6], the most important requirements for
Internet hosts are summed up and categorized into three different
kinds: MUST, SHOULD, and MAY. These capitalized verbs deter-
mine the significance of each particular requirement; in terms of a
software product line MUST requirements map to mandatory fea-
tures, whereas SHOULD and MAY requirements describe optional
features.

Figure 2 shows a simplified feature diagram of the Internet Pro-
tocol. A feature diagram graphically represents the variability of
a feature model by using a tree structure. Each node represents
a feature that depends on all of its ancestors. A filled circle at
the lower end of an edge indicates a mandatory feature (c.f. RFC
MUST), whereas a nonfilled circle describes an optional one (c.f.
RFC SHOULD or MAY). Cumulative features, of which a least one
must be present, are grouped together by a filled arch at the upper
ends of their edges. As shown in Figure 2, the Internet Protocol can
be implemented as version 4 (IPv4) as well as 6 (IPv6). For each
version, there is a distinction between sending and receiving, and
each particular version requires at least one of them. Additionally,
the Internet Protocol is extensible via IPv4/IPv6 Options, which are
in fact optional features.

The development of feature models for each protocol of the
TCP/IP protocol suite has been necessary for the sequel of this
paper. A more complex example is given in Figure 3, which con-
tains a still heavily simplified feature diagram of TCP, the most
complex protocol we dealt with.

Compared to the RFC, the feature diagram is far more fine-
grained. For instance, the feature of a Sliding Window is considered
optional, because the minimal size of that window is not specified,
which makes it effectively optional. A window size of exactly one
segment is equivalent to a nonexisting Sliding Window.

Hence, feature modeling is a challenging discipline, which relies
on the knowledge and farsightedness of experts in the analyzed
domain in order to grasp all hidden features, which are not explicitly

IP

IPv4

Send Receive IPv4

Options

Fragmentation

IPv6

Send Receive IPv6

Options

Figure 2: Feature Diagram of the Internet Protocol

stated in the specification, but relevant to stakeholders. On the other
hand, no expertise in programming languages or specific paradigms
is needed. This part can be left to solution space experts.

3.2 Aspect-Oriented Programming
Traditionally, the developer of an Internet Protocol stack decides

upfront which features to implement, so that a particular system
consists of a fixed subset of the RFC1122 requirements. Our idea is
to postpone this decision as far as possible to preserve this freedom
for the actual user of the protocol stack.

The design of a software architecture that adheres to the variability
of feature models is a nontrivial task. We propose Aspect-Oriented
Programming (AOP) [18] as a solution for this problem in order
to avoid the already discussed pitfalls of the C preprocessor. AOP
supports the decomposition of a system into orthogonal modules
by featuring implicit invocation. In AOP, an aspect contains one
or more pieces of advice, that intercept the control flow and extend
the underlying types. A piece of advice targets several join points,
which are either locations in the dynamic control flow or part of
the static program structure, where arbitrary code can be invoked.
Join points are described declaratively via pointcut expressions in a
textual form.

AspectC++ [30], which has been developed by our group over
the last 10 years, extends the C++ programming language by AOP
mechanisms. It consists of an aspect weaver that processes ordinary
C++ code and aspect code, and weaves the latter type of code into the
C++ files at the relevant locations (i.e., join points). Thus, the advice
code is inlined into existing C++ code and produces no overhead
compared to an implementation by hand (see [23]). In constrast to
C preprocessor directives, the AspectC++ language elements are
fully integrated into the syntax and semantics of C++.

aspect RetransmissionCounter {

 advice “TCP” : slice {
 static int retransmission_counter;
 }

 advice call(“void TCP::retransmit(...)”) : after() {
 TCP::retransmission_counter++;
 }

};

aspect pointcut expression (where) slice introduction

advice (what) advice type (when)

Figure 4: Syntax of AspectC++

Figure 4 outlines the essential syntactic elements of AspectC++
by taking the example of a retransmission counter for TCP. The
given aspect implements the counter in a modular way by two
pieces of advice. The first piece of advice extends the class TCP

by an int member to store the counter’s value. This way, the
static program structure is modified by introducing additional class
members, which is called a slice introduction. The second piece of
advice targets the function TCP::retransmit(...) and implicitly

“CiAO/IP: A Highly Configurable Aspect-Oriented IP Stack” [C5?]

90 MobiSys ’12

TCP

Sliding Window

Sender

Side

Receiver

Side

Go-Back N Selective

ACK

composition rule:

Sliding Window

(Sender Side) requires

Congestion Control

Delayed

ACK

Urgent

Data

Silly Window

Syndrome

Avoidance

Sender

Side

Receiver

Side

Client Server Congestion

Control

Slow

Start

Fast

Recovery

Fast

Retransmit

. . .

RTT

Estimation

TCP

Options

MSS Window

Scaling

. . .

Figure 3: Simplified Feature Diagram of TCP

increases the counter after each call to that function. The ellipsis of
the function’s arguments in the pointcut expression ensures that in
case of an overloaded function all overloads are matched regardless
their arguments.

Furthermore, multiple pointcut expressions can be combined
using the algebra of sets. Besides after advice, before and around
(the latter replaces the original behavior of the join point) advice
can be used to specify when advice code shall be invoked.

In the following section, we show that AOP provides a rich toolkit
for the design and implementation of a highly modular networking
stack. Even crosscutting features, which are conceptually scattered
over many different software modules, can be developed as separate
modules by using AOP. We provide a design method for deriving
a mapping of features to aspects and ordinary C++ classes and
answer the emerging question: Which features should be turned into
aspects?

4. INSIDE THE IP STACK
The previous section outlined basic methods we use for the de-

sign and implementation of fine-grained configurable networking
software. Feature modeling reveals all features that have to be
considered during the following design process. Before the actual
design of the software system, the interactions of all features and
their impact on the system must be analyzed. The system designer
needs to gather this information in order to design the fundamental
software architecture. Section 4.1 covers the necessary analysis that
results in a reference software architecture, which is elaborated in
Section 4.4. In between, general design principles and idioms are
introduced that guide the design process.

4.1 Concern Impact Analysis
Concern Impact Analysis, which originates from the design of

automotive operating systems [21], is a method for the investigation
of interrelation between features. Both, concerns that are part of
the system’s specification (e.g., RFCs) and internal concerns serve
as input for the analysis. Internal concerns are inherent properties
of the system that are not documented in the specification. For
example, the network byte order is not discussed in RFC1122 al-
though it is crucial for interoperability. The starting point for the
following analysis is a set of both explicit concerns (i.e., features)
and internal concerns. Since it is hardly possible to be aware of all
internal concerns in advance, missing ones can be added iteratively.
Networking software in general consists of

1. an API, that provides accessible system services to applica-
tions,

2. connection state to distinguish between different connections
and their actual usage,

Protocols Options Internal

A
R

P

IP U
D

P

T
C

P

U
D

P
C

he
ck

su
m

T
C

P
Sl

id
in

g
W

in
do

w

T
C

P
M

SS
O

pt
io

n

C
he

ck
su

m
A

lg
or

ith
m

B
yt

e
O

rd
er

send() ⊕ � � G# G# G#
receive() ⊕ � � H# H# H#
connect() ⊕ G# G#
listen() ⊕ H# H#
close() ⊕
bind() ⊕
unbind() ⊕
set_ipv4_addr() ⊕ G#
set_dst_port() ⊕ ⊕ G#
set_src_port() ⊕ ⊕ G#
Packet Buffers � � � � �
ARP Cache ⊕ �
IP Addresses ⊕ �
Port Numbers ⊕ ⊕ �
TCP States ⊕ � �
Receive IRQ H# H# H# H#
Timeout H# H# H#
TCP/UDP� IP H# H#
IP� Data Link G# G#
Initialization H#

Table 2: Impact of configurable concerns on configurable IP
networking software. Impact of concerns (columns) on the API,
internal states, and events (rows).

3. and external events or rather internal state transitions that
alter the system’s behavior.

These three ingredients are of special interest because they em-
phasize places where various configurable concerns can interfere.
An arrangement of all identified configurable concerns over these
three ingredients leads to a comprehensive crosscut table matrix that
reveals critical join points.

Table 2 shows an excerpt of the crosscut table matrix that we
prepared for IP networking software. The columns list a few of the
configurable concerns, which are themselves grouped into sets of
networking protocols, options that extend protocols, and internal
concerns. The aforementioned three categories (API, state, and
transitions) form the rows of Table 2. Each category is separated by
a horizontal line and covers a few relevant examples.

After the columns and rows are identified, the crosscut table
matrix has to be populated. The influence of each concern on each
item (row) is analyzed and classified into mainly three different
types of impact:

1. Introduction of system services or states (static structure).
This kind of impact implies the introduction of basic function-
ality that is added to the system and typically becomes visible

[C5?] Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys ’12)

MobiSys ’12 91

in the system’s API. This fundamental type of influence pro-
vides join points for other concerns, denoted by a ⊕ sign in
the crosscut table matrix.

2. Extension of existing system services or states (static struc-
ture). Some concerns modify already existing API services
or existing system states. This less invasive type of impact,
compared to the preceding one, is visually denoted by a �.

3. Modification of the run-time behavior (dynamic structure).
Concerns may have impact on the execution of API functions,
the occurrence of external events or internal state transitions.
The actual modification can take place before / after / around
the event, as denoted by G# / H# / .

The crosscut table matrix provides a comprehensive overview of
the concerns present in the system and their (subtle) relationships. It
enables the developer to make informed decisions in the subsequent
architecture design process – in which the concerns ultimately have
to be mapped to classes and aspects.

4.2 Mapping to Classes and Aspects
As a driver for this process, the crosscut table matrix can be read

in two directions:
A horizontal analysis focuses on a technical element, that is a

state or service provided by the API for which it yields the contribut-
ing and dependent concerns. Once a state or service is introduced
by a concern, each modifying concern (denoted by a �) explicitly
“uses” the introducing one. For example, the concerns UDP and
TCP directly “use” IP – they built on the respective send() and
receive() primitives, as observable in the first two rows of Table 2.
With this information, the system designer is able to develop a con-
cern hierarchy [21] by arranging the concerns according to their
“uses” relationships. Figure 5 summarizes the concern hierarchy that
encompasses the subset of concerns used in the preceding crosscut
table matrix7.

A vertical analysis provides more detailed information about a
conceptual concern. Basic concerns can be identified by at least one
introduction (⊕), for instance ARP in the first column. A new state,
namely the ARP Cache, is introduced by this concern. Crosscutting
concerns can easily be spotted by encountering multiple modifica-
tions (G# / H# /) for a given concern, such as the Byte Order in the
last column, which crosscuts several API functions and states.

The information from both analyses can then be used to achieve
an initial mapping of concerns to classes and aspects by some simple
rules of thumb:

• A basic concern, such as ARP, IP, UDP, and TCP, is mapped
to a class.

• If a basic concern “uses” another basic concern, it becomes
a derived class. For example, UDP and TCP both will be
derived from IP (see Figure 5).

• A crosscutting concern, such as Byte Order or Checksum
Algorithm, becomes an aspect.

• A configuration option, such as TCP Sliding Window or UDP
Checksum, is also often crosscutting and thus becomes an
aspect.

Of course, these rules of thumb only provide an initial software
structure, that has to be refined in the subsequent design process, in
7Once again, all concerns for IP networking software do not fit into
a single comprehensive diagram.

UDP TCP

UDP Checksum

IP

ARP

TCP Sliding Window

TCP MSS Option

C
h

ec
ks

u
m

 A
lg

o

B
yt

e
O

rd
er

<API>

Link Layer

Network Layer

Transport
Layer

«uses»

«influences»

«influences»

«influences»

Figure 5: Layered concern hierarchy. Rectangles denote basic
concerns, rounded boxes indicate crosscutting concerns. Concerns
have “uses” and “influence” relationships, the latter denoted by a
dashed arrow.

which usually additional aspects and classes are employed to imple-
ment the binding and configurability of the identified concerns. In
order to ease the following fine-grained design process, we propose
design principles that aid the system designer to make “right” design
decisions.

4.3 Design Principles
Based on our experience with the automotive operating system

CiAO [22, 32], the following design process is guided by four
reusable principles that lead to an aspect-aware system design. The
corresponding AspectC++ idioms are beneficial for a clean system
design and fine-grained configurability that does not induce run-time
overhead.

4.3.1 Loose Coupling
The principle of loose coupling describes the relation between

two software modules. Consider a networking device driver and
the IP networking protocol implementation. Both modules should
be exchangeable – the device driver should work with different
protocol stacks and a protocol stack should be able to use various
device drivers. Using AOP, loose coupling between these modules
can be established easily:

The device driver exposes an explicit join point, which is an
empty function without arguments named ready(), that is called
after the device driver is initialized. Aspects can hook into this
function and bind the device driver module to the IP stack on the
initialization event (see last row of Table 2). The binding aspect is a
recurring aspect role whenever several software modules, possibly
developed by independent working groups, need to be integrated in
a noninvasive manner.

DeviceDriver

+ ready() ●

DeviceDriver

+ ready() ●
IPIP

«binding aspect»
DriverBinding
call(“ready()”)

«binding aspect»
DriverBinding
call(“ready()”)

“ready()” add()

Loose Coupling

Figure 6: The principle of loose coupling. A binding aspect
establishes a relation between two otherwise unrelated modules. The
invocation of ready() is translated to an add() call, which registers
the DeviceDriver at the IP stack.

4.3.2 Minimal Extensions
The principle of minimal extensions aims at incremental system

design. Software modules are designed to provide only the minimal
functionality that is required for a working system – no more, no
less. Additional features are only introduced by extension aspects.

“CiAO/IP: A Highly Configurable Aspect-Oriented IP Stack” [C5?]

92 MobiSys ’12

For instance, the TCP module itself does neither support a sliding
window for transmitting nor for receiving. In Section 4.2, these fea-
tures were already identified as crosscutting concerns and mapped to
aspects. Thus, the sliding window for transmitting and for receiving
are both designed as minimal extensions to the TCP module. As
shown in Figure 7, the sliding window crosscuts the module TCP as
well as both receive and transmit buffering.

TCPTCP

«extension aspect»

RxSlidingWindow

«extension aspect»

RxSlidingWindow

RxBufferRxBuffer TxBufferTxBuffer

«extension aspect»

TxSlidingWindow

«extension aspect»

TxSlidingWindow

Figure 7: The principle of minimal extensions. Extension as-
pects introduce optional concerns by means of slices. Existing
software modules are extended by additional member variables and
functions in order to fulfill their duty.

4.3.3 Visible Transitions
The aspect-aware design enables the substitution of internal sys-

tem policies. Thus, all relevant transitions need to be accessible
by aspects. The system designer has to ensure that control-flow
transitions are visible as unambiguous join points, that are prefer-
ably distinguishable at compile time. A fine-grained class hierarchy
enclosed in expressive C++ namespaces provides a rich set of join
points in the sense of visible transitions.

Often, a highly crosscutting concern represents a system policy.
For example, the byte order conversion, which is examined in the
last column of Table 2, is an exchangeable policy. On machines that
internally operate at the network byte order, no conversion has to
be performed. Otherwise, a conversion of every multi-byte entry of
each protocol header takes place. We designed all protocol header
structures as C++ classes, whose attributes are exclusively accessed
throughout get() and set() functions. Therefore, aspects can alter
the result and arguments of these functions and perform the byte
order conversion directly in place. Figure 8 shows such an aspect for
get() functions of 16-bit words. The source code for 32-bit words
and set() functions is similar. Other software modules do not have
to be aware of network byte ordering at all, because this concern is
entirely encapsulated by a single policy aspect.

aspect LittleEndian {

 static uint16_t ntohs(uint16_t n);

 pointcut NetworkToHost() = “% IP_Header::get%()” ||
 “% TCP_Header::get%()”;

 advice call(NetworkToHost()) &&
 result(res) : after(uint16_t res) {
 *tjp->result() = ntohs(res);
 }

};

pointcut expression (where)

pointer to result value

actual conversion function

binding to result type

Figure 8: Byte order conversion by policy aspect. Conversion
logic is encapsulated in the static function ntohs, which is implicitly
invoked by the advice. The pointcut declaration describes where
the advice shall take effect, that is all get() functions exposed by
protocol header structures (visible transitions). tjp (this join point)
provides access to context information, and tjp->result() yields
a typed pointer to the return value.

IPIP

«policy aspect»
ByteOrder

call(“get%()”)
call(“set%()”)

«policy aspect»
ByteOrder

call(“get%()”)
call(“set%()”)

“get/set()”TCPTCP

IP_HeaderIP_HeaderTCP_HeaderTCP_Header

“get/set()”

get/set() get/set()

Figure 9: The principle of visible transistions. A fine-grained
call structure makes system internal transitions explicit. Thus, sys-
tem policies are designed to be exchangeable policy aspects, that
alter the control-flow at relevant locations.

4.3.4 Upcall Dispatcher Hierarchy
A layered system defines a “uses” relation among its layers –

typically top-down (see Figure 5). Each module is aware of all
subordinate layers and directly depends on the ones it uses. The
other way around, a module that is used by superordinate modules
must not have knowledge of them. Otherwise, circular dependencies
occur and configurability is lost.

Upcalls, which are invocations in the opposite direction of the
“uses” relation, cause difficulties since they manifest in a tight cou-
pling between layers due to circular dependencies. Consider an IP
module that receives an IP packet and propagates it to superordinate
UDP and TCP modules, which are in turn configurable and thus not
always present. There may be even more subscribers for the content
of an IP packet, such as a configurable ICMP module. The prob-
lematic nature of upcalls becomes even worse if multiple layers are
involved. For example, an Ethernet packet, that is dispatched from
the bottom layer up to the top layer, forces circular dependencies
between all traversed layers.

TCPTCPUDPUDP

«upcall dispatcher aspect»
TCP_Receive

call(“IP::upcall(%)”)

«upcall dispatcher aspect»
TCP_Receive

call(“IP::upcall(%)”)

«upcall dispatcher aspect»
UDP_Receive

call(“IP::upcall(%)”)

«upcall dispatcher aspect»
UDP_Receive

call(“IP::upcall(%)”)

IP

+ upcall(Packet) ●

IP

+ upcall(Packet) ●

propagate

dispatch

propagate

Figure 10: The principle of upcall dispatcher hierarchy.
Bottom-up data propagation in a layered system is performed by in-
dependent upcall dispatcher aspects. Each aspect evaluates inherent
dispatch conditions and eventually lifts data upwards.

The upcall dispatcher hierarchy circumvents this issue by strictly
sticking to the inherent “uses” relation. Figure 10 illustrates this
design principle based on the aforementioned example. The bottom-
up propagation of data is implemented by explicit join points, which
are empty functions (see Section 4.3.1), whose arguments contain
the data to be propagated. In Figure 10, the module IP offers the
public function upcall(Packet), that is called by IP in order to
dispatch a packet to superordinate modules. The actual dispatch is
performed by independent upcall dispatcher aspects, which hook
into the upcall function and evaluate whether the packet is to be
accepted. Dispatch criteria are usually a check of the protocol’s
header identification field and a verification of the checksum. The
dispatch process itself is distributed to several aspects, which provide
configurability because they can be omitted easily.

A key benefit of upcall dispatcher aspects is that they are stack-
able. Consider a module Ethernet, that also provides an explicit
join point upcall(Ethernet_Frame). The upcall dispatching to su-
perordinate modules, for instance ARP and IP, can be performed

[C5?] Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys ’12)

MobiSys ’12 93

in the same way. Thus, circular dependencies between layers are
avoided and the already developed “uses” relation is enforced by
this design principle.

4.4 Architectural Design Decisions
The efficiency of a system is vitally determined by crucial design

decisions during the development process. Several concerns are
not covered in the system’s specification (i.e., RFCs), although they
define fundamental properties of the software architecture. These
hidden concerns have to be identified, evaluated and carefully de-
signed in order to narrow the design space. Thus, the unnecessary
variability is eliminated that is known in advance to bear no convinc-
ing benefits. This is the major software engineering challenge at
the very end of the design phase, which is involved with the overall
performance of the system.

4.4.1 Memory Management
The most important concern with regard to performance and scal-

ability is memory management [7]. Each network packet has to be
buffered in data memory, and access to it must be very fast. On typi-
cal embedded systems, memory and especially data memory (RAM)
is a scarce resource, so that an economical utilization is necessary.
Furthermore, on such systems, a dynamic memory management
(heap) is often not economical and thus not available.

In general, there are two possible designs for the memory man-
agement of an IP stack:

1. Linear buffers, large enough to hold a contiguous packet.

2. Linked lists of small buffers, each buffer containing a frag-
ment of the packet.

Both designs are reasonable and used in popular networking
systems – Linux applies linear buffers whereas BSD favors linked
lists. The advantage of linear buffers is speed, because a contiguous
packet often fits into a single cache line. Extra effort has to be
paid to packet construction in the space of linear buffers. The size
of all applied protocol headers has to be known in advance and an
appropriate amount of memory has to be reserved in the front of each
buffer. Linked lists simplify packet construction, because arbitrary
protocol headers can be linked in front of the list. This flexibility
comes at the price of poor cache locality due to the scattering of list
elements across the data memory.

In order to gain maximal efficiency, we chose to use linear buffers
with two configurable sizes. This design decision takes into account
that the distribution of packet sizes tends to be bimodal [25]. Large
packets deliver the payload while small packets acknowledge suc-
cessful reception. Because the size of the payload heavily depends
on the application, we leave the configuration of the buffer sizes to
the application programmer. We designed the memory management
to be part of a parametrized API, that is implemented as generic
C++ templates.

Thus, the application programmer can tune the memory utilization
for each particular connection by instantiating a template class of
the API. For example, the memory management parameters for
high-throughput connections should satisfy the bandwidth-delay
product. In general, the optimal amount of memory is approximately
throughputdesired ×delayend−to−end for a sliding window.

4.4.2 Concurrency
An implicit requirement for IP networking software is the concur-

rent handling of multiple connections. Full concurrency is achieved
by threads that are scheduled by an operating system. Thus, IP
networking software could be run inside the context of threads or
inside the operating system itself.

Our design decision is to reuse the runtime context of threads in
order to implement concurrency. This approach has several advan-
tages: A prioritization of threads is enforced, because the network-
ing routines of high-priority threads are preferred over low-priority
ones. This is essential for real-time systems, where hard timing
deadlines have to be met. As a consequence, the feature of priori-
tized connection comes for free if thread priorities are supported by
the underlying operating system.

The second important advantage of this design is that isolation be-
tween different connections can easily be established. Each connec-
tion can constitute separate pools of buffers in the context of the ac-
tual thread, so that no interference between concurrent connections
can occur. The isolation of memory regions is especially interesting
for safety-critical applications. On the other hand, shared buffers
use the memory resources more efficiently. Therefore, CiAO/IP
implements buffer sharing as a configurable feature.

4.4.3 Synchronization
A structured coordination between multiple threads running IP

networking software and the underlying operating system is crucial
for the performance of the system. The actual synchronization
primitives depend highly on the services provided by the operating
system, and are even nonexistent if no operating system is used.
Therefore, synchronization is an exchangeable system policy.

According to the design principles (see Section 4.3), we make
synchronization explicit by providing unambiguous join points for
visible transitions. Thus, policy aspects implement synchronization
by using operating system services. For example, we integrated
our IP stack into the automotive operating system CiAO. CiAO
itself provides events and alarms for synchronization, both specified
by the AUTOSAR [2] standard. Policy aspects invoke these ser-
vices implicitly and allow a noninvasive integration, so that neither
the operating system nor the IP stack have to be modified. There-
fore, the integration of this IP Stack into other operating systems is
straightforward.

5. EVALUATION
To evaluate the CiAO/IP stack, we have implemented most fea-

tures specified by the relevant RFC documents on a wide range of
platforms:

8-bit: A BTnode8 sensor network platform, which uses an Atmel
ATmega128L AVR microcontroller with 128KiB ROM and
4KiB RAM combined with a sub 1 GHz CC1000 radio.

16-bit: A TI EZ430-Chronos9 development system, which comes
in a sports watch. It combines a MSP430 microcontroller with
32KiB ROM, 4KiB RAM and a sub 1 GHz CC1101 radio
device.

32-bit: An IA-32 PC with Intel Core 2 Quad 6600 CPU, 4GiB
RAM and an Intel 82566DM Gbit Ethernet adapter.

64-bit: Same as above, but running in AMD64 mode.

Table 1 in Section 2 has already shown that all features of CiAO/IP
that we identified as “optional” during the domain analysis became
configurable in the implementation. This section will prove that
this high degree of variability does not come a cost. CiAO/IP
clearly outperforms uIP and lwIP in terms of memory consumption
(Section 5.1), performance (Section 5.2), and energy efficiency
(Section 5.3).
8http://www.btnode.ethz.ch/
9http://processors.wiki.ti.com/index.php/EZ430-Chronos

“CiAO/IP: A Highly Configurable Aspect-Oriented IP Stack” [C5?]

94 MobiSys ’12

5.1 Memory Consumption
Memory is a scarce resource on embedded devices. This is true

for both program memory (ROM) as well as data memory (RAM).
For instance, the aforementioned 16-bit MSP430 platform contains
only 32KiB ROM and 4KiB RAM, which software must not exceed.
Especially system software that offers services to the actual applica-
tion and is itself not self-contained, has to be exceptionally small and
specifically designed for the embedded systems domain. A coun-
terexample is the Linux10 kernel, whose basic feature TCP/IP Net-
working increases the uncompressed kernel size by about 234KiB
on IA-32. Hence, we focus our evaluation on uIP, lwIP and CiAO/IP.

The requirements on data memory are dominated by buffering.
Network packets are inherently dynamic content that has to be stored
in the RAM. Besides buffers, networking software stores connection
state in the RAM, which requires an infinitesimal amount of memory
compared to a buffer for a single IP packet. The buffer sizes of uIP,
lwIP and CiAO/IP are statically configurable and, thus, their RAM
consumption is comparable.

However, CiAO/IP is more flexible as it offers to configure
whether buffers for a particular connection should be allocated
on the data memory section, on the dynamic heap (if present), or
even on the runtime stack of the current application. This feature
is especially useful for temporary connections that are active only
for a short period of time (for instance, during a software update),
and, hence, consume data memory only within this period. Buffers,
that are globally allocated on the data memory or the heap at system
startup, constantly take RAM.

Besides data memory, an efficient usage of program memory is
crucial. The requirements to ROM directly depend on the functional-
ity of the software: More features lead to higher ROM consumption.
In the sequel, we discuss the issue of program memory in detail. All
following values are obtained by using the gcc11 with optimization
for size (-0s).

5.1.1 The Cost of TCP
TCP is certainly the most complex part of the Internet protocol

suite. As a consequence, an implementation of TCP requires more
program memory than other protocols. Nevertheless, TCP is es-
sential for interoperability since many applications rely on it, for
example web services. A realistic scenario for TCP also includes
IP, and on IA-32 and AMD64 additionally Ethernet and ARP, since
almost every personal computer comes with an Ethernet adapter.

Figure 11(a) shows the memory consumption of a TCP client
in the described scenario. We use the minimal possible feature
selections of uIP, lwIP and CiAO/IP to evaluate the minimal costs
for a TCP client. The stacked bar diagram outlines the costs for
the IP stacks themselves (lower section) and the cost for the appli-
cation code that has to be added for a working TCP client (upper
hatched section). This is relevant, as the required application code
differs substantially between the IP stacks: uIP, for instance, does
not perform retransmissions of lost TCP segments itself – it is up
to the application logic to detect packet loss and to retransmit miss-
ing packets. For lwIP, we use its memory-efficient event-driven,
nonsequential API that, however, also requires more effort on the
application side than the UNIX-like sockets of CiAO/IP. For all
IP stacks, the application code also handles synchronization with
network devices and timer events. The necessary synchronization
primitives are provided by the underlying CiAO operating system.

Figure 11(b) shows the memory consumption of a TCP server in
the same scenario. For both client and server, the cost of TCP varies

10version 2.6.33
11version 4.4 (MSP430/IA-32/AMD64), version 4.3 (AVR)

among the different architectures. It is notable that uIP has been
heavily optimized for 8-bit architectures by using 8-bit data types
and arithmetic whenever possible [9]. This specialization saves
about 50% of the TCP code size on AVR and MSP430 compared to
CiAO/IP, whereas it leads to an increased code size on IA-32 and
AMD64.

5.1.2 The Cost of UDP
UDP is the second essential transport protocol of the Internet

protocol suite. Compared to TCP, UDP is almost a null protocol,
which is reflected by its low memory consumption. Consider a node
of a sensor network that periodically transmits sensor measurements.
For such a scenario, UDP is sufficient.

Figure 11(c) summarizes the cost of transmitting UDP packets
without optional checksumming12. Since TCP is a mandatory fea-
ture of uIP, there is a high overhead if used for UDP only. lwIP
consumes even more program memory due to architectural prop-
erties, such as flexible packet buffers and generic driver interfaces.
CiAO/IP is by far the most efficient implementation with regard to
UDP. On the average over all architectures, CiAO/IP requires only
twelve percent of the memory that uIP respectively lwIP take.

For receiving UDP datagrams the results are similar. Figure 11(d)
outlines our results. The application code (hatched section of top
the bars) for receiving is larger than for transmitting, because syn-
chronization with receive interrupts is involved.

5.1.3 Feature Scalability
We have measured the code size induced by each configurable

feature: Starting with the minimal possible feature selection of
the particular IP stack we have incremented the number of active
features one by one. The results are depicted in Figure 12.

The minimal code size of uIP (see Figure 12(a)) is rather high due
to the mandatory TCP feature, ranging from 4253 byte on MSP430
to 6481 byte on AMD64. When all features of uIP are active, the
code size almost doubles.

lwIP scales from a minimum of 6836 byte on IA-32 up to a
maximum of 38.7kB on AVR. This spread indicates scalability to
some extend, but the absolute values are quite high. For example,
the sum of all considered lwIP features on MSP430 occupies 30KiB
of its 32KiB internal ROM (94%).

In contrast, CiAO/IP scales from a minimum of 789 byte on
AMD64 up to a maximim of 20.8kB on AVR. In between, each
configurable feature increases the memory consumption by a very
small amount. The sharp spike in this diagram is caused by the TCP
feature, which adds an exceptional large portion of code due to its
complexity.

5.2 Performance
The aforementioned 8-bit and 16-bit hardware platforms are ill-

suited for performance benchmarking, since their gross networking
throughput is limited to 76.8 kbit/s respectively 500 kbit/s by the
radio hardware. Moreover, the net throughput of payload (goodput)
is primarily determined by the link quality13 and timing of TCP
retransmissions. To analyze the influence of the different IP stacks
on high-speed networking performance, we therefore focus on the
Gbit Ethernet adapter of the IA-32 platform:

We have connected two PCs (Intel Core 2 Quad 6600 CPU, 4GiB
RAM, Intel 82566DM Gbit Ethernet) via a crossover cable to create

12The values for IA-32 and AMD64 also encompass the cost for
Ethernet and ARP.

13We measured a goodput of 1161 bit/s for CiAO/IP and 680 bit/s
for uIP on the average in the wireless setup described in Section 5.3.
Both systems were configured with exactly equivalent features.

[C5?] Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys ’12)

MobiSys ’12 95

AVR MSP430 IA-32 AMD64
0

5

10

15

20

25

30

C
o
d
e

S
iz

e
[K

iB
]

uIP

CiAO/IP

lwIP

(a) TCP Client
AVR MSP430 IA-32 AMD64

0

5

10

15

20

25

30

C
o
d
e

S
iz

e
[K

iB
]

uIP

CiAO/IP

lwIP

(b) TCP Server
AVR MSP430 IA-32 AMD64

0

2

4

6

8

10

C
o
d
e

S
iz

e
[K

iB
]

uIP

CiAO/IP

lwIP

(c) UDP Tx w/o Checksum
AVR MSP430 IA-32 AMD64

0

2

4

6

8

10

C
o
d
e

S
iz

e
[K

iB
]

uIP

CiAO/IP

lwIP

(d) UDP Rx w/o Checksum

Figure 11: Code size (ROM) for common use cases. Each use case includes IPv4. On IA-32 and AMD64, Ethernet and ARP is also
included to get a working system. Figures (a) - (d) show the minimal memory consumption of each particular IP stack for the desired
functionality. The lower sections of the stacked bars constitute the code size of the IP stacks themselves. The upper hatched sections indicate
the cost for the application code that has to be added for full operation. Hardware platforms range from 8-bit (AVR) to 64-bit (AMD64).

0 1 2 3 4 5 6 7 8

Number of Features

0

5

10

15

20

25

30

35

40

C
o

d
e

S
iz

e
[K

iB
]

AVR

MSP430

IA-32

AMD64

(a) Feature increment of uIP:
TCP Server (IPv4) and ICMP, TCP Client, TCP Ur-
gent Data, IPv4 Fragment Reassembly, UDP, UDP
Checksumming, ARP, IPv4 Forwarding, NDP

0 2 4 6 8 10 12 14

Number of Features

0

5

10

15

20

25

30

35

40

C
o
d
e

S
iz

e
[K

iB
]

AVR

MSP430

IA-32

AMD64

(b) Feature increment of lwIP:
UDP (IPv4), UDP Tx Checksumming, UDP Rx
Checksumming, UDP Lite, IPv4 Forwarding, IPv4
Fragment Reassembly, IPv4 Fragmentation, ARP,
ARP Queuing, VLAN, TCP, TCP Queuing, TCP
Backlog, TCP Timestamps, ICMP, IGMP

0 5 10 15 20

Number of Features

0

5

10

15

20

25

30

35

40

C
o
d
e

S
iz

e
[K

iB
]

AVR

MSP430

IA-32

AMD64

(c) Feature increment of CiAO/IP:
UDP Tx (IPv4), UDP Tx Cksum., UDP Rx (IPv4),
UDP Rx Cksum., IPv4 Frag. Reass., Ethernet, Tx
Cksum Offload., Rx Cksum Offload., ARP Reply,
ARP Request, Static ARP Cache, ARP Timeout, TCP
Client, TCP Server, Reset Invalid TCP Packets, Tx
Slid. Window, Rx Slid. Window, SWS Tx, SWS Rx,
MSS Opt., RTT Est., Cong. Control, Generic Buffer,
Generic Rx Queue

Figure 12: Code size (ROM) vs. features. For each TCP/IP stack, the first measuring point shows the code size of the initial minimal
feature selection. Each subsequent measuring point constitutes the addition of one more configurable feature. Thus, figures (a) - (c) outline an
incremental feature selection and visually evince scalability.

Send (Tx) Receive (Rx)
0

200

400

600

800

1000

D
a
ta

R
a
te

[M
B

it
/s

]

uIP

lwIP

CiAO/IP

Linux

Figure 13: Goodput of a TCP connection. Depicted is the
goodput between two local IA-32 machines, that are connected via
gigabit Ethernet (crossover). One peer is always a Linux 2.6 box,
whereas the machine under test runs the different IP stacks.

Send (Tx) Receive (Rx)
0

10

20

30

40

50

60

E
n

er
g

y
[J

] uIP

CiAO/IP

CiAO/IP
w/o RTT
Estimation

Figure 14: Energy consumption. Shown is the mean energy
consumption and the sample standard deviation of unidirectional
TCP data transfers (32 kB) between two wireless sensor networking
nodes. CiAO/IP w/o RTT Estimation uses a fixed retransmission
timeout (200 ms) for lost packets.

“CiAO/IP: A Highly Configurable Aspect-Oriented IP Stack” [C5?]

96 MobiSys ’12

an actual loss-free environment. One box constantly runs Linux
2.6, whereas the other box runs the IP stack under test. We have
established a single TCP connection between the two machines and
measured the achieved goodput. Each IP stack is equipped with 100
KiB RAM for buffering and exactly equivalent feature configuration,
except for uIP which solely supports a single buffer (1514 byte) due
to the missing sliding window. For fairness, uIP is extended by
uip_split [9] in order to reach maximal throughput. This uip_split
extension avoids the default 250 ms delay between packet transmits.
As uIP implements a stop-and-wait procedure, it otherwise would
suffer from delayed acknowledgments of the Linux peer. Figure 13
shows the results of our measurements. We classify the results into
sending and receiving, which describe the operational mode of the
IP stack under test.

With Linux on both ends a maximal goodput of 937 Mbit/s is
achieved, which here can be understood as the upper bound.

CiAO/IP, however, achieves almost the same transfer rates (934
Mbit/s for Tx, 900 Mbit/s for Rx).

lwIP clearly lacks behind. This is mostly caused by lwIP’s linked
packet buffer management (pbufs), which have to be copied into a
contiguous memory region before delivery to the device driver. We
intentionally do not use vectored I/O (scatter/gather) hardware accel-
erators that might overcome this design decision, since embedded
devices generally do not provide such hardware support.

uIP is not competitive due to the missing sliding window, which
results in a significant performance degradation.

5.3 Energy Consumption
Energy is probably the most scarce resource for battery-powered

devices. We have chosen the aforementioned BTnode14 sensor-
net platform for determining the impact of IP stacks on energy
consumption. A typical duty for sensor nodes is a firmware update:
a unidirectional, reliable data transfer of a single file. Thus, our setup
for energy measurements15 consists of a TCP client, that transmits
32 kB of data to a listening TCP server.

On the link layer, we use the B-MAC [27] protocol for collision
avoidance and preamble sampling with an interval of 25 ms (Low
Power Listening). The packet size is limited to 255 byte, and each IP
stack is equipped with 300 byte for buffering. Due to a quite noisy
radio channel, which leads to a high percentage of corrupt packets
(approximately 50%), we disabled the exponential backoff algorithm
of every TCP implementation, which otherwise would slow down
the retransmission of lost packets unnecessarily. Unfortunately, we
did not get lwIP working under these harsh conditions, so that we
had to omit lwIP in the following measurements.

Figure 14 presents the mean energy consumption and the sample
standard deviation of uIP and CiAO/IP. For fairness, we did not
activate the sliding window feature of CiAO/IP, because uIP does
not support it and would otherwise be disadvantaged. To sum up,
both IP stacks were configured with exactly equivalent features.
Consequently, no congestion control was performed, because the
slow-start algorithm can only be applied to a sliding window.

However, even without this beneficial feature CiAO/IP consumes
significantly less energy: A uIP sender consumes a mean of 56.3
Joule, whereas CiAO/IP takes a mean of 34.8 Joule for the same
task. This is caused by the coarse granularity of uIP’s round-trip
time estimation, which can only be multiple of 500 ms. In contrast,
CiAO/IP performs this estimation much more accurate in units
of 1 ms. Thus, lost packets are detected earlier (up to 499 ms
per lost packet). To prove this claim, we deactivated the round-

14AVR microcontroller (8-bit) running at 7.37 MHz, CC1000
transceiver operating at 868 MHz and 19.2 kbit/s

15Hitex PowerScale with ACM probes used for energy measurements

trip time estimation of CiAO/IP (an optional feature in CiAO/IP)
and fixed the retransmission timeout to 200 ms. This way, the
energy consumption of the sender could be further reduced to 20.5
Joule. These observations are also valid for the receiver, whose
energy consumption is determined by the time the transfer takes to
complete.

5.4 Summary of Results
CiAO/IP outperforms uIP and lwIP in almost all scenarios. The

only exception is the TCP client/server, where uIP requires on the
AVR/MSP430 platform only half the code size of CiAO/IP – which
is exactly the scenario uIP has been optimized for [8]. However,
even in this configuration uIP consumes significantly more energy
(1.6x) and delivers a much smaller throughput (0.59x). In all other
configurations, our aspect-oriented CiAO/IP stack outperforms the
C implementations of uIP and lwIP notably with respect to code
size, throughput, energy, and feature-wise scalability.

6. DISCUSSION
The main goal of this work is to achieve feature-wise scalability

of the layered TCP/IP protocols by a software engineering approach
for static configurability. As shown in the previous section, CiAO/IP
offers fine-grained configurability and thereby achieves excellent
results with respect to code size, throughput and energy. In the
following, we discuss the pros and cons of our approach with respect
to more “soft” properties, including maintainability, configurability,
portability, and optimization.

6.1 Maintainability
The complexity and maintainability of some piece of software

is generally hard to quantify. However, source-code metrics, such
as lines of code (LOC) can serve as an indicator: The minimalistic
uIP consists of 2796 LOC16 whereas CiAO/IP consists of 4943
LOC and a comparable subset of lwIP17 encompasses 11987 LOC.
Clearly, more features correspond to more LOC, but in general
aspect-oriented software consists of less LOC than its C counterparts,
because crosscutting concerns are modularized into aspects and,
thus, avoid scattered fragments of similar code.

A good example for this is the macro-based implementation of
the byte order concern illustrated in Figure 1. As pointed out in
Section 2.3, every header access has to be surrounded by one of
the byte ordering macros (htons, ntohs, . . .). This is a tedious
and error-prone design rule. Our aspect-oriented CiAO/IP stack
circumvents this issue by a much better separation of concerns: Byte
ordering is a policy, hence we implement the byte order conversion
as a modular policy aspect (see Section 4.3.3) that implicitly affects
the get() and set() functions of all classes that describe network
protocol headers. The respective aspect consists of a single source
code file with less than 50 lines of code. This reduces complexity,
as the byte order in CiAO/IP is correct by construction – it is not
possible to create an invalid packet by a forgotten call of a conversion
macro. Therefore, AOP contributes to maintainability of source code
by modularization and separation of concerns.

On the other hand, AOP may impair the independent development
of modules of the system [19]. Since aspects do not expose an ex-
plicit interface, the interaction of the system’s modules can become
complicated, because conceptually, each aspect can potentially af-
fect each module [31]. To obviate this drawback, our aspect-oriented

16effective lines of code (excluding empty lines and comments),
obtained with cloc: http://cloc.sourceforge.net/

17version 1.32, without IPv6, DNS and DHCP

[C5?] Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys ’12)

MobiSys ’12 97

design principles (see Section 4.3) are also applied as a means to
make such interactions explicit.

6.2 Configurability
The excellent configurability we achieved in CiAO/IP is primar-

ily the result of a software product-line development process that
considers configurability as a fundamental design goal from the
very beginning. However, eventually the individual features have
to be implemented in a way that makes it possible to "leave them
off" if not needed. The advantage of AOP here is loose coupling
by the advice concept: Essentially, advice inverts the direction in
which control-flow relationships are specified. This facilitates the
self-integration of optional features into the control flows of the
base system. Furthermore, advice-based binding is inherently loose
– if the addressed join point is not present, the binding is silently
dropped. This property is useful for the implementation of inter-
acting optional features, which are difficult to tackle with other
decomposition approaches [17]. In CiAO/IP we thereby could keep
a textbook-like strict layering in the design and implementation of
the IP stack without scarifying efficiency.

6.3 Portability
Loose coupling is also beneficial with respect to portability to

other platforms. The aspect-based integration of our IP stack into the
operating system makes it easy to use CiAO/IP with other systems
or to use it without any operating system. We are currently working
on implementations for eCos [24] and FreeRTOS [4].

From the perspective of application developers, switching to
CiAO/IP is relatively easy as CiAO/IP offers the well-understood
BSD socket concept and does not, like uIP and lwIP, require the
application engineer to implement and maintain stack-specific state
machines on the application level.

6.4 Optimization
The main benefit of the high configurability offered by CiAO/IP

is optimization for nonfunctional properties, such as memory foot-
print, throughput, and energy consumption. This is done by first
activating only those network protocols that meet the functional re-
quirements depending on the actual field of application, for example
TCP and IPv4. Other protocols should be disabled. This way, the
design space of valid feature selections is significantly narrowed.
As outlined in Table 1, several optional features do not provide basic
networking protocols by themselves, and, thus still remain open
for this particular feature selection. The assignment of these open
features, for instance the TCP sliding window and round-trip time
estimation to either on or off, leads to a design space exploration.

We developed the feedback approach [28] for statistical reason-
ing on nonfunctional properties and assignment of open features.
Information about previously configured feature selections have to
be captured by run-time tests and the results feed into a database.
Thus, nonfunctional properties for further feature selections that are
not yet evaluated can be estimated, and a testing set for validation
is generated automatically. This is a semi-automated process that
relies on testing of specific feature selections until the database is
saturated.

7. RELATED WORK
We originally developed our aspect-aware design method as well

CiAO/IP for our CiAO operating system family for deeply embedded
devices [22, 21]. CiAO implements the automotive AUTOSAR OS
standard [2], a rapidly growing domain with respect to “mobile
Internet” applications. Other operating system projects that aim to
bridge deeply embedded systems and the Internet world are mostly

from the domain of sensor networks: Recent versions of TinyOS [20]
provide the BLIP IPv6 stack, which also provides configurability
of UDP and TCP and is implemented with the component model
offered by the NesC language [12]. BLIP has the distinction of
operating solely at IPv6. All other systems we are aware of are based
on either uIP or lwIP, both of which clearly dominate the domain:
Contiki [10] uses uIP; eCos [24] supports lwIP and, alternatively,
a BSD-derived stack; FreeRTOS [4] allows developers to choose
between uIP (called FreeTCPIP) and, again, lwIP.

AOP as a modularization approach for configurable system soft-
ware has also been applied in the domain of middleware [35, 14]
and embedded databases [16]. Other modularization approaches in
the domain are too numerous to be discussed here. However, several
researchers favor feature-oriented programming [5] – and even the
C preprocessor is experiencing a renaissance by the provisioning of
better tool support towards a “virtual separation of concerns” [1].

8. CONCLUSIONS
Network protocol stacks for the domain of resource-constrained

embedded systems have to fullfill a broad variety of functional re-
quirements, while at the same being thrifty with respect to hardware
resources, especially memory and energy. This calls for static config-
uration approaches to tailor the provided functionality to the actual
application’s needs.

We presented the CiAO/IP stack and its underlying design ap-
proach for embedded system software, which pushes the limits of
static configurability to a new level. In our design approach, the
domain (mainly given by RFCs) is analyzed with software prod-
uct line methodology; the resulting features are then structured by
a concern impact analysis and implemented with aspect-oriented
programming as fine-grained and loosly coupled implementation
artefacts.

By following this design approach in the development of CiAO/IP,
we did not only achieve a clear and complete separation of con-
cerns in the code (thus, maintainability and portability), but also
excellent configurability and scalability of the resulting protocol
stack: CiAO/IP outperforms uIP and lwIP in terms of code size (up
to 84% / 88% less than uIP / lwIP for a UDP sender on an AVR),
throughput (up to 587% / 33% higher than uIP / lwIP for a TCP
sender on IA-32 with Gbit Ethernet) and energy consumption (up to
63% lower than uIP on AVR for a TCP sender).

We hope that our results encourage other developers of system
software to follow the guidelines in this paper.

9. ACKNOWLEDGEMENTS
We wish to thank the anonymous reviewers for their helpful and

encouraging comments. Special thanks go to Prabal Dutta, whose
shepherding helped us to clarify the content of this paper.

This work was partly supported by the German Research Council
(DFG) under grant no. SP 968/4-1, SP 968/5-1, and SFB 876
projects A1 and A4.

10. REFERENCES
[1] Sven Apel and Christian Kästner. Virtual separation of

concerns - a second chance for preprocessors. Journal of
Object Technology, 8(6):59–78, 2009.

[2] AUTOSAR. Specification of operating system (version 2.0.1).
Technical report, Automotive Open System Architecture GbR,
June 2006.

[3] D. Barisic, M. Krogmann, G. Stromberg, and P. Schramm.
Making embedded software development more efficient with
SOA. In 21st International Conference on Advanced

“CiAO/IP: A Highly Configurable Aspect-Oriented IP Stack” [C5?]

98 MobiSys ’12

Information Networking and Applications Workshops, 2007
(AINAW ’07), volume 1, pages 941–946, May 2007.

[4] Richard Barry. Using the FreeRTOS Real Time Kernel. Real
Time Engineers Ltd, 2010.

[5] Don Batory. Feature-oriented programming and the AHEAD
tool suite. In 26th Int. Conf. on Software Engineering (ICSE

’04), pages 702–703. IEEE, 2004.
[6] R. Braden. Requirements for Internet Hosts - Communication

Layers. RFC 1122 (Standard), October 1989.
[7] David D. Clark, Van Jacobson, John Romkey, and Howard

Salwen. An analysis of TCP processing overhead. IEEE
Communications Magazine, 27:23–29, 1989.

[8] A. Dunkels. Full TCP/IP for 8-bit architectures. In
Proceedings of the 1st international conference on Mobile
systems, applications and services, pages 85–98. ACM, 2003.

[9] Adam Dunkels. The uIP Embedded TCP/IP Stack. The uIP
1.0 Reference Manual. Swedish Institute of Computer Science,
2006.

[10] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki —
a lightweight and flexible operating system for tiny networked
sensors. In Proceedings of the First IEEE Workshop on
Embedded Networked Sensors (Emnets-I), Tampa, Florida,
USA, November 2004.

[11] Deborah Estrin, Ramesh Govindan, John Heidemann, and
Satish Kumar. Next century challenges: scalable coordination
in sensor networks. In Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing
and networking, MobiCom ’99, pages 263–270, New York,
NY, USA, 1999. ACM.

[12] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric
Brewer, and David Culler. The nesC language: A holistic
approach to networked embedded systems. In ACM SIGPLAN
Conf. on Programming Language Design and Implementation
(PLDI ’03), pages 1–11, San Diego, CA, USA, 2003. ACM.

[13] Jonathan W. Hui and David E. Culler. IP is dead, long live IP
for wireless sensor networks. In Proceedings of the 6th ACM
conference on Embedded network sensor systems, SenSys ’08,
pages 15–28, New York, NY, USA, 2008. ACM.

[14] Frank Hunleth and Ron Cytron. Footprint and feature
management using aspect-oriented programming techniques.
In 2002 Joint LCTES & SCOPES Conferences
(LCTES/SCOPES ’02), pages 38–45, Berlin, Germany, June
2002. ACM.

[15] Kyo Kang, Sholom Cohen, James Hess, William Novak, and
A. Spencer Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical report, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, PA,
November 1990.

[16] Christian Kästner, Sven Apel, and Don Batory. A case study
implementing features using AspectJ. In 11th Software
Product Line Conf. (SPLC ’07), pages 223–232. IEEE, 2007.

[17] Christian Kästner, Sven Apel, Syed Saif ur Rahman, Marko
Rosenmüller, Don Batory, and Gunter Saake. On the impact
of the optional feature problem: Analysis and case studies. In
Dirk Muthig and John D. McGregor, editors, 13th Software
Product Line Conf. (SPLC ’09), Pittsburgh, PA, USA, 2009.
Carnegie Mellon University.

[18] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-oriented programming. In Mehmet Aksit and
Satoshi Matsuoka, editors, 11th Eur. Conf. on OOP (ECOOP

’97), volume 1241 of LNCS, pages 220–242. Springer, June
1997.

[19] Gregor Kiczales and Mira Mezini. Aspect-oriented
programming and modular reasoning. In Gruia-Catalin
Roman, William G. Griswold, and Bashar Nuseibeh, editors,
27th Int. Conf. on Software Engineering (ICSE ’05), pages
49–58, New York, NY, USA, 2005. ACM.

[20] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk,
Kamin Whitehouse, Alec Woo, David Gay, Jason Hill, Matt
Welsh, Eric Brewer, and David Culler. TinyOS: An Operating
System for Wireless Sensor Networks. Ambient Intelligence.
Springer, Heidelberg, Germany, 2005.

[21] Daniel Lohmann, Wanja Hofer, Wolfgang
Schröder-Preikschat, and Olaf Spinczyk. Aspect-aware
operating-system development. In Shigeru Chiba, editor, 10th
Int. Conf. on Aspect-Oriented Software Development (AOSD
’11), pages 69–80, New York, NY, USA, 2011. ACM.

[22] Daniel Lohmann, Wanja Hofer, Wolfgang
Schröder-Preikschat, Jochen Streicher, and Olaf Spinczyk.
CiAO: An aspect-oriented operating-system family for
resource-constrained embedded systems. In 2009 USENIX
ATC, pages 215–228, Berkeley, CA, USA, June 2009.
USENIX.

[23] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf
Spinczyk, and Wolfgang Schröder-Preikschat. A quantitative
analysis of aspects in the eCos kernel. In Yolande Berbers and
Willy Zwaenepoel, editors, ACM SIGOPS/EuroSys Eur. Conf.
on Computer Systems 2006 (EuroSys ’06), pages 191–204,
New York, NY, USA, April 2006. ACM.

[24] Anthony Massa. Embedded Software Development with eCos.
New Riders, 2002.

[25] Bosko Milekic. Network buffer allocation in the FreeBSD
operating system. In Proceedings of BSDCan, Ottawa, ON,
Canada, May 2004.

[26] Linda Northrop and Paul Clements. Software Product Lines:
Practices and Patterns. AW, 2001.

[27] Joseph Polastre, Jason Hill, and David Culler. Versatile low
power media access for wireless sensor networks. In
Proceedings of the 2nd international conference on Embedded
networked sensor systems, SenSys ’04, pages 95–107, New
York, NY, USA, 2004. ACM.

[28] Julio Sincero, Wolfgang Schröder-Preikschat, and Olaf
Spinczyk. Approaching Non-Functional Properties of
Software Product Lines: Learning from Products. In IEEE
Computer Society Press, editor, Proceedings of the 17th
Asia-Pacific Software Engineering Conference (APSEC 2010),
pages 147–155, Los Alamitos, CA, USA, 2010.

[29] Henry Spencer and Gehoff Collyer. #ifdef considered harmful,
or portability experience with C News. In 1992 USENIX ATC,
Berkeley, CA, USA, June 1992. USENIX.

[30] Olaf Spinczyk and Daniel Lohmann. The design and
implementation of AspectC++. Knowledge-Based Systems,
Special Issue on Techniques to Produce Intelligent Secure
Software, 20(7):636–651, 2007.

[31] Friedrich Steimann. The paradoxical success of
aspect-oriented programming. In 21st ACM Conf. on OOP,
Systems, Languages, and Applications (OOPSLA ’06), pages
481–497, New York, NY, USA, 2006. ACM.

[32] Jochen Streicher, Christoph Borchert, and Olaf Spinczyk.
Upcall dispatcher aspects: Combining modularity with
efficiency in the CiAO IP stack. In 1st AOSD W’shop on

[C5?] Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys ’12)

MobiSys ’12 99

Modularity in Systems Software (AOSD-MISS ’11), pages
23–27. ACM, March 2011.

[33] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and
Wolfgang Schröder-Preikschat. Feature consistency in
compile-time-configurable system software: Facing the Linux
10,000 feature problem. In Christoph M. Kirsch and Gernot
Heiser, editors, ACM SIGOPS/EuroSys Eur. Conf. on
Computer Systems 2011 (EuroSys ’11), pages 47–60, New
York, NY, USA, April 2011. ACM.

[34] Jim Turley. The two percent solution. embedded.com,
December 2002.
http://www.embedded.com/story/OEG20021217S0039,
visited 2011-04-08.

[35] Charles Zhang and Hans-Arno Jacobsen. Quantifying aspects
in middleware platforms. In 2nd Int. Conf. on Aspect-Oriented
Software Development (AOSD ’03), pages 130–139, New
York, NY, USA, 2003. ACM.

“CiAO/IP: A Highly Configurable Aspect-Oriented IP Stack” [C5?]

100 MobiSys ’12

SLOTH: Threads as Interrupts∗

Wanja Hofer, Daniel Lohmann, Fabian Scheler, Wolfgang Schröder-Preikschat
Friedrich–Alexander University Erlangen–Nuremberg, Germany
E-mail: {hofer,lohmann,scheler,wosch}@cs.fau.de

Abstract—Traditional operating systems differentiate between
threads, which are managed by the kernel scheduler, and in-
terrupt handlers, which are scheduled by the hardware. This
approach is not only asymmetrical in its nature, but also
introduces problems relevant to real-time systems because low-
priority interrupt handlers can interrupt high-priority threads.

We propose to internally design all threads as interrupts,
thereby simplifying the managed control-flow abstractions and
letting the hardware interrupt subsystem do most of the schedul-
ing work. The resulting design of our very light-weight SLOTH
system is suitable for the implementation of a wide class of em-
bedded real-time systems, which we describe with the example of
the OSEK-OS specification. We show that the design conciseness
has a positive impact on the system performance, its memory
footprint, and its overall maintainability.

I. INTRODUCTION

One of the core responsibilities of an operating-system
kernel is the management of control flows in the system. Tra-
ditionally, these encompass synchronously executed threads,
and asynchronously triggered interrupt handlers. The latter
ones are usually signaled by hardware devices and have an
implicitly higher priority than synchronous control flows by
being able to interrupt the CPU at any time. This bifid
priority space—divided up into interrupt priorities and thread
priorities—induces a problem termed rate-monotonic priority
inversion: Interrupt-handler control flows that have a semanti-
cally lower priority than a real-time thread can interrupt and
delay the execution of that real-time thread [4].

In previous work, we have tackled that problem by using a
coprocessor that pre-handles all interrupts [18]. In this paper,
we show how to overcome rate-monotonic priority inversion
by making use of more sophisticated interrupt systems as
available on many newer hardware platforms, without the
need for a coprocessor. In our SLOTH1 system, we propose
to internally design every control flow in the system as
an interrupt—even regular threads—by implementing thread-
related system calls using the interrupt system. The SLOTH
approach has the following advantages:

• It implements a unified priority space, allowing for arbi-
trary distribution of priorities to both thread and interrupt
control flows.

• The kernel implementation can be kept extremely concise
and is therefore well maintainable and subject to easy and
comprehensive testing.

∗ This work was partly supported by the German Research Council
(DFG) under grants no. SCHR 603/4 and SCHR 603/7-1. Wanja Hofer was
supported by the German Academic Exchange Service (DAAD) under grant
no. D/09/40595.

1The name honors both the lazy animal breed and the deadly sin.

• By letting the hardware schedule the control flows, the
performance of the system calls and context switches
is very high compared to regular, purely software-based
thread implementations, providing for both very low and
deterministic overhead.

At the same time, the application programmer can still use
the notion of a thread as a unit of decomposition; the API that
SLOTH offers remains the same as in a traditional implemen-
tation, eliminating the need for porting.

We have implemented the conformance class BCC1 of
the OSEK–operating-system specification [17], which targets
event-driven embedded real-time systems, for the Infineon-
TriCore microcontroller [5], which features an interrupt sub-
system that fulfills the requirements for a SLOTH system.
This way, we can show that our SLOTH design can be
implemented using state-of-the-art commodity hardware, and
we can evaluate the advantages of such a design.

II. DESIGN

In a seminal paper entitled Interrupts as Threads [7], Klei-
man and Eykholt describe the implementation of control flows
in the Solaris-2 kernel, in which interrupt handlers can become
full-fledged threads if they need to block. We propose quite
the opposite approach, which treats all threads as interrupt
handlers and thereby lets the hardware handle most of the
scheduling work implicitly.

A. Overview of OSEK OS

Our kernel design targets an embedded, event-driven real-
time system. In order to simplify the description, we use
the terminology and system-service grouping as specified by
the OSEK-OS standard [17], an operating-system specification
widely used in the automotive domain. The feature diagram
in Figure 1 gives an overview of the features of an OSEK
system.

Among the offered control-flow abstractions, tasks (tradi-
tionally called threads) are managed by the OS scheduler,
whereas interrupt service routines (ISRs) are triggered by the
hardware. The OS is oblivious of category-1 ISRs, which are
not allowed to use its system services, whereas category-2
ISRs have to be synchronized with the kernel since they are
allowed to use system functions. Whether a task is preempt-
able by higher-priority tasks or not is configured globally
(full preemption or no preemption) or locally on a task-by-
task basis (mixed preemption). Furthermore, whether multiple
activations of a task can be stored by the OS and whether
it supports multiple tasks with the same priority are optional

[C19?] Proceedings of the 30th IEEE International Symposium on Real-Time Systems (RTSS ’09)

RTSS ’09 101

OSEK OS

Control Flows

ISRs Cat. 2

Kernel Sync

ISRs Cat. 1 Tasks

Full Preemption Mixed Preemption No Preemption Multiple Tasks Per Prio

BCC2, ECC2

Multiple Activations

BCC2, ECC2

Alarms

Activate Task Set Event

ECC1, ECC2

Exec Callback

Coordination

Resources

BCC2, ECC1, ECC2

Events

ECC1, ECC2

Fig. 1. Feature diagram of the OSEK–operating-system specification. Feature types include mandatory features (filled circle), optional features (hollow
circle), minimum-one feature sets (filled arc), and exactly-one feature sets (hollow arc). Features not yet integrated in the SLOTH design are depicted in gray
color. If a particular feature is mandatory only in conformance classes other than the basic BCC1, this information is given below that feature.

system features. Alarms are timer abstractions that can activate
a task, execute a callback function, or set an event upon expiry
after a specified period of time. To wait for an event is the
only possibility for a task to become blocked; it is unblocked
when that event is set by another control flow. The other
coordination abstraction—resources—is used to synchronize
critical sections within the application by mutual exclusion.

OSEK also defines four conformance classes (BCC1, BCC2,
ECC1, ECC2), which define minimum requirements on which
of the optional features have to be provided (see also Figure 1).
In our SLOTH design, we target the OSEK conformance class
BCC1. Thus, we have a statically configured system with
static task priorities (no task creation and altering of the
task priorities at run time is possible) and run-to-completion
tasks only (i.e., tasks cannot block by waiting for an event),
supporting only one task per priority level. Apart from that, the
application can be as complex as any other OSEK application,
and it is configured and programmed using the same OSEK
system API that any software implementation offers, so no
porting is required.

B. SLOTH Design Overview

An overview of our design is given in Figure 2. Tasks
and ISRs are represented by an abstract interrupt source that
has an appropriately configured priority. The corresponding
request is triggered either synchronously by the CPU when
the ActivateTask() system service is invoked, or asyn-
chronously by connected hardware devices. Additionally, tasks
that are configured to be activated by OSEK alarms after a
specified time period are represented by interrupt sources that
are connected to the timer system.

The scheduling of the system is done completely in hard-
ware. First, an IRQ arbitration unit decides which of the at-
tached interrupt sources (and, therefore, which of the attached
control flows) has the highest priority. After that, the CPU
is interrupted by an interrupt request, but only if its current
priority is lower than the one of the requested control flow.

IRQ Source
Task1

prio=1
request

IRQ Source
ISR2

prio=2
request

IRQ Source
Task3

prio=3
request

IRQ Source
Task4

prio=4
request

Hardware
Periphery

Timer
System

HW IRQ

Alarm Exp.

IRQ
Arbi-

tration
Unit

CPU

curprio=X

Act(T1)

IRQ Vector
Table

task1()

isr2()

task3()

task4()

Fig. 2. Design of a SLOTH system, using interrupt handlers for the
implementation of threads. The interrupt sources have a statically configured
priority and are either triggered synchronously by the CPU through a system-
service call (e.g., Task1), through hardware-periphery IRQs (e.g., ISR2), or
through the timer system after setting a task alarm (e.g., Task4).

In that case, the corresponding task or ISR is dispatched by
looking it up in the vector table. Note that the current priority
level of the CPU does not necessarily have to be the one of
the executing task. The CPU priority level is also altered for
synchronization purposes—for instance, in order to implement
resources for mutual exclusion (see Section II-E).

The rest of this section details the design of typical
embedded–operating-system services on the example of the
major system-service groups offered by the OSEK operating
system. In parallel, refer to Figure 3 for an example control
flow in a SLOTH system. It uses the application configuration
as depicted in Figure 2; that is, Task1, ISR2, Task3, and Task4
have the priorities 1, 2, 3, and 4, respectively.

C. Task Management

In SLOTH, tasks (OSEK’s name for threads) are identified
by their priority; that is, a task’s ID is the same as its
priority. Activating a task corresponds to merely triggering
the corresponding interrupt source. The resulting interrupt

“Sloth: Threads as Interrupts” [C19?]

102 RTSS ’09

CPU Prio Level

t

0

1

2

3

4

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

init()

enable()

Task1
GetRes(Res1)

Task1 E
ISR2

RelRes(Res1)

ISR2
SetAlarm(Al1)

iret

Task1 Term()

idle()

Task4E
Alarm1

Act(Task1)

Term()

Task1

Fig. 3. Example control flow in a SLOTH system. The execution of most system calls leads to an implicit or explicit altering of the current CPU priority
level, which then leads to an automatic and correct scheduling and dispatching of the control flows by the hardware.

request is then immediately handled if the priority of the
new task is higher than the one performing the activation,
given that the currently running task is configured to be
preemptable. Termination of a task is a simple return from the
interrupt handler, which then leads to an automatic dispatch
of the pending task with the next-highest priority. For task
chaining, the specification demands that the task performing
the chain operation is completed before the chained task starts
to execute. In SLOTH, this behavior is ensured by disabling
interrupts for a short and bounded time, then activating the task
to be chained, and then returning from the interrupt handler,
which implicitly re-activates interrupts.

In the example depicted in Figure 3, when Task1 terminates
at t7, it restores the previous priority 0 by executing a return-
from-interrupt instruction. Likewise, when Task4 terminates
at t10, it also tries to restore the previous priority 0, which
leads to an automatic scheduling of Task1 first, because it is
still pending with priority 1. Its activation by Task4 at t9 was
automatically delayed, because of the lower priority of Task1.

D. Interrupt Handling

In our SLOTH system, tasks and those kinds of ISRs that
are allowed to perform system calls (named category-2 ISRs in
OSEK) are completely identical, thereby unifying the priority
space and allowing for mixed priorities between them. Only
those ISRs that are guaranteed not to perform any system
calls (category-1 ISRs) have priorities higher than all tasks
and category-2 ISRs. Hence, category-2 interrupts can be sus-
pended by setting the current CPU priority level to the highest
priority of all category-2 ISRs. All interrupts (including the
ones of category 1) can be suspended or disabled by the
application by setting the CPU priority level to the highest
priority of all ISRs, or by disabling interrupts completely.

Both kinds of ISRs are dispatched by the hardware when-
ever the CPU priority level is below the one of the interrupt
request. In the example control flow in Figure 3, for instance,
ISR2 is not dispatched until Task1 lowers its priority to 1

by releasing Resource1 at t4, although ISR2 was already
requested at t3.When ISR2 terminates at t6, it executes a
regular return-from-interrupt instruction and thereby implicitly
re-actives the pending control flow with the next-highest
priority, Task1.

E. Resource Management

Resources (OSEK’s terminology for mutex synchronization
objects) are used to protect critical sections. In order to avoid
deadlocks and priority inversion, OSEK prescribes a stack-
based priority ceiling protocol similar to the stack resource
policy by Baker [1]. This protocol mandates immediately
raising a task’s priority to the resource ceiling priority upon
acquiring the resource, and lowering it to the original priority
upon releasing it. This way, tasks can never become blocked
upon resource acquisition and the acquisition will always
succeed; otherwise, another task with a higher priority (gained
by acquiring that same resource) would be running instead.

In our SLOTH kernel, a resource ID is equal to its ceiling
priority—that is, the highest priority of all tasks and category-
2 ISRs that can acquire it. Thus, acquiring a resource means
simply raising the current CPU priority level to the ceiling
priority (i.e., the resource ID), and releasing it means re-setting
the level to the original value. Since multiple resources can be
acquired, the previous priority has to be saved on a stack.
Because of the static system configuration, the stack usage
induced by resource acquisition can be bounded at compile
time.

In the example sketched in Figure 3, since Resource1 can be
acquired by both Task1 and Task3 (not active in the example
control flow), its ceiling priority is 3. Thus, when Task1
acquires it at t2, it raises the CPU priority level to 3, and
it tries to re-set it to the previous priority 1 upon releasing
it at t4, leading to the dispatching of the pending ISR2 as
described in Section II-D.

[C19?] Proceedings of the 30th IEEE International Symposium on Real-Time Systems (RTSS ’09)

RTSS ’09 103

F. Alarms

Alarms are offered by the OSEK operating system to enable
the application to take action after a specified time budget
has elapsed. If an alarm is configured to activate a task, an
interrupt source that is connected to the hardware timer system
is chosen for that task and configured with its priority. The
service call setting an alarm can then be simply implemented
by programming the connected hardware timer appropriately;
the timing parameters have to correspond to the ones provided
to the system call. When the timer expires, the configured
task is then activated automatically by triggering the interrupt
source, leading to preemption if the currently running task
has a lower priority. Since most of these actions are done by
hardware, the alarm-service implementation itself can be kept
very light-weight.

In the example in Figure 3, ISR2 sets an alarm at t5,
which is configured to activate Task4 upon expiry. When the
hardware timer fires at t8, it automatically activates Task4,
because the corresponding interrupt source has the priority 4
of Task4.

If an alarm is configured to execute a callback function,
that function can be treated the same way—as a special, high-
priority task. Callback functions were originally introduced in
OSEK in order to offer a very light-weight reaction possibility,
but with SLOTH’s light-weight thread design, this is not an
issue to be concerned about (see also Section V).

G. Nonpreemptive Systems

The SLOTH design as described in this paper targets a
preemptive system, in which each activation of a higher-
priority task leads to a rescheduling and dispatching. In order
to implement a nonpreemptive system, only a few details have
to be adjusted in the design.

First, every nonpreemptable task starts at the priority level
of the highest-priority task in the system instead of at its
own priority. This way, when a task activates a higher-priority
task, that task is not dispatched immediately. Second, an
explicit point of rescheduling (e.g., the OSEK system service
Schedule()) is implemented by lowering the priority to
the original task priority before raising it again. This way,
any pending tasks of higher priority are allowed to run and
to complete at this point before the original task is executed
again. Note that, in a preemptive system, Schedule() is
effectively empty since rescheduling is always performed
immediately anyway.

Using the same idea, the special scheduler resource
RES_SCHEDULER is implemented by setting its ceiling pri-
ority to the one of the highest-priority task in the system.
By acquiring this virtual resource for a limited period of time,
preemptive tasks can delay preemption in critical sections until
after releasing the resource—as demanded by the specification.
Groups of tasks that do not preempt each other within groups
but do preempt each other between groups can be designed the
same way; for this purpose, OSEK offers internal resources.
By letting each task run with the priority of the highest-priority

task in its group (i.e., by acquiring this internal resource), pre-
emption within the group is delayed until the task reschedules
explicitly. This rescheduling system call temporarily lowers
the current priority to the task’s original priority—like in a
completely nonpreemptive system as described above.

H. Multiple Task Activations

The optional OSEK feature to support multiple activations
of the same task can be easily integrated by an additional acti-
vation counter per task. When activating a task, in addition to
requesting an interrupt, the corresponding counter is increased.
Upon termination of the task, the counter is simply decreased,
and—if the number of activations is greater than zero—the
interrupt is requested again before really terminating the task.

This mechanism only works for tasks activated through the
corresponding system call; it does not work for real ISRs
that are triggered by hardware periphery, since to the best of
our knowledge there is no interrupt controller that can store
more than one activation. Because SLOTH implements tasks
activated by alarms by letting the timer system simply set the
interrupt-request bit (see Section II-F), those tasks have only
limited multiple-activation support in SLOTH.

I. Summary of the SLOTH Thread Abstraction

Compared to traditional OS thread implementations, SLOTH
threads are different in several points.

First, SLOTH threads run to completion and are only pre-
empted by higher-priority threads. Conventional threads can
wait for an event and block, letting lower-priority threads run.
This is a limitation that we want to tackle in future work (see
also Section VII), but which still allows for a broad range of
applications (see also Section V).

SLOTH’s run-to-completion property leads to a strictly
stack-like control-flow dispatching, which is also illustrated
in Figure 3. This way, SLOTH can use only a single
shared stack—the interrupt stack—for all its threads, and the
preempted-thread context is stored on that stack. Traditional
threads have a stack of their own and have their context saved
by the kernel in an additional structure.

Traditional threaded OS kernels maintain a software ready
queue and running pointer, and they need additional informa-
tion in software, such as the priorities of the threads, to make
scheduling decisions whenever the state of one the threads
changes, possibly leading to a new thread being dispatched.
SLOTH has all this information implicit in the interrupt hard-
ware subsystem, with the ready queue being represented by the
interrupt-pending bits of the hardware, relying on the hardware
to do the scheduling and the dispatching.

To the application programmer, all of these differences are
hidden beneath the same thread API; SLOTH currently offers
the same OSEK task abstraction and system services like any
other, software-based implementation.

J. Requirements on the Hardware Interrupt System

For our approach to be feasible, we have two requirements
on the interrupt subsystem of the hardware platform that our
SLOTH kernel is implemented on:

“Sloth: Threads as Interrupts” [C19?]

104 RTSS ’09

1) Interrupt priorities: The interrupt system shall offer as
many different interrupt priorities as there are threads and
interrupt handlers in the system.

2) Interrupt triggering: The interrupt system shall support
manual, software-based triggering of interrupts. This can
be offered through a special instruction or through the
modification of corresponding hardware registers.

Note that these are the only requirements for a SLOTH imple-
mentation. Some platforms fulfill these requirements natively
(such as the Infineon TriCore detailed in Section III-A, or the
ARM Cortex-M3), whereas others have an external interrupt
controller that provides the corresponding functionality (such
as the APIC present on all modern Intel-x86 systems).

III. IMPLEMENTATION

We have implemented our SLOTH approach for the In-
fineon TriCore [5], an embedded microcontroller platform
commonly used in the automotive domain. We shortly describe
the relevant features of the platform before sketching our
implementation.

A. The Infineon-TriCore Platform

The TriCore platform has a sophisticated interrupt subsys-
tem that fulfills our requirements as stated in Section II-J.

Interrupt sources are represented by service request nodes
(SRNs), which encapsulate all the relevant properties such
as priority, enable status, and request status. All SRNs are
connected to an interrupt arbitration unit (IAU) through a
special bus for exchanging priority information in order to
find a precedence among the pending interrupts. This process,
called arbitration, takes a defined number of system-bus
cycles, which itself depends on the system clock frequency
and the priority range of the SRNs actually competing in the
arbitration. Hence, the fewer tasks and ISRs are configured in
a system, the fewer arbitration cycles are needed to prioritize
the concurrent requests.

Most of the SRNs are connected to an actual hardware
source (e.g., the general-purpose timer array of the TC1796
derivative features 92 SRNs), but there are special SRNs
available for software-only access (named CPU_SRCx). Addi-
tionally, hardware-connected SRNs that are not used in a given
application can also be used to implement threads as interrupts,
because every SRN has its registers memory-mapped, allowing
for software-based interrupt triggering as required by SLOTH
(see Section II-J).

B. Task-Activation Implementation

The implementation of the SLOTH design as sketched in
Section II is very straight-forward on the TriCore platform.
However, special attention has to be paid to the synchronous
task-activation mechanism.

Since a task is implemented as an interrupt handler, a
prolog is included in the interrupt vector that saves the context
of the interrupted task (which is a single instruction on the
TriCore), re-enables interrupts, and then jumps to the actual
task function. If a task wants to terminate, this corresponds

to a simple return-from-interrupt instruction, which restores
the previous CPU priority level and implicitly schedules and
dispatches the pending control flows in the system. Before the
actual return, the context of the interrupted task is restored
first.

Synchronous task activation is performed by requesting the
corresponding interrupt using the appropriate SRN. Basically,
this is compiled to a single store instruction to a memory-
mapped register. However, it takes a while until the interrupt
request is propagated to the CPU, depending on the current
state of the arbitration system. Since an activation of a
higher-priority task is supposed to happen synchronously in
a preemptive system, this activation has to be synchronized.
This is done by first disabling interrupts, and by then reading
back the request bit in order to synchronize the hardware
and software [6]. After that, nop instructions are inserted
to accommodate for the worst-case latency, which arises if
an arbitration round has just begun. The number of nop
instructions to be inserted is calculated and bounded statically,
depending on the number of arbitration rounds and the number
of cycles per arbitration round as demanded by the application
configuration (i.e., number of tasks and system frequency)2.
The subsequent enable-interrupts instruction is then the de-
fined, synchronous point of preemption:

void ActivateTask(TaskType id)
{

_disable();
setr(id); /* set service request flag */
srr(id); /* read back to sync HW/SW */
/* worst case: wait for 2 arbitrations */
nopsForOneArb();
nopsForOneArb();
_enable(); /* defined preemption point */

}

The same applies to the chaining of another task: The execut-
ing task relies on the chained task being executed immediately
after it terminates if that new task has the highest priority in the
system at that point. As described in Section II-C, interrupts
are also disabled before the activation in order to prevent the
new task from running until the old one has terminated.

Even when a lower-priority task is activated, this situation
may require synchronization. Consider, for instance, that di-
rectly after the (nonsynchronized) activation of a lower-priority
task, the priority level is lowered by terminating the running
task. This has to be the defined point for the context switch,
and not when the interrupt actually occurs at the CPU. If
the activation is not synchronized, a lowest-priority task may
execute for a few cycles after the termination of the high-
priority task and before the interrupt dispatches the activated
task—which is a clear violation of the specification. Hence,
every task activation is synchronized with nop timing as
described above, independently of its priority.

All of the cases described in this section where interrupts
need to be suspended temporarily for synchronization purposes

2The timing properties of the TriCore platform that are needed for this
calculation are exactly defined by Infineon in an application note [6].

[C19?] Proceedings of the 30th IEEE International Symposium on Real-Time Systems (RTSS ’09)

RTSS ’09 105

only disable them for a short and bounded amount of time.
That way, that time can be accounted for during the schedu-
lability and latency analysis of the whole real-time system.
The number of introduced nop instructions varies between 8
and 22, depending on the configuration, and is effectively time
when the CPU cannot do useful work (although the interrupt
system is performing the priority arbitration during that time).
However, this is a small price to pay compared to the overhead
of a traditional, software-based scheduler implementation (see
also Section IV).

Note that after an interrupt request has been triggered,
its source—a periphery device or the CPU itself—and the
requested type of control flow—task, ISR, or callback—is
completely oblivious to the CPU; it simply and automatically
dispatches the corresponding control flow if the current CPU
priority is below the requested priority.

C. Application Configuration and
System Generation

Since the system is statically configured and tailored to
the needs of the application, this information can be used
to generate static dispatching code that is highly optimized
(see Figure 4). As the configuration describes the map-
ping from task IDs to interrupt sources, the essence of
the ActivateTask() implementation (i.e., its subfunction
setr()), for instance, is an if–else cascade that sets the
request bit in the appropriate SRN depending on the task-ID
parameter, which is also its priority. This implementation and
the corresponding application calls can be statically analyzed
and optimized by the compiler, resulting in an inlined piece of
code consisting of a single instruction—namely the one that
sets the correct bit. Similar code is generated for querying that
bit to see if a task is in ready state, for setting an alarm that
activates a specific task upon expiration, and for initializing
the SRNs with the request bit already set, depending on
the auto-start properties of the corresponding tasks. These
implementations are also extremely light-weight since they are
subject to the compiler’s static analysis.

Furthermore, the interrupt vector table needs to be generated
to jump to the correct task functions from the interrupt
handlers of the different priorities as configured for the current
application.

Additionally, a couple of system-relevant constants are ex-
tracted from the application configuration (see also Figure 4):

• The task IDs are set to their configured priorities, and the
resource IDs are set to their ceiling priorities depending
on the tasks that are configured to potentially acquire
them.

• The ceiling priority of the virtual resource
RES_SCHEDULER is set to the highest priority of
all configured tasks.

• The number of needed arbitration cycles is derived from
the configured system frequency and the priorities of the
configured tasks, and the corresponding nop timing for
synchronous task activation is calculated.

D. System Startup

Upon startup of the SLOTH system (here, in main(), after
the start-up code has initialized the stack, the interrupt vectors,
and some platform-specific registers), the interrupt system
needs to be initialized accordingly. This boot process basically
encompasses the initialization of the SRNs according to the
priorities in the application configuration; the corresponding
code can easily be generated as described in Section III-C.
If the configuration has any tasks declared to be auto-started
upon startup, the request bit in the corresponding SRNs is set
in addition to the priority. Note that the system is started with
a CPU priority level of 0 but with interrupts still disabled;
hence, these auto-start task activations will not take effect
until interrupts are enabled after the system initialization is
complete (see also t1 in Figure 3).

The initial CPU priority level of 0 in main() leads to a
fallback to that routine whenever there is no ISR or task ready
to be scheduled—otherwise, the pending priority is greater
than 0. Thus, appropriate idling action can be taken in an
infinite loop in main(), putting the microcontroller unit to
sleep or in a low-power mode until an interrupt (representing
a control flow ready to be dispatched) requires servicing (see
also t7 and t8 in Figure 3).

Additional initialization of the general-purpose timer array
and the I/O-line–sharing unit of the Tricore is needed if the
application uses alarms to activate tasks or execute callbacks.

IV. EVALUATION

Since the design of our SLOTH system aims at making more
use of existing hardware features than other operating systems,
the software implementation is accordingly very concise.

A. Lines of Code

The whole system implementing the OSEK conformance
class BCC1 for the TriCore-TC1796 board as described above
takes less than 200 source lines of code to be implemented3.
This number includes code that is generated from the appli-
cation configuration (see also Figure 4) with one instance per
task, resource, and alarm configured; additional code for more
instances is similar and adds to the number of lines of code,
but not to its complexity. The start-up code for the platform is
not included in those 200 lines of code; it was basically taken
as supplied by the compiler (tricore-gcc by HighTec;
programmed in assembly).

B. Memory Footprint

Due to the concise system code base, the resulting footprint
of the compiled system image is also small; the kernel
implementing the conformance class BCC1 takes about 700
bytes4. This number again reflects the whole kernel with one
task, resource, and alarm instance; additional instances can add
to the memory footprint because additional interrupt handlers

3Logical, semicolon-terminated lines; measured with CCCC [9], version
3.pre84.

4Compiled with tricore-gcc by HighTec, version 3.4.5, with -O3
optimizations.

“Sloth: Threads as Interrupts” [C19?]

106 RTSS ’09

// application config
Task1: prio 1, auto-start,

accesses Res1
ISR2: prio 2
Task3: prio 3,

accesses Res1
Task4: prio 4
Alarm1: activates Task4

// consts.h
enum {

Task1 = 1, // prio
ISR2 = 2, // prio
...
Res1 = 3, // ceiling prio
RES_SCHEDULER = 4, // max prio
ARBROUNDS = 2, // prios 1-15
CYCPERROUND = 1, // low freq

};

// vectab.h
VECTAB_BEGIN()
ENTRY(1, functionTask1)
ENTRY(2, functionISR2)
...
VECTAB_END()

// gen.h
void init() {

CPU_SRC0.SRPN = 1; // prio
CPU_SRC0.SETR = 1; // auto-start
...

}
void setr(TaskType id) {

if (id == 1)
CPU_SRC0.SETR = 1;

else if (id == 3)
...

}

Fig. 4. SLOTH application configuration and system generation.

in the vector table are needed for additional tasks, for instance.
The compiled start-up code as provided by the compiler takes
up an additional 1,000 bytes, which can be reduced to about
500 bytes by tailoring its initialization functionality to the one
actually needed by SLOTH.

Note that due to the system’s hardware proximity, most
system calls are very short and therefore subject to function
inlining. Consider, for instance, the setr() function (see
generated code in Figure 4), which is the essence of the
system call ActivateTask() (see implementation sketch
in Section II-C). Since in many static applications, the system-
call parameter is constant at compile time, the dispatching
through the if–else cascade can be statically optimized by
the compiler. The result is a single store instruction to the
corresponding memory-mapped register (without the following
nop synchronization). Additionally, the functionality of the
operating system is tailored to the application’s needs by
excluding system functions that are not referenced by the
application; this is done through function-level–linking support
by the compiler and linker.

C. Execution Performance

In order to assess the quantitative effects of our SLOTH
approach on the operating-system kernel, we have performed
an analysis of run times of selected scenarios in a preemptive
system with the features of the OSEK conformance class
BCC1 (i.e., without events, without multiple tasks per priority,
and without multiple activations). The selected scenarios em-
compass those system calls that are implemented differently
in SLOTH because of its hardware-based nature. The other
system calls will have similar performance as in a traditional,
software-based kernel, as well as the application itself. The
evaluated scenarios include:
1) Synchronously activating a task of lower priority,

does not lead to dispatching: execution time of the
ActivateTask() system service.

2) Synchronously activating a task of higher priority, does
lead to dispatching: execution time from the point before
ActivateTask() to the first user instruction of the
activated task.

3) Terminating a task and returning to the previously
running task: execution time from the point before
TerminateTask() to the point after the task was dis-
patched.

4) Chaining a task: execution time from the point before
ChainTask() to the first user instruction of the chained
task.

5) Acquiring a resource: execution time of the
GetResource() system service.

6) Releasing a resource without inducing another task to be
dispatched: execution time of the ReleaseResource()
system service.

7) Releasing a resource with inducing another task to
be dispatched: execution time from the point before
ReleaseResource() to the first user instruction of the
dispatched task.

We have evaluated all of those scenarios with two different
interrupt-system configurations that reflect the best case and
the worst case regarding the interrupt-arbitration latency on
the TriCore platform (see also Section III-A):
A) Best case (minimum number of arbitration cycles): 1

arbitration round (suitable for up to 3 interrupt priorities),
1 bus cycle per arbitration round (only good for lower
system frequencies).

B) Worst case (maximum number of arbitration cycles); 4
arbitration round (suitable for up to 255 interrupt prior-
ities), 2 bus cycles per arbitration round (also good for
high system frequencies).

[C19?] Proceedings of the 30th IEEE International Symposium on Real-Time Systems (RTSS ’09)

RTSS ’09 107

1) 2) 3) 4) 5) 6) 7)
Act() Act() Term() Chain() GetRes() RelRes() RelRes()
w/o dispatch w/ dispatch w/ dispatch w/ dispatch w/o dispatch w/o dispatch w/ dispatch

SLOTH A) (best case) 34 60 14 67 19 14 36

SLOTH B) (worst case) 48 74 14 81 19 14 36

CiAO 75 206 107 139 19 66 204

TABLE I
SLOTH BEST-CASE AND WORST-CASE PERFORMANCE IN SELECTED SCENARIOS, COMPARED TO PERFORMANCE USING THE CIAO OS. DEPICTED IS THE

NUMBER OF 20-NS CLOCK CYCLES NEEDED TO EXECUTE THE PARTICULAR TEST CASE.

The measurement results for SLOTH are depicted in Table I5.
For comparison purposes, we have deployed and measured the
same application scenarios on CiAO, a configurable, OSEK-
like embedded operating system for which an implementation
for the TriCore platform is also available. CiAO has a tra-
ditional software scheduler, and its competitive performance
compared to other commercial implementations has previously
been published [12]. For the CiAO tests, we have configured
the operating system to provide the minimal amount of fea-
tures necessary for the scenarios so that it provides the same
capabilities that SLOTH does. Since both CiAO and SLOTH
have the same OSEK API, the test applications run are the
same.

Because nop timing is required in SLOTH for synchronous
task dispatching (see also Section III-B), the scenarios 1),
2), and 4) depend on the hardware-arbitration configuration,
with the extremes being the best-case configuration A) and
the worst-case configuration B). The other scenarios only
alter the priority level of the CPU, which is independent
of the number of arbitration cycles; hence, the run times
for SLOTH are the same for both configurations. Note that
scenario 1) differs in the configurations A) and B) although
it does not lead to dispatching. This is because, as argued in
Section III-B, situations may arise where synchronization is
necessary nevertheless.

Compared to CiAO, SLOTH performs equally well or better
in all scenarios. Especially the scenarios 2), 3), 4), and 7),
all of which include a scheduling and dispatch operation, are
significantly faster on SLOTH, which relies on the interrupt
system to perform these tasks. Depending on the hardware
configuration and whether a new task is activated or a running
one terminates, SLOTH only needs between 280 ns and 960
ns for a task switch (including the actual context switch) on
a 50-MHz system.

V. DISCUSSION

The SLOTH system design, relying on extensive use of the
hardware interrupt system, leads to a small kernel bearing
several advantages over traditional kernel designs, with a good
range of application fields nevertheless.

5Measurements were performed on a TriCore TC1796B with 50 MHz
system frequency and CPU frequency (cycle time of 20 ns). The run times
were obtained with a TRACE32 hardware debugging and tracing unit by
Lauterbach and averaged over 5,000 iterations each.

In its current shape, SLOTH does not support blocking
functionality for threads. It can therefore exploit the resulting
strictly stack-based nature to implement its dispatcher using
interrupt levels. As can be seen from the results of the
evaluation in Section IV, this does not only lead to a concise
system design, but also to a concise implementation. The
small kernel code base is very well manageable and therefore
maintainable with regard to possible requirement adaptations.
Additionally, it is an ideal candidate to verification, a property
of utmost importance to many real-time systems of the class
targeted by SLOTH.

Furthermore, the evaluation revealed that the memory foot-
print of a SLOTH implementation is extremely small, which is
another important property for the domain of deeply embedded
systems, where single superfluous bytes in memory demand
can lead to significant overall cost increase. Because of the
strictly stacked nature of SLOTH, stack-sharing techniques can
be used to reduce the stack part of the application’s RAM
demand to a minimum; the dispatcher only uses a single
interrupt stack from the very beginning of the system startup.
Moreover, the increased use of hardware functionality leads
to a superior system performance compared to traditional,
software-based implementations, which was shown in the
evaluation in Section IV.

The fact that the SLOTH design maps control flows that
are of different kinds in other systems (e.g., OSEK tasks,
category-1 ISRs, category-2 ISRs, and callbacks) to a single
abstraction has a major influence on the system conciseness,
leading to the advantages described above. Additionally, the
system synchronization—a major concern in all concurrent
systems—is tremendously simplified, because the adjustment
of the current CPU priority level is the single measure needed
for all kinds of synchronization demands. This includes both
demands by the application itself and demands internal to
the system to keep its data structures from being corrupted
by asynchronous control flows. The application demands are
satisfied by raising the CPU priority level to the resource ceil-
ing priority to acquire a resource, by raising it to the highest
level of all configured tasks to disable preemption in a critical
section (this is prescribed in OSEK by the special resource
RES_SCHEDULER), by raising it to the highest level of all
category-2 ISRs to implement SuspendOSInterrupts(),
and by raising it to the highest level of all ISRs to im-
plement SuspendAllInterrupts(). The system-internal

“Sloth: Threads as Interrupts” [C19?]

108 RTSS ’09

demands to keep the kernel synchronized are implemented
by raising the level to the highest priority of all tasks and
category-2 ISRs (both of which can access system data struc-
tures) configured in a given system.

SLOTH’s unified control-flow design also introduces an
additional degree of freedom for the system designer, who
can decide upon the system’s priority space independent of
the synchronous/asynchronous nature of the distinct control
flows. In other systems, asynchrononous interrupt handlers
always have precedence over synchronous, scheduler-managed
threads, which leads to a bifid priority space bearing the prob-
lem of rate-monotonic priority inversion [4], amongst others6.
Furthermore, functionality that is described as optional in the
specification because of its complexity can be offered along
the way. For instance, the OSEK-OS specification says that the
participation of category-2 ISRs in the priority ceiling protocol
for resources (see Section II-E) is optional. If interrupts and
threads are designed the same way like in SLOTH, they can
automatically take part in that protocol, allowing for more
complex application synchronization possibilities.

Additional types of control flows that were introduced to
offer more light-weight alternatives to the traditional threads
and ISRs (like OSEK callbacks and category-1 ISRs) are
superfluous in SLOTH systems because the offered control-
flow type already has a very low overhead to begin with. In
fact, SLOTH can offer OSEK tasks and category-2 ISRs at the
price of an OSEK callback or category-1 ISR.

Despite its simple design, SLOTH is suitable for the imple-
mentation of a wide range of real-time systems. This includes
event-triggered systems with fixed priorities, as targeted by
the widely-spread OSEK-OS specification, for instance. The
missing blocking functionality can be tolerated by many real-
world applications, which avoid making use of that feature
because of reasons of memory demand (e.g., stack sharing is
hampered) and analyzability of the system behavior. SLOTH
is suitable to implement the most well-known fixed-priority
scheduling algorithms—like the rate-monotonic algorithm [10]
and the deadline-monotonic algorithm [11], for instance.

Legacy applications that are programmed using the API
described in the OSEK standard can be used with SLOTH
without modifications, since SLOTH implements the OSEK
specification. The existing application configuration, including
task priorities and other properties (also defined by OSEK,
in its OSEK implementation language [16]), can also be
used unmodified by the SLOTH generator to produce the
configuration-dependent code (see also Section III-C). Hence,
no porting is needed for an OSEK application to benefit from
SLOTH’s advantages, and the application programmer can rely
on the programming model and abstractions he is used to.

VI. RELATED WORK

We are not aware of any work that is really similar to our
approach in handling threads as interrupts.

6In fact, this problem is the reason why programmers are taught to keep
ISRs short. In SLOTH, the ISRs can be long, since they reside in the same
priority space as the system tasks.

Vice versa, Kleiman and Eykholt [7] proposed to handle
interrupts as full threads so that interrupt handlers can use
system services if they need to. They can even wait for an
operating-system event and block, leading to the dispatching of
another thread that is ready. This model is implemented in the
Solaris kernel for desktop and server systems and was adapted
by Lohmann et al. for an embedded-system kernel [13].
However, the overhead introduced by their approach leads to
interrupt handlers having a performance overhead similar to
that of threads, whereas our approach gives threads the (lower)
overhead of interrupt handlers.

There are several approaches to aid the operating-system
scheduler by using hardware abstractions; however, all of
them rely on customized hardware. All of those approaches—
including cs2 [14], FASTCHART [8], Silicon TRON [15],
HW-RTOS [3], and Atalanta [19]—move operating-system
functionality to the hardware level by synthesizing special
circuits on FPGA boards and offering that functionality on a
co-processor–like basis. Our approach, however, is applicable
to commodity off-the-shelf hardware.

As previously mentioned, some of the implications of
stack-like control-flow scheduling as used in SLOTH (and as
prescribed by OSEK BCC1) were investigated by Baker. This
includes the possibility for efficient process stack allocation
by means of stack sharing and the stack resource policy to
avoid priority inversion [1], [2]. Our implementation uses both
techniques and can benefit from them.

VII. FUTURE WORK

Our current system design supports the features of the
OSEK conformance class BCC1; its main shortcoming is the
missing support for blocking by events, which do not fit in with
the current stack-oriented design. In order to be compatible
to the classes ECC1, ECC2, and BCC2, we plan to carefully
sketch a design for event support and support for multiple tasks
per priority7 (see also Figure 1). Both of those features are
rather simple to implement in software—which we could do
to integrate the functionality in our SLOTH system—, but we
aim for a more sophisticated design that preserves the benefits
of an operating system implementing threads as interrupts.
For instance, the peripheral control processor of the Infineon-
TriCore platform can be configured to be the primary service
provider for all interrupts. This co-processor could then be
used to implement part of that additional functionality by
filtering the events and interrupting the main CPU only when
needed.

Furthermore, we plan to investigate the applicability to
and suitability of other hardware platforms for our SLOTH
approach. For instance, all modern Intel-x86 systems have an
advanced programmable interrupt controller (APIC) available,
which can compensate for the interrupt-system shortcom-
ings of the x86 CPU architecture. By programming the I/O
APIC accordingly and by using inter-processor interrupts sent

7This is especially problematic together with multiple activations, since the
activation order within a priority class is prescribed to be preserved.

[C19?] Proceedings of the 30th IEEE International Symposium on Real-Time Systems (RTSS ’09)

RTSS ’09 109

through the processor’s local APIC, we are positive that we can
implement our design on that well-known platform. We also
want to investigate what kinds of features hardware platforms
have to offer to support our SLOTH concept in an ideal way.
This includes the analysis of available hardware features and
their shortcomings with respect to our approach.

Finally, we want to explore the feasibility to extend our
SLOTH design to multiprocessor systems, and we want to in-
vestigate whether similar approaches can be used to implement
time-triggered systems.

VIII. SUMMARY

We have presented our SLOTH operating-system design,
which uses interrupt handlers as its universal control-
flow abstraction—also to implement synchronously activated
threads. This model allows for a simple implementation of all
major services expected from a statically configured, event-
driven operating system, providing the same programming
model and interface, which we have shown using the example
of the OSEK-OS specification. As a side effect, the resulting
unified priority space completely avoids the real-time problem
of rate-monotonic priority inversion.

In order to evaluate the properties of the SLOTH design,
we have implemented it on the Infineon-TriCore platform.
We have shown that the unification of the control flows in
the system has a significant impact on the operating system’s
conciseness in the design, in its implementation code, and in its
compiled memory footprint. Furthermore, since SLOTH uses
the hardware interrupt system instead of software-implemented
routines to schedule the system’s control flows, the resulting
performance is more than competitive.

In our opinion, the results of our SLOTH work should
encourage OS engineers to make better use of the hardware
abstractions that a given platform offers. Especially in the
domain of embedded OSes, where a small footprint and
efficient execution are crucial, a small limitation in portability
can often be traded for an improvement of those properties.

REFERENCES

[1] Theodore P. Baker. A stack-based resource allocation policy for realtime
processes. In Proceedings of the 11th International Conference on Real-
Time Systems (RTSS ’90), pages 191–200. IEEE Computer Society Press,
Dec 1990.

[2] Theodore P. Baker. Stack-based scheduling of realtime processes. Real-
Time Systems, 3(1):67–99, 1991.

[3] Sathish Chandra, Francesco Regazzoni, and Marcello Lajolo. Hard-
ware/software partitioning of operating systems: A behavioral synthesis
approach. In Proceedings of the 16th ACM Great Lakes Symposium on
VLSI (GLSVLSI ’06), pages 324–329, New York, NY, USA, 2006. ACM
Press.

[4] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz.
Predictable interrupt management for real time kernels over conventional
PC hardware. In Proceedings of the 12th IEEE International Symposium
on Real-Time and Embedded Technology and Applications (RTAS ’06),
pages 14–23, Los Alamitos, CA, USA, 2006. IEEE Computer Society
Press.

[5] Infineon Technologies AG, St.-Martin-Str. 53, 81669 München, Ger-
many. TriCore 1 User’s Manual (V1.3.5), Volume 1: Core Architecture,
February 2005.

[6] Infineon Technologies AG, St.-Martin-Str. 53, 81669 München, Ger-
many. AP32009, TC17x6/TC17x7 – Safe Cancellation of Service
Requests, July 2008.

[7] Steve Kleiman and Joe Eykholt. Interrupts as threads. ACM SIGOPS
Operating Systems Review, 29(2):21–26, April 1995.

[8] Lennart Lindh and Frank Stanischewski. FASTCHART – a fast time
deterministic CPU and hardware based real-time-kernel. In Proceedings
of the 1991 Euromicro Workshop on Real-Time Systems, pages 36–40,
Jun 1991.

[9] Tim Littlefair. CCCC - C and C++ Code Counter homepage. http:
//cccc.sourceforge.net/.

[10] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[11] Jane W. S. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

[12] Daniel Lohmann, Wanja Hofer, Wolfgang Schröder-Preikschat, Jochen
Streicher, and Olaf Spinczyk. CiAO: An aspect-oriented operating-
system family for resource-constrained embedded systems. In Pro-
ceedings of the 2009 USENIX Technical Conference, pages 215–228,
Berkeley, CA, USA, June 2009. USENIX Association.

[13] Daniel Lohmann, Jochen Streicher, Olaf Spinczyk, and Wolfgang
Schröder-Preikschat. Interrupt synchronization in the CiAO operating
system. In Proceedings of the 6th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (AOSD-ACP4IS
’07), New York, NY, USA, 2007. ACM Press.

[14] Andrew Morton and Wayne M. Loucks. A hardware/software kernel for
system on chip designs. In Proceedings of the 2004 ACM Symposium
on Applied Computing (SAC ’04), pages 869–875, New York, NY, USA,
2004. ACM Press.

[15] Takumi Nakano, Andy Utama, Mitsuyoshi Itabashi, Akichika Shiomi,
and Masaharu Imai. Hardware implementation of a real-time operat-
ing system. In Proceedings of the 12th TRON Project International
Symposium (TRON ’95), pages 34–42, Nov 1995.

[16] OSEK/VDX Group. OSEK implementation language specification 2.5.
Technical report, OSEK/VDX Group, 2004. http://portal.osek-vdx.org/
files/pdf/specs/oil25.pdf, visited 2009-09-09.

[17] OSEK/VDX Group. Operating system specification 2.2.3. Technical
report, OSEK/VDX Group, February 2005. http://portal.osek-vdx.org/
files/pdf/specs/os223.pdf, visited 2009-09-09.

[18] Fabian Scheler, Wanja Hofer, Benjamin Oechslein, Rudi Pfister, Wolf-
gang Schröder-Preikschat, and Daniel Lohmann. Parallel, hardware-
supported interrupt handling in an event-triggered real-time operating
system. In Proceedings of the 2009 International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems, New
York, NY, USA, 2009. ACM Press.

[19] Di-Shi Sun, Douglas M. Blough, and Vincent John Mooney III. Atalanta:
A new multiprocessor RTOS kernel for system-on-a-chip applications.
Technical report, Georgia Institute of Technology, 2002.

“Sloth: Threads as Interrupts” [C19?]

110 RTSS ’09

SLEEPY SLOTH: Threads as Interrupts as Threads∗

Wanja Hofer, Daniel Lohmann, Wolfgang Schröder-Preikschat
Friedrich–Alexander University Erlangen–Nuremberg, Germany

E-Mail: {hofer,lohmann,wosch}@cs.fau.de

Abstract—Event latency is considered to be one of the most
important properties when selecting an event-driven real-time
operating system. This is why in previous work on the SLOTH
kernel, we suggested treating threads as ISRs and thereby
reducing event latencies by scheduling and dispatching solely
in hardware. However, to achieve these benefits, SLOTH does not
support blocking threads or ISRs, but requires all control flows
to have run-to-completion semantics.

In this paper, we present SLEEPY SLOTH, an extension of
SLOTH that provides a new universal thread abstraction that
overcomes this limitation, while still letting the hardware do
all scheduling and dispatching. SLEEPY SLOTH abolishes the
(artificial) distinction between threads and ISRs: Threads can
be interrupt handlers and interrupt handlers can be threads.

Our SLEEPY SLOTH implementation of the automotive OSEK
OS standard provides much more flexibility to application devel-
opers while maintaining efficient execution of application control
flows. SLEEPY SLOTH runs on commodity off-the-shelf hardware
and outperforms a leading commercial OSEK implementation by
a factor of 1.3 to 19.

I. INTRODUCTION AND MOTIVATION

The core task that an operating system has to fulfill in an
event-driven real-time system is to manage the control flows
present in the computing system, which encompass threads
and interrupt service routines (ISRs).

Threads are managed by software: They are activated on
behalf of software events only (such as posting a semaphore),
and they are scheduled and dispatched by software mecha-
nisms, usually provided by the operating system (OS). ISRs,
on the other hand, are managed by hardware: They are
activated by hardware events only (such as a periphery device
requiring service), and they are scheduled and dispatched
by hardware mechanisms, usually provided by the interrupt
controller. Table I lists those two types of control flows in
Lines 1 and 2, together with a comparison of their semantics:
Threads can block and resume execution at a later point in
time, while ISRs have to run to completion. Traditional threads
and ISRs form a dual priority space, with ISRs having a higher
priority than all threads in the system.

A. The Issue

From the conceptual point of view, the forced distinction
between threads and ISRs is problematic: The control flow
semantics of an event handler (blocking or run-to-completion,
as well as its priority relative to other event handlers) should
not be defined by the source of the event (hardware or

∗This work was partly supported by the German Research Foundation
(DFG) under grants no. SCHR 603/8-1 and SFB/TR 89.

software), but by the requirements of the real-time applica-
tion. Furthermore, the dual priority space makes the system
susceptible to the real-time issue of rate-monotonic priority
inversion1 [3].

Several solutions have been proposed to overcome these
issues by employing threads only: In the Solaris OS kernel,
ISRs can be promoted to threads upon request, enabling
blocking semantics in hardware event handlers [8]. At that
point, the management and scheduling of the ISR control
flow is switched from the hardware to the OS (see Line 4
in Table I). However, to implement this flexibility, Solaris
still has to keep the dual priority space, with “ISR threads”
having a higher priority than all other, “regular” threads.
To tackle that problem, solutions have been proposed in
which short ISRs always activate a corresponding thread to
run and then terminate immediately [3], [4]. This way, all
event handlers (hardware and software) are scheduled and
dispatched by the OS as threads in a single priority space.
However, since OS-managed threads incur significant software
overhead compared to ISRs, this advantage comes at a major
performance and latency cost: The latency of ISRs becomes
3–10 times higher—even if parts of the ISR processing are
outsourced to an external co-processor [21].

That is why in previous work on the SLOTH embedded ker-
nel, we have proposed the opposite approach: to have threads
run as ISRs [5]. By triggering the corresponding interrupt
from within kernel software when activating a thread, SLOTH
relies on a single priority space—the interrupt priority space
managed by the hardware—and lets the hardware interrupt
arbitration system perform the priority-based scheduling and
dispatching (see Line 5 in Table I). The SLOTH kernel, which
implements this idea, is simple, small, and fast in scheduling
and switching control flows (2–7 times faster than in a tradi-
tional kernel). Nevertheless, the SLOTH kernel has a significant
drawback: It does not support blocking threads, which need
an execution stack of their own. Since it only supports run-to-
completion control flows, its execution and preemption pattern
is strictly last-in, first out (i.e., stacked)—which is why it is a
perfect match for execution using an interrupt controller with
multiple interrupt levels, since interrupt activations are also
strictly stacked and preempted based on their priorities.

1This term describes the phenomenon that a high-priority thread can be
interrupted and delayed by a low-priority ISR because the hardware-managed
ISR priorities are inherently higher than the OS-managed thread priorities.

[C10?] Proceedings of the 32nd IEEE International Symposium on Real-Time Systems (RTSS ’11)

RTSS ’11 111

Activation Scheduling/Dispatching Execution Semantics
1 Traditional Threads / OSEK Extended Tasks by OS by OS Blocking
2 Traditional ISRs by HW by HW Run-to-Completion
3 OSEK Basic Tasks by OS by OS Run-to-Completion
4 Solaris IRQ Threads [8] by HW by HW → by OS Blocking
5 SLOTH Tasks [5] by OS or HW by HW Run-to-Completion
6 SLEEPY SLOTH Threads by OS or HW by HW Run-to-Completion or Blocking

TABLE I
TYPES OF CONTROL FLOWS AND THEIR PROPERTIES (ACTIVATION AND SCHEDULING/DISPATCHING BY HARDWARE (HW) OR THE OPERATING SYSTEM

(OS), AS WELL AS EXECUTION SEMANTICS) IN TRADITIONAL OPERATING SYSTEMS, IN OSEK, IN SOLARIS, AND IN SLOTH, COMPARED TO THE
THREAD ABSTRACTION PROVIDED BY SLEEPY SLOTH.

B. About This Paper

In this paper, we aim to remedy this situation by designing
a new thread abstraction that combines the advantages of the
SLOTH control flow with blocking functionality. These new
kinds of threads can be triggered by software events and
hardware events, they can have run-to-completion or blocking
semantics, and they run in a single priority space (see Line
6 in Table I). We argue that this new thread abstraction
combines the best properties of threads—blocking flexibility—
and traditional ISRs—low execution latency. Our proposed
thread model is flexible since it allows those control flows
to block that need to block, and it is fast since it relies
on commodity interrupt hardware to perform scheduling and
dispatching in hardware. Thus, in the SLEEPY SLOTH kernel2

that we have implemented as an extension of the original
SLOTH kernel, we have removed the artificial distinction be-
tween threads and ISRs: Threads can be interrupt handlers and
interrupt handlers can be threads. SLEEPY SLOTH implements
the widely used OSEK operating system standard [18], and
it outperforms a leading commercial implementation of that
standard by a factor of 1.3 to 19.0.

This paper provides the following contributions:
• We present a new universal thread abstraction and discuss

the challenges in implementing it to provide blocking
flexibility while being scheduled and dispatched effi-
ciently using interrupt hardware (see Section III).

• We present our SLEEPY SLOTH kernel design that tackles
these challenges by providing a tailored task prologue and
a static analysis engine (see Sections IV and V).

• We evaluate our prototypical SLEEPY SLOTH implemen-
tation on the Infineon TriCore microcontroller, showing
that it provides the extra blocking flexibility without
harming performance and latency for tasks that do not
need it (see Section VI).

• We discuss the necessity for different types of control
flows in operating systems and the general applicability
of the hardware-centric SLEEPY SLOTH approach (see
Section VII).

II. SLOTH REVISITED

The original SLOTH kernel described in [5] implements
the BCC1 conformance class of the OSEK operating system

2The name honors the deadly sin and the lazy animal breed named sloth,
which likes its “control flows” to sleep (i.e., to block).

IRQ Source
Task1

prio=1
request

IRQ Source
ISR2

prio=2
request

IRQ Source
Task3

prio=3
request

IRQ Source
Task4

prio=4
request

Hardware
Periphery

Timer
System

HW IRQ

Alarm Exp.

IRQ
Arbi-

tration
Unit

CPU

curprio=X

Act(T1)

IRQ Vector
Table

task1()

isr2()

task3()

task4()

Fig. 1. Design of a SLOTH system, using interrupt handlers for the
implementation of threads. The interrupt sources have a statically configured
priority and are either triggered synchronously by the CPU through a system-
service call (e.g., Task1), through hardware-periphery IRQs (e.g., ISR2), or
through the timer system after setting a task alarm (e.g., Task4).

standard [18], which is omnipresent in the automotive industry.
In the following section, we briefly describe OSEK’s features
and the corresponding IRQ-based SLOTH design for them;
Figure 1 illustrates this by showing an example SLOTH system.
Note that OSEK systems (and therefore also SLOTH systems)
are configured statically, and, thus, all control flows and their
priorities are known at compile time.

a) Task Management: The main idea behind SLOTH is
to design every task as an interrupt handler. Every task is
assigned an IRQ source with the corresponding priority at
compile time, and the corresponding interrupt handler is set
to be the user task function. Activation of a task by another
control flow is performed by setting the corresponding IRQ re-
quest bit by the kernel software (see Task1 in Figure 1), letting
the IRQ controller’s arbitration unit decide about preemption
depending on the current CPU priority and pending IRQ
priorities. A task terminates by returning from the interrupt
routine, again relying on the hardware to schedule the task
with the next-highest priority.

b) Resource Management: Resources are OSEK’s way
of designating critical sections in applications, which are
synchronized against preemptions by competing tasks using a
stack-based priority ceiling protocol. By acquiring a resource,
a task’s priority is lifted to the ceiling priority of all tasks that
could acquire that resource; SLOTH simply raises the CPU

“Sleepy Sloth: Threads as Interrupts as Threads” [C10?]

112 RTSS ’11

priority to accomplish this. This way, the dispatching of a task
that competes for the same resource is delayed until after the
critical section is left. Upon release of a resource, the priority is
lowered to the previous level, potentially dispatching delayed
activated tasks.

c) Alarm Management: Alarms are OSEK’s timer ab-
straction and allow activating a task after a specified amount
of time has elapsed. To every task that is configured at compile
time to be activated by an alarm at run time, SLOTH assigns
an IRQ source that is connected to the timer system (see
Task4 in Figure 1). This way, when the timer expires, the
task is automatically scheduled by the hardware by triggering
the corresponding interrupt, dispatching it depending on the
system’s current priority situation.

d) ISR Management: OSEK distinguishes between two
types of interrupt service routines (ISRs): Category-2 ISRs
are allowed to perform system calls and therefore need to
be synchronized with tasks in order not to corrupt kernel
state, whereas the kernel is oblivious of category-1 ISRs,
which are not allowed to invoke the kernel. In SLOTH, there
is no difference in the handling of category-2 ISRs and
tasks; the kernel is oblivious to whether the interrupt request
was triggered by a hardware periphery device (see ISR2 in
Figure 1) or by software (see Task1 in Figure 1).

III. SLEEPY SLOTH REQUIREMENTS

The only class of OSEK system calls that the original
SLOTH kernel does not implement is the one that manages
OSEK events. Events are OSEK’s means for task notification
and, therefore, its means for a task to block (system call
WaitEvent()) and to be unblocked (SetEvent()). OSEK
calls tasks that are allowed to potentially block extended tasks
(which need a full context of their own, including a task stack,
to be continued in their execution), whereas run-to-completion
tasks are called basic tasks (which can share parts of their
contexts, including their stack, since they preempt each other
in a strictly last-in, first-out—that is, stacked—manner).

The overall goal in extending SLOTH to SLEEPY SLOTH is
therefore to provide applications the ability to include extended
blocking tasks while preserving SLOTH’s performance and
latency benefits by having threads run as interrupt handlers.

A. SLEEPY SLOTH Challenges

In the original SLOTH kernel, where only basic run-to-
completion tasks are present, the control flow hierarchy is
strictly stacked and strictly nested, which means that control
flows are only preempted by higher-priority control flows and
returned to after those have run to completion. The SLOTH
execution model corresponds exactly to the one that traditional
ISRs support using multi-level interrupt controllers, plus the
ability to be activated by the operating system (compare Lines
2 and 5 in Table I).

The first and main challenge in SLEEPY SLOTH, however, is
to be able to suspend task execution and resume its execution
later, which interrupt controllers do not support for interrupt

handler execution. This is due to the fact that interrupt han-
dlers are supposed to run to completion transparently to the
interrupted control flow. Thus, SLEEPY SLOTH needs to find
a way to implement both the suspension of a blocked ISR and
the re-activation of an unblocked ISR, saving and restoring its
full context including its stack appropriately.

Second, by nature, interrupts are asynchronous in their
occurrence; that is, no prediction can be made as to where
exactly a control flow yields the CPU when interrupted. Thus,
performing the necessary context and stack switch in the
preempted control flow before dispatching is impossible in
a SLOTH-like system with hardware-triggered preemptions,
since the interrupt scheduler and dispatcher are provided by
the hardware.

The third challenge regards the execution efficiency of the
resulting SLEEPY SLOTH system: The added flexibility for the
application developer should not come at the price of lowered
system performance. Especially the latencies for scheduling
and executing basic run-to-completion tasks should remain
comparable to the original SLOTH kernel.

B. Hardware Environment and Requirements

SLEEPY SLOTH’s requirements on the hardware platform
shall remain the same as stated in [5] for SLOTH; thus, the
approach is applicable to any platform with a modern multi-
level interrupt controller:

1) The platform needs to be able to trigger interrupts from
within software—for instance, by setting a bit in a dedi-
cated register or by offering a special instruction for that
matter. This is needed to implement synchronous task
activation.

2) The number of available interrupt priorities needs to be
at least as high as the number of threads and ISRs in the
SLEEPY SLOTH system, since every thread and ISR is as-
signed a dedicated interrupt source and priority (plus one
dedicated priority for each resource; see Section V-E).
Our two prototypes run on the Infineon TriCore and the
ARM Cortex-M3 platforms, both of which feature 256
interrupt priority levels, enabling SLEEPY SLOTH systems
with about 256 real-time control flows.3 The assignment
of a dedicated priority slot per task does not allow for
multiple tasks per (semantically equal) priority if the
order of activations needs to be preserved.

IV. SLEEPY SLOTH OVERVIEW

In this section, we present the central design ideas in
SLEEPY SLOTH to meet the requirements and challenges
discussed before. A prototypical control flow in the system
illustrates these ideas by example, followed by a description
of the SLEEPY SLOTH analysis and generation architecture to
provide application-tailored context switching.

3For the rest of this paper, we assume higher priority levels to be assigned
to higher priority numbers (as is the case on the Infineon TriCore platform).

[C10?] Proceedings of the 32nd IEEE International Symposium on Real-Time Systems (RTSS ’11)

RTSS ’11 113

CPU/Task Priority

t

1

2

3

t1 t2 t3 t4 t5 t6 t7 t8

Task BT1

act(ET3)

Prologue ET3 Task ET3

block()

Prologue BT1 Task BT1 (ctd.)

act(BT2)

Prologue BT2 Task BT2

unblock(ET3)

Prologue ET3 Task ET3 (ctd.)

save(stk_bt)
init(stk_et3)

save(stk_et3)
load(stk_bt)

<empty>

save(stk_bt)
load(stk_et3)

Fig. 2. Example control flow in a SLEEPY SLOTH system with two basic tasks, BT1 and BT2 (with priorities 1 and 2, respectively), which run to completion
and share a common stack, stk_bt, and one extended task, ET3 (with priority 3), which can block during its execution and therefore has a stack of its own,
stk_et3. The figure does not reflect timing proportions, as the task prologues are usually very short compared to the task functions themselves.

A. Central Design Ideas

In order to meet the requirements and tackle the challenges
stated before, SLEEPY SLOTH is based on three central design
ideas.

1) The Task Prologue: SLEEPY SLOTH provides support
for blocking tasks by prepending a task prologue to every
task function. This prologue is executed whenever a task is
dispatched by the interrupt hardware, both when the task is
about to run for the first time and when its execution is
resumed after being blocked or preempted. The task prologue
is the single point to decide whether to save the stack of the
interrupted task and whether to restore or initialize the stack
of the dispatched task. Note that parts of the task context
are saved by the hardware automatically upon dispatching an
interrupt handler. The prologue concept is the key enabler
for interrupt re-activation/resumption, and it addresses the
challenge that IRQs occur asynchronously by performing the
stack switch (if necessary) in the newly dispatched successor
control flow.

2) Threads as ISRs: To provide a performance comparable
to SLOTH, SLEEPY SLOTH also relies on the hardware to do as
much as possible for it. This mainly entails the kernel relying
on the interrupt system to do the scheduling and dispatching
work for it by having all threads run as ISRs with appropriate
priorities. Thus, SLEEPY SLOTH follows the rule to have every
task run as an ISR as often as possible, and to only run it as
a thread with a stack of its own if the application semantics
needs it (in order to be able to block).

3) Static Analysis and System Generation: To achieve its
goal to enable efficient execution for basic non-blocking tasks,
SLEEPY SLOTH makes use of static application knowledge
available at compile time. By statically analyzing the control
flow configuration of the application, it can infer information
about which task or ISR can preempt which other tasks or
ISRs at run time. This information is then used to generate
tailored task prologues that omit unnecessary run time checks
for preemption conditions before performing stack switches or
not. Thus, SLEEPY SLOTH evaluates those conditions statically
where possible and dynamically otherwise.

B. SLEEPY SLOTH Example Control Flow

Figure 2 shows an example trace of a SLEEPY SLOTH
application with two basic tasks, BT1 and BT2 (which share
a common stack, stk_bt), and a high-priority extended task,
ET3 (with a stack of its own, stk_et3). Suppose that at some
point, only BT1 is running, which then activates ET3 (t1).
ET3 is immediately dispatched because of its high priority—
prepended by its prologue, which saves BT1’s stack and
initializes ET3’s stack before executing the actual user function
for ET3 (t2).

ET3 then blocks and releases the CPU, giving control back
to BT1 (t3). Its prologue notes that it has interrupted an
extended task and therefore performs a full context switch
by saving ET3’s stack and loading the common BT stack
before resuming execution (t4). The following activation of
BT2 (t5) dispatches the BT2 prologue, which observes that it
has interrupted a basic task and therefore starts executing the
task function at t6 without having to switch stacks.

BT2 then unblocks ET3, triggering its prologue once again
(t7). At this point, the ET3 prologue saves the basic task stack
and restores its own stack, resuming execution after the point
it had blocked at (t8).

C. SLEEPY SLOTH Architecture

Like OSEK OS, SLEEPY SLOTH is configured completely
statically; that is, all threads and ISRs and their priorities
are known and configured before compile time. Many crucial
parts of the SLEEPY SLOTH system are therefore generated
specifically for an application after being analyzed as depicted
in Figure 3.

As its input, the SLEEPY SLOTH system takes the con-
figuration of the application as specified by the application
programmer. This comprises application objects such as tasks,
interrupt service routines, resources, and alarms, together with
their names, priorities, and other properties such as whether a
task is basic or extended (i.e., it is allowed to block) or which
tasks share a given resource.

1) Analysis: The SLEEPY SLOTH analyzer then performs
several kinds of analyses on that configuration to provide the
subsequent generation step with additional input. First, the
configured application control flows (i.e., tasks, category-1
ISRs, and category-2 ISRs) are analyzed for their interactions

“Sleepy Sloth: Threads as Interrupts as Threads” [C10?]

114 RTSS ’11

Static Application Configuration:

Task BT1, basic, prio 1
Task BT2, basic, prio 2
Task ET3, extended, prio 3
Task ET5, extended, prio 5
Resource Res1, shared by BT1 and ET3
Resource Res2, shared by BT2 and ET5

SLEEPY SLOTH Static Analyzer:
• Control flow type analysis
• Control flow interaction analysis
• Priority space analysis
• Mapping logical → physical priorities

SLEEPY SLOTH System Generator:
• Activation code generation
• Prologue generation
• Arbitration timing calculation

Infineon TriCoreARM Cortex-M3 Intel x86 APIC

Back Ends

Fig. 3. SLEEPY SLOTH configuration analysis and generation architecture.

based on their properties and priorities. Internally, this analysis
step calculates a preemption graph, which encompasses infor-
mation about which control flow can be preempted by which
other control flows and, therefore, which of the preemptions
actually need a stack switch (e.g., a basic task preempting
another basic task does not need one). Second, the priority
space as specified by the application programmer is analyzed,
and the given logical priorities are mapped to physical interrupt
priorities. This step comprises both the compacting of the
logical priority space if the priority configuration as provided
by the application is sparse, and it assigns additional, dedicated
priority slots in between control flow priorities for resources.
This way, a task holding a resource can be unambiguously
identified by its execution priority (see Section V-E).

2) Generation: The actual SLEEPY SLOTH generator then
generates application-specific code for the system. This mainly
entails code for the activation of a task by setting the interrupt
request bit in the appropriately configured IRQ source, and
it entails the prologue code for every application task. This
prologue code includes only those run time checks that can
actually occur in the configured system depending on the
calculated preemption graph. Furthermore, as interrupt arbi-
tration systems bear latencies that the kernel needs to consider
and as those latencies depend on the involved interrupts, the
corresponding timing properties are also calculated in that
module (see Section V-C).

3) Back Ends: The back end parts of the SLEEPY SLOTH
generator finally generate the architecture-specific parts of
the code, which are then compiled with static, non-generated
system code (both architecture-dependent and architecture-
independent) to produce the combined binary of the SLEEPY
SLOTH application and kernel. By producing a single com-

pilation unit using the C preprocessor, the combined appli-
cation and kernel code is subject to comprehensive compiler
optimization, which inlines many of SLEEPY SLOTH’s system
calls due to their brevity.

V. SLEEPY SLOTH IMPLEMENTATION

The following section first details the SLEEPY SLOTH task
prologue and how it interacts with explicit scheduling points
such as task termination and task blocking and unblocking.
Additionally, resources need to be re-designed in SLEEPY
SLOTH, and basic tasks are handled specially to preserve
SLOTH’s performance characteristics for them as far as possi-
ble.

Note that all additional system services and the task pro-
logues in SLEEPY SLOTH as well as SLOTH’s original system
calls have a statically bounded worst-case execution time for
real-time operation.

A. Task Prologue

Whenever the hardware dispatches an interrupt handler that
is assigned to an extended task, the task prologue, which is at
the core of the SLEEPY SLOTH design (see also Section IV-A)
takes action as outlined in Figure 4, with IRQs disabled by
the hardware at that point. Depending on the actual task, some
of the condition checks and steps are omitted by SLEEPY
SLOTH’s static analyzer for situations that can never occur
at run time (see also Section IV-C).

First, the prologue saves the extended context of the in-
terrupted task (i.e., those registers that have not been saved
by the hardware when dispatching the interrupt handler4) to
the corresponding task stack, whose stack pointer in turn is
saved to a kernel context array (Step 1 in Figure 4). Next, the
prologue checks if the interrupted task was either preempted or
blocked, or if the interrupted task terminated (2). If it did not
terminate, the prologue re-activates the task to be continued
later by triggering the task’s interrupt source at the priority it
was running at (2a). This is what ET3’s prologue does at t1
and t7 in the example control flow in Figure 2. Note that the
interrupted task’s priority might have been raised at the time of
preemption due to the possession of a resource in combination
with the stack-based priority ceiling protocol; in that case,
the continuation of the task needs to be treated specially (see
Section V-E). The check for that condition itself is done via a
kernel-maintained bit array (hasSeenCPU[]). After that, the
kernel variable holding the current task is set to the dispatched
task ID, which corresponds to the current IRQ number (3).

If the dispatched task has run before (checked by comparing
its hasSeenCPU property; Step 4 in Figure 4), its context
is restored from the kernel context array (entailing its stack
and registers; 5a), IRQs are enabled (6a), and execution of
the task is continued by returning using the return address in
the saved context (7a). If it has not run before, its context
is initialized (entailing re-setting its stack pointer; 5b) and
its hasSeenCPU property is set to true to be considered by

4Note that, with appropriate compiler support, the prologue can save only
those registers that are actually used by the dispatched task.

[C10?] Proceedings of the 32nd IEEE International Symposium on Real-Time Systems (RTSS ’11)

RTSS ’11 115

Start IRQ Handler

saveContext(currentTask)

hasSeenCPU[currentTask]? trigger(prio(currentTask))

currentTask := currentIRQ

hasSeenCPU[currentTask]?

restoreContext(currentTask)

Enable IRQs

Return Using Return Address

initContext(me)

hasSeenCPU[me] := true

Enable IRQs

Jump to User Task Function

1

2 2a

3

4

5a

6a

7a

5b

6b

7b

8b

yes

no

yes

no

Fig. 4. State diagram of the SLEEPY SLOTH task prologue for extended tasks
in its maximum version. Depending on the results of SLEEPY SLOTH’s static
analysis, each task prologue is tailored to the functionality actually needed at
run time.

further preemptions by other tasks (6b). Eventually, the task
prologue enables IRQs (7b) and jumps to the actual user task
function to start executing user code (7b).

B. Task Termination

Task termination in SLEEPY SLOTH differs from the way
it works in the original SLOTH since a stack switch might be
needed after termination—for instance, if another task (with
the next-highest priority) was unblocked and needs to be
continued in its execution after termination of the current task.
Again, SLEEPY SLOTH solely relies on the prologue of the
next task to determine if a context switch is needed or not.
The next task is scheduled and dispatched by the hardware by
letting the terminating task set the CPU priority to zero. The
interrupt system then determines the next-highest priority task
that is ready to run. Before that, the terminating task indicates
to the next prologue that it has terminated by re-setting its
hasSeenCPU flag to false. This way, the interrupt source
of the terminating task will not be re-triggered for continued
execution (see Steps 2 and 2a in Figure 4).

C. Task Blocking

The main additional system call that SLEEPY SLOTH pro-
vides over the original SLOTH kernel is WaitEvent().
The implementation compares the event mask of the current
task to the event mask to be waited for, and, if they do
not match, blocks the task. This is done by disabling the
task’s IRQ source; this way, it will not be considered in the
interrupt arbitration to determine the highest-priority interrupt
to be handled. After that, the CPU is yielded by setting the
CPU priority to zero (much in the same way that a task
terminates; see also Section V-B) and letting pending interrupts
(corresponding to tasks that are ready to run) trigger (see

also t3 in the example control flow in Figure 2). The whole
blocking mechanism is synchronized against preemption by
other tasks and interrupt handlers by disabling all IRQs at the
beginning and re-enabling them at the end:

void WaitEvent(EventMaskType mask)
{

if ((eventMask[currentTask] & mask) == 0) {
/* none of the events has already been set */
eventsWaitingFor[currentTask] = mask;
/* block task */
disableIRQs();
disableIRQSource(currentTask);
setCPUPrio(0);
waitForArbitration();
enableIRQs(); /* point of preemption */

}
}

Note that, like when activating a task in the original SLOTH
kernel [5], modifying the hardware interrupt priority situation
of current and pending priorities—in this case, disabling an
IRQ source and setting the CPU priority to zero—might
require synchronization with the interrupt arbitration system.
This is due to latencies during the arbitration in the interrupt
system; for instance, for the TriCore microcontroller platform,
those latencies are defined by Infineon in an application
note [6]. The maximum number of clock cycles that the
arbitration process takes depends on several system properties
like the system frequency and the number of involved IRQ
sources—and, therefore, the number of SLEEPY SLOTH tasks
in the system. Thus, this number can be calculated statically
by the static analyzer (see Section IV-C) and is inserted in
the form of nop instructions in waitForArbitration()
before enabling the IRQs again5. This way, SLEEPY SLOTH
ensures that the defined point for preemption after blocking
the current task will always be the point after the IRQ enable
instruction, independent of the current state and latency of the
interrupt arbitration system. Note that this arbitration delay
makes up for most of the hardware-induced costs, which are
significantly lower than any software-induced costs (see also
evaluation in Section VI).

D. Task Unblocking

Tasks are unblocked in OSEK by setting one of the events
that the task has been waiting for. SLEEPY SLOTH’s system
call SetEvent() therefore first checks if that condition is
met, and then it unblocks the task by re-enabling its IRQ
source and triggering its IRQ (see also t7 in the example
control flow in Figure 2). This makes the interrupt controller
consider the task in its priority arbitration mechanism and
schedule the task according to the system’s priority situation:

void SetEvent(TaskType id, EventMaskType mask)
{

eventMask[id] |= mask;
if ((eventMask[id] & eventsWaitingFor[id]) != 0) {

/* at least one of the events that

5Before waiting for the arbitration by executing nop instructions, the
TriCore SLEEPY SLOTH implementation also reads back the interrupt register
to synchronize hardware and software as demanded by Infineon’s specifica-
tion [6].

“Sleepy Sloth: Threads as Interrupts as Threads” [C10?]

116 RTSS ’11

* the task has been waiting for is set */
eventsWaitingFor[id] = 0;
/* unblock task */
disableIRQs();
enableIRQSource(id);
waitForArbitration();
enableIRQs(); /* point of preemption */

}
}

As elaborated in the description of the task blocking mecha-
nism (see Section V-C), due to the synchronization with the
interrupt arbitration system, the defined point for preemption
will be the enable IRQ instruction at the end of the system
call.

E. Resources in SLEEPY SLOTH

In SLEEPY SLOTH, OSEK resources, used to synchronize
accesses to critical sections by application tasks by raising
their priorities according to a stack-based priority ceiling
protocol, need to be handled in a special way. Consider the
case where a task that had acquired a resource is preempted
by a higher-priority extended task, which performs a stack and
context switch (see example control flow in Figure 5). In that
case, the preempted task needs to be re-activated at the raised
priority of the resource when being continued in its execution
(td in Figure 5). In the original SLOTH kernel, a resource’s
ceiling priority was set to the highest priority of all tasks
that can acquire that resource. In order for SLEEPY SLOTH
to be able to distinguish between an activation of that highest-
priority task and a re-activation of a task that had acquired
that resource, the ceiling priority is set to one level higher than
that, to a dedicated priority slot. The resource is therefore also
assigned a dedicated IRQ source.

That resource IRQ source is only triggered when a task
that had acquired the resource is preempted by a higher-
priority task (tb in Figure 5), whose prologue will re-trigger
the resource IRQ source at its ceiling priority (see Step 2a
in Figure 4 and tb in Figure 5). This way, the dedicated
resource IRQ handler will be dispatched once the CPU priority
is lowered again—for instance, when the higher-priority task
terminates or blocks (td in Figure 5). The resource IRQ
handler then checks which task had acquired it (noted down
when the corresponding system call GetResource() is
executed) and restores its context. The execution priority is left
unchanged at the resource ceiling priority, which is the correct
priority for the preempted task to continue its execution at (te
in Figure 5).

F. Basic Tasks in SLEEPY SLOTH

The main goal in designing SLEEPY SLOTH is to support
blocking extended tasks while preserving SLOTH’s advantages
and performance as far as possible for non-blocking basic
tasks. Since basic tasks run to completion in a strictly priority-
ordered stacked way, SLEEPY SLOTH, just like SLOTH, lets
all basic tasks run on a single stack. This makes context
switches between basic tasks—both on preemption and on
termination—extremely lightweight and fast, since the hard-
ware automatically saves and restores part of the register set

upon interrupt entry and return and no additional stack switch
is needed.

In SLEEPY SLOTH, however, additional overhead is incurred
to determine if a stack switch is needed—that is, if either
the interrupted or the newly dispatched task or both are
extended tasks. This property is configured by the application
programmer at compile time and stored in a bit field that
is used for that check to keep it as fast as possible. Apart
from that, during times in the application when only basic
tasks are scheduled and dispatched, the overhead incurred by
the SLEEPY SLOTH kernel is minimal and comparable to the
one incurred by SLOTH (see also the empty prologue at t5
in the example control flow in Figure 2 and the evaluation in
Section VI). Additionally, if the static configuration permits,
run time checks can be omitted altogether in the tailored basic
task prologues, further reducing overhead (see Section IV-C).

VI. EVALUATION

We have evaluated our SLEEPY SLOTH reference imple-
mentation on the Infineon TriCore platform, a 32-bit micro-
controller widely used in the automotive industry, featuring a
RISC load/store architecture and a Harvard memory model.
The interrupt system has 256 priority levels and the TC1796
chip that we use has about as many interrupt sources, whose
registers are mapped into memory, enabling SLEEPY SLOTH
to modify their enable and pending bits for its purpose. A
specialty of the TriCore platform is its separation of the data
stack from the call stack, which is managed in separate so-
called context save areas; SLEEPY SLOTH therefore has to save
and restore both stacks when switching between two extended
tasks. We clocked the chip at 50 MHz (clock cycle of 20
ns), although we state our measurements in numbers of clock
cycles to be frequency-independent.

To assess the performance gain achieved by implementing
thread scheduling using interrupt hardware, we have per-
formed several microbenchmarks comparing SLEEPY SLOTH
to a leading commercial OSEK implementation. We set up
several test applications for that purpose and compiled them
unaltered for both SLEEPY SLOTH and the commercial OSEK,
measuring only the latencies of the involved system calls. All
numbers were obtained using a Lauterbach hardware trace unit
and averaged over at least 10,000 samples.

A. Basic Task System

In [5], we published the execution time numbers of the
basic SLOTH kernel for seven microbenchmarks related to task
switching. Table II reproduces those numbers and additionally
shows the measurements for the SLEEPY SLOTH kernel and
the commercial OSEK implementation.

For one, the results show that the numbers for SLOTH and
SLEEPY SLOTH are almost identical. This is because SLEEPY
SLOTH can be entirely tailored to the functionality that the
application actually needs; thus, in a setting with only basic
tasks, SLEEPY SLOTH will behave identically to SLOTH. The
occasional and small deviations are due to bug fixes since the
old measurements were performed.

[C10?] Proceedings of the 32nd IEEE International Symposium on Real-Time Systems (RTSS ’11)

RTSS ’11 117

CPU/Task Priority

t

1

2

3

4

5

ta tb tc td te

Task BT1

getRes(Res1)

Task BT1 (raised prio)

act(ET5)

Prologue ET5 Task ET5 block()

Prologue Res1Task BT1 (ctd.)
save(stk_bt)
load(stk_et5)

save(stk_et5)
load(stk_bt)

Fig. 5. Example control flow with an OSEK resource in a SLEEPY SLOTH system with one basic task BT1 (with priority 1) and one extended task ET5 (with
priority 5). BT1 accesses a resource it shares with extended task ET3 (with priority 3); in SLEEPY SLOTH, the resource is therefore assigned the dedicated
priority slot 4 due to the stack-based priority ceiling protocol.

Test Case SLOTH [5] SLEEPY
SLOTH

OSEK

A1) Task Activation w/o Dispatch 34 38 75
A2) Task Activation w/ Dispatch 60 60 273
A3) Termination w/ Dispatch 14 14 266
A4) Chain w/ Dispatch 67 67 327
A5) Resource Acquisition 19 18 66
A6) Resource Release w/o Dispatch 14 16 128
A7) Resource Release w/ Dispatch 36 38 280

TABLE II
EVALUATION OF BASIC TASK SWITCHING MICROBENCHMARKS WITHOUT

STACK SWITCHES (EXECUTION TIME IN CLOCK CYCLES), COMPARING THE
ORIGINAL SLOTH KERNEL TO SLEEPY SLOTH AND A COMMERCIAL OSEK

IMPLEMENTATION.

Test Case SLEEPY
SLOTH

OSEK Speed-
Up

B1) Extended Task Activation w/ Dispatch 121 286 2.4
B2) Blocking w/ Dispatch 143 224 1.6
B3) Unblocking w/ Dispatch 120 205 1.7
B4) Event Mask Clearing 6 32 5.3
B5) Extended Task Termination w/ Dispatch 82 275 3.4
B6) Extended Task Chain w/ Dispatch 113 392 3.5

TABLE III
EVALUATION OF EXTENDED TASK SWITCHING MICROBENCHMARKS WITH
STACK SWITCHES (EXECUTION TIME IN CLOCK CYCLES), COMPARING THE

SLEEPY SLOTH KERNEL TO A COMMERCIAL OSEK IMPLEMENTATION.

On the other hand, both SLEEPY SLOTH and SLOTH out-
perform the commercial OSEK implementation, which uses a
software scheduler and dispatcher for operation. The achieved
speed-up is between 2.0 and 19, with higher speed-ups for
those test cases that not only involve a scheduling decision
but also dispatching a new task.

B. Extended Task System

To assess the performance of SLEEPY SLOTH’s extended
task features, we configured an application that consists only
of extended tasks. Hence, every task switch needs to perform
a stack switch; the microbenchmark numbers are shown in
Table III.

Although SLEEPY SLOTH uses the interrupt controller,
whose run-to-completion model does not perfectly fit SLEEPY
SLOTH’s blocking threads, it still outperforms the commercial
OSEK implementation for all test cases. SLEEPY SLOTH’s ex-
tended task switches are considerably slower (82–143 cycles)
than its basic task switches (14–67 cycles) due to the stack
switches and involved decisions, but it is still considerably
faster than the commercial OSEK, which has a software
scheduler (205–392 cycles, resulting in a speed-up of 1.6 to
3.5).

C. Mixed Task System

One of SLEEPY SLOTH’s original goals and challenges
was to be able to provide the flexibility of blocking tasks
without influencing the task switch performance for basic tasks
too much (see Section III). On application granularity, we
have shown this by measuring a purely basic task system on
SLEEPY SLOTH (see Section VI-A). To evaluate this property
on task granularity, we configured a single application with
two basic tasks and two extended tasks, and we measured
different types of preemptions between those tasks (see Ta-
ble IV).

As expected after analyzing the results from the basic-
only and extended-only benchmarks, SLEEPY SLOTH is also
faster than the software-based commercial OSEK in the mixed
task case (speed-up between 1.3 and 9.7). The numbers for
transitions between two basic tasks are on SLEEPY SLOTH’s
low end (79, 29, and 98 cycles for C1, C5, and C8) and
compare to the corresponding benchmarks in the basic-only
version (60, 14, and 67 cycles for A2, A3, and A4). Thus, in
a mixed task system, basic task scheduling in SLEEPY SLOTH
is burdened by an overhead of 15 to 31 cycles, added to an
already low base overhead of 14 to 67 cycles.

D. Evaluation Summary

The main goals in the design and implementation of
SLEEPY SLOTH were to provide the flexibility of blocking
tasks while relying on hardware as much as possible in order to

“Sleepy Sloth: Threads as Interrupts as Threads” [C10?]

118 RTSS ’11

Test Case Task Type Transition Stack Switch SLEEPY
SLOTH

OSEK Speed-
Up

C1) Task Activation Basic → Basic w/o Stack Switch 79 281 3.6
C2) Task Activation Basic → Extended w/ Stack Switch 116 286 2.5
C3) Blocking Extended → Basic w/ Stack Switch 168 216 1.3
C4) Unblocking Basic → Extended w/ Stack Switch 118 205 1.7
C5) Task Termination Basic → Basic w/o Stack Switch 29 280 9.7
C6) Task Termination Extended → Extended w/ Stack Switch 94 344 3.7
C7) Task Termination Extended → Basic w/ Stack Switch 86 282 3.3
C8) Task Chain Basic → Basic w/o Stack Switch 98 393 4.0

TABLE IV
EVALUATION OF MIXED—THAT IS, BOTH EXTENDED AND BASIC—TASK SWITCHING MICROBENCHMARKS (EXECUTION TIME IN CLOCK CYCLES),

COMPARING THE SLEEPY SLOTH KERNEL TO A COMMERCIAL OSEK IMPLEMENTATION.

provide good performance for extended tasks without harming
performance for basic task scheduling (see Section III). The
execution time measurements on the TriCore platform show
that the SLEEPY SLOTH implementation is able to meet these
goals.

First, no performance penalty at all is incurred for systems
that only need basic run-to-completion tasks. In contrast, the
software-based commercial implementation shows about the
same overhead for switches between basic tasks as for switches
between extended tasks.

Second, although the SLEEPY SLOTH implementation is
not as simple as is SLOTH’s, extended task scheduling is not
slower than in the commercial implementation with a software
scheduler. In fact, SLEEPY SLOTH is able to outperform the
commercial OSEK by a factor of 1.6 to 3.5.

Third, in a mixed task system, the task switch overhead
scales with the demand of the involved tasks. Task switches
between basic tasks in a mixed SLEEPY SLOTH system are
cheaper than task switches between extended tasks, which
need additional stack switches.

The real-time application benefits from SLEEPY SLOTH by
suffering lower system call latencies compared to a software
scheduler kernel, positively affecting the response times it
asserts itself to the user of the system. The actual per-
formance gain depends on the actual application and the
ratio of executed application code to executed system code.
Additionally, since all tasks and ISRs run in the same priority
space, the analysis of the system’s real-time properties is
facilitated (see also discussion in Section VII-A). Note that the
numbers discussed in this section include all hardware-related
preemption costs such as waiting for the bus arbitration (see
also Section V-C); nevertheless, the SLEEPY SLOTH system
still outperforms the software-based commercial kernel.

VII. DISCUSSION

SLEEPY SLOTH combines the flexibility of an off-the-
shelf embedded kernel by providing blocking threads with the
efficiency of a purely interrupt-driven system. In this section,
we discuss the necessity for different control flow types in
embedded systems, and we discuss the general applicability
of the SLEEPY SLOTH approach.

A. Control Flows in Embedded Systems

As sketched in the introduction and as presented in Table I,
the status quo concerning control flows in embedded systems
is two worlds. On the one hand, an application programmer
needs to decide for a control flow to be a thread if it needs
to be provided with the ability to block its execution. On
the other hand, a control flow needs to be an ISR if it
can be activated asynchronously by a hardware periphery
device. SLEEPY SLOTH threads, however, provide both of
those properties in one universal abstraction, leading to several
advantages for the real-time application.

For one, SLEEPY SLOTH threads can interact and synchro-
nize freely using common synchronization and notification
mechanisms, such as OSEK resources and events. In tradi-
tional systems, communication between threads and ISRs and
synchronization of threads and ISRs is complicated or even
impossible to achieve.

Additionally, since SLEEPY SLOTH threads run in one
common priority space—the interrupt priority space—, the
conditions for rate-monotonic priority inversion [3] are elimi-
nated. In traditional kernels, it is impossible to have a thread
run at a higher priority than an ISR (since interrupt priorities
are implicitly higher than thread priorities), even though the
application might demand it. SLEEPY SLOTH enables the
application to freely distribute priorities among its control
flows depending solely on its semantic requirements.

B. General Applicability of the Approach

The nature of both SLOTH and SLEEPY SLOTH implies
that the actual implementation on a platform with a specific
interrupt controller is highly hardware-dependent, since the
kernels rely on efficient hardware mechanisms to perform the
scheduling work for them. However, the matter of the fact
is that the actual kernel code is very small and has a clear
abstraction boundary that needs to be mapped to the hardware
platform, resulting in a manageable porting effort. The fact
that a kernel can reach new levels of efficiency by tailoring
its implementation to the target hardware has been exploited
lots of times before—for instance, when making microkernel
inter-process communication more efficient [10].

Our SLEEPY SLOTH prototype implements the OSEK op-
erating system specification to be able to compare it to other
implementations without adapting the benchmark applications

[C10?] Proceedings of the 32nd IEEE International Symposium on Real-Time Systems (RTSS ’11)

RTSS ’11 119

(see also evaluation in Section VI). The approach to implement
blocking threads as interrupt handlers with a tailored prologue,
however, is applicable to any event-driven real-time operating
system with static priorities. Dynamic-priority systems, on the
other hand, which need to re-prioritize threads at run time,
are not worthwhile implementing using the SLEEPY SLOTH
approach, since dynamic re-configuration of interrupt sources
and preempted interrupt handlers is usually very costly. Gen-
erally speaking, SLEEPY SLOTH is suitable to implement the
most well-known fixed-priority scheduling algorithms such as
rate-monotonic [12] and deadline-monotonic scheduling [13].
Advanced scheduling mechanisms such as the general priority
ceiling protocol, the priority inheritance protocol, and aperi-
odic servers can still be implemented in SLEEPY SLOTH, since
they only require occasional re-prioritization of control flows
by re-configuring the corresponding interrupt sources.

Despite running all threads as ISRs, exception traps can
also be accommodated in SLEEPY SLOTH. Traps cannot be
masked and do not interfere with the interrupt priorities that
SLEEPY SLOTH uses for its purposes. Thus, they can simply
be executed in the context of the currently running thread or
ISR; the trap return will then restore the context appropriately.
Note that the SLEEPY SLOTH system calls themselves are not
implemented as traps but as simple functions that can even be
inlined by the compiler.

VIII. RELATED WORK

The approach to having basic run-to-completion tasks run as
ISRs and to mapping task activations to IRQ source triggering
was new when we first published SLOTH [5]. SLEEPY SLOTH
extends this work by providing this functionality to more
complex blocking tasks. We are not aware of any work
on a comparable embedded kernel that runs on commodity
hardware; here, we list work on kernels with scheduling
enhanced by customized hardware and work on the thread–
ISR boundary.

Control flow scheduling and dispatching is the core respon-
sibility of any operating system kernel and thus important
to be efficient. That is why ways to move software task
scheduling into hardware have been researched, although all of
the approaches—like Atalanta [23], cs2 [15], HW-RTOS [2],
FASTCHART [11], and Silicon TRON [16]—use customized
hardware synthesized on an FPGA or a similar component to
achieve this. This way, those approaches are able to implement
arbitrary control flow semantics, including blocking threads.
The Responsive Multithreaded Processor (RMT) [25], [24] is
customized to integrate real-time functions into the processing
unit, including very fast task switching by providing eight
hardware contexts plus 32 contexts in an on-chip context
cache [17]. SLEEPY SLOTH, on the other hand, is designed
to run on commodity off-the-shelf hardware with any modern
interrupt controller to achieve its boost in performance. Note
that some architectures provide hardware support for fast
context switching; however, that support only targets fast
dispatching but not scheduling of tasks as the SLEEPY SLOTH
approach does.

Overcoming the strict distinction between OS-operated
threads and hardware-operated interrupt handlers has also been
the work of Kleiman et al. [8]. In their work on the Solaris
kernel for desktops and servers, they investigated ways to
enhance interrupt service routines to become threads under the
control of the OS kernel—in order for them to be able to block.
Lohmann et al. [14] showed that this concept is also feasible
for embedded system kernels and made this kind of interrupt
synchronization a configurable property of their CiAO system.
Before those two systems, early microkernels and microkernel-
like systems (including AX [22], L3 [9], and L4 [10]) started
implementing interrupt handlers as user threads, having very
small stubs send the corresponding threads an IPC message
once an interrupt is triggered; this way, regular threads and ISR
threads also run in a single priority space. However, during
the execution of the interrupt handler stubs, those systems
still exhibit rate-monotonic priority inversion by potentially
delaying high-priority threads. Intel’s early real-time operating
systems, such as iRMX [20] and iDCX 51 [7], also included
concepts of special interrupt tasks, which are scheduled and
dispatched as high-priority OS tasks in the OS priority space.
However, all of the discussed kernels merely enhance their
interrupt handlers to threads (which implies the overhead for
software-managed threads), whereas SLEEPY SLOTH goes the
other way and makes threads run as ISRs, resulting in a
significant performance gain.

IX. CONCLUSIONS

We have presented our SLEEPY SLOTH operating system
design, which exploits standard interrupt hardware to im-
plement an efficient universal thread abstraction that can be
triggered by hardware and software events. SLEEPY SLOTH
control flows are scheduled and dispatched with low latency
by the interrupt controller; additionally, they can be blocked
and resumed in their execution like threads. They share a
single priority space, facilitating arbitrary interactions between
hardware- and software-induced control flows and avoiding the
real-time problem of rate-monotonic priority inversion.

As SLEEPY SLOTH uses the hardware interrupt system
instead of software-implemented routines for scheduling and
dispatching, the resulting performance boost is convincing.
We have evaluated our approach by implementing the con-
formance classes BCC1 and ECC1 of the OSEK OS standard,
which is omnipresent in the automotive industry. With respect
to event latencies, SLEEPY SLOTH outperforms a leading
commercial implementation of this standard by a factor of
1.3 to 19.

The SLEEPY SLOTH approach abolishes the artificial dis-
tinction between threads and ISRs: threads can be interrupt
handlers and interrupt handlers can be threads. Developers
of event-driven systems can forget about the differences,
choosing priorities and semantics freely based solely on the
requirements of the application.

“Sleepy Sloth: Threads as Interrupts as Threads” [C10?]

120 RTSS ’11

X. FUTURE WORK

Having designed and implemented a universal thread ab-
straction that is scheduled and dispatched by the interrupt
controller, we aim at accommodating future multi-core plat-
forms as well. Since SLEEPY SLOTH is already running on
an ARM Cortex-M3 microcontroller, we want to investigate
ways how to run it on the open source Pandaboard [19],
which features a dual-core ARM Cortex-A9 MPCore. Both
the M3 and the A9 have the same interrupt controller, ARM’s
nested vectored interrupt controller (NVIC), which fulfills the
requirements as stated in Section III-B. Since SLEEPY SLOTH
is based on the OSEK OS standard [18], we will evaluate
its successor standard, AUTOSAR OS, and in particular its
multi-core specification [1] to be able to present a sophisticated
multi-core SLOTH design.

XI. ACKNOWLEDGMENTS

We thank the RTSS 2011 reviewers for their valuable
feedback and our shepherd Gernot Heiser for helping us
improve this paper.

REFERENCES

[1] AUTOSAR. Specification of multi-core OS architecture (version 1.0.0).
Technical report, Automotive Open System Architecture GbR, Novem-
ber 2009.

[2] Sathish Chandra, Francesco Regazzoni, and Marcello Lajolo. Hard-
ware/software partitioning of operating systems: A behavioral synthesis
approach. In Proceedings of the 16th ACM Great Lakes Symposium on
VLSI (GLSVLSI ’06), pages 324–329, New York, NY, USA, 2006. ACM
Press.

[3] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz.
Predictable interrupt management for real time kernels over conventional
PC hardware. In Proceedings of the 12th IEEE International Symposium
on Real-Time and Embedded Technology and Applications (RTAS ’06),
pages 14–23, Los Alamitos, CA, USA, 2006. IEEE Computer Society
Press.

[4] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz.
Predictable interrupt scheduling with low overhead for real-time kernels.
In Proceedings of the 12th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA ’06), pages
385–394, Washington, DC, USA, 2006. IEEE Computer Society Press.

[5] Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-
Preikschat. Sloth: Threads as interrupts. In Proceedings of the 30th IEEE
International Symposium on Real-Time Systems (RTSS ’09), pages 204–
213. IEEE Computer Society Press, December 2009.

[6] Infineon Technologies AG, St.-Martin-Str. 53, 81669 München, Ger-
many. AP32009, TC17x6/TC17x7 – Safe Cancellation of Service
Requests, July 2008.

[7] Intel Corporation, 5200 NE Elam Young Parkway, Hillsboro, OR 97124,
USA. iDCX 51 Distributed Control Executive User’s Guide for Release
2, April 1987. Available at http://www.alfirin.net/flamer/bitbus/dcx51.
zip.

[8] Steve Kleiman and Joe Eykholt. Interrupts as threads. ACM SIGOPS
Operating Systems Review, 29(2):21–26, April 1995.

[9] Jochen Liedtke. Improving IPC by kernel design. In Proceedings of
the 14th ACM Symposium on Operating Systems Principles (SOSP ’93).
ACM Press, 1993.

[10] Jochen Liedtke. On µ-kernel construction. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP ’95), ACM
SIGOPS Operating Systems Review. ACM Press, December 1995.

[11] Lennart Lindh and Frank Stanischewski. FASTCHART – a fast time
deterministic CPU and hardware based real-time-kernel. In Proceedings
of the 1991 Euromicro Workshop on Real-Time Systems, pages 36–40,
Jun 1991.

[12] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, 1973.

[13] Jane W. S. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

[14] Daniel Lohmann, Jochen Streicher, Olaf Spinczyk, and Wolfgang
Schröder-Preikschat. Interrupt synchronization in the CiAO operating
system. In Proceedings of the 6th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software (AOSD-ACP4IS
’07), New York, NY, USA, 2007. ACM Press.

[15] Andrew Morton and Wayne M. Loucks. A hardware/software kernel for
system on chip designs. In Proceedings of the 2004 ACM Symposium
on Applied Computing (SAC ’04), pages 869–875, New York, NY, USA,
2004. ACM Press.

[16] Takumi Nakano, Andy Utama, Mitsuyoshi Itabashi, Akichika Shiomi,
and Masaharu Imai. Hardware implementation of a real-time operat-
ing system. In Proceedings of the 12th TRON Project International
Symposium (TRON ’95), pages 34–42, Nov 1995.

[17] Amos R. Omondi and Michael Horne. Performance of a context cache
for a multithreaded pipeline. Journal of Systems Architecture, 45(4):305–
322, 1998.

[18] OSEK/VDX Group. Operating system specification 2.2.3. Technical
report, OSEK/VDX Group, February 2005. http://portal.osek-vdx.org/
files/pdf/specs/os223.pdf, visited 2011-08-17.

[19] Pandaboard homepage. http://pandaboard.org/.
[20] RadiSys Corporation, 5445 NE Dawson Creek Drive, Hillsboro, OR

97124, USA. Introducing the iRMX Operating Systems, December 1999.
[21] Fabian Scheler, Wanja Hofer, Benjamin Oechslein, Rudi Pfister, Wolf-

gang Schröder-Preikschat, and Daniel Lohmann. Parallel, hardware-
supported interrupt handling in an event-triggered real-time operating
system. In Proceedings of the 2009 International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES
’09), pages 59–67, New York, NY, USA, 2009. ACM Press.

[22] Wolfgang Schröder. A Family of UNIX-like Operating Systems — Use of
Processes and the Message-Passing Concept in Structured Operating-
System Design. Dissertation, Technical University of Berlin, 1986. In
German.

[23] Di-Shi Sun, Douglas M. Blough, and Vincent John Mooney III. Atalanta:
A new multiprocessor RTOS kernel for system-on-a-chip applications.
Technical report, Georgia Institute of Technology, 2002.

[24] Nobuyuki Yamasaki. Responsive multithreaded processor for distributed
real-time systems. Journal of Robotics and Mechatronics, 17(2), 2005.

[25] Nobuyuki Yamasaki, Ikuo Magaki, and Tsutomu Itou. Prioritized SMT
architecture with IPC control method for real-time processing. In
Proceedings of the 13th IEEE International Symposium on Real-Time
and Embedded Technology and Applications (RTAS ’07), pages 12–21,
April 2007.

[C10?] Proceedings of the 32nd IEEE International Symposium on Real-Time Systems (RTSS ’11)

RTSS ’11 121

SLOTH ON TIME: Efficient Hardware-Based
Scheduling for Time-Triggered RTOS∗

Wanja Hofer, Daniel Danner, Rainer Müller,
Fabian Scheler, Wolfgang Schröder-Preikschat, Daniel Lohmann

Friedrich–Alexander University Erlangen–Nuremberg, Germany
E-Mail: {hofer,danner,raimue,scheler,wosch,lohmann}@cs.fau.de

Abstract—Traditional time-triggered operating systems are im-
plemented by multiplexing a single hardware timer—the system
timer—in software, having the kernel maintain dispatcher tables
at run time. Our SLOTH ON TIME approach proposes to make
use of multiple timer cells as available on modern microcon-
troller platforms to encapsulate dispatcher tables in the timer
configuration, yielding low scheduling and dispatching latencies
at run time. SLOTH ON TIME instruments available timer cells
in different roles to implement time-triggered task activation,
deadline monitoring, and time synchronization, amongst others.

By comparing the SLOTH ON TIME kernel implementation to
two commercial kernels, we show that our concept significantly
reduces the overhead of time-triggered operating systems. The
speed-ups in task dispatching that it achieves range up to a
factor of 171 x, and its dispatch latencies go as low as 14
clock cycles. Additionally, we demonstrate that SLOTH ON TIME
minimizes jitter and increases schedulability for its real-time
applications, and that it avoids situations of priority inversion
where traditional kernels fail by design.

I. INTRODUCTION AND MOTIVATION

In operating system engineering, the overhead induced by
the kernel is a crucial property since operating system kernels
do not provide a business value of their own. This is especially
true in embedded real-time systems, where superfluous bytes
in RAM and ROM as well as unnecessary event latencies
can decide whether a kernel is used for the implementation
of an embedded device or not. In previous work on the
SLOTH approach, we have shown that by using commodity
microcontroller hardware in a more sophisticated manner in
the kernel, we can achieve lower footprints in RAM and
ROM as well as very low system call overheads [7]. To
achieve this, the SLOTH kernel maps run-to-completion tasks to
interrupt handlers and lets the interrupt hardware schedule them,
eliminating the need for a software task scheduler completely.
Additionally, we have been able to show that implementing
a full thread abstraction with blocking functionality in the
SLEEPY SLOTH kernel still yields a significant performance
boost over traditional, software-based embedded kernels [8].

However, both the SLOTH and the SLEEPY SLOTH kernels
target event-triggered real-time systems with event-driven
task dispatching. In this paper, we discuss how the SLOTH
principle of making better use of hardware facilities in the
implementation of embedded kernels can be applied to time-
triggered operating systems. The resulting SLOTH ON TIME
kernel uses the fundamental task dispatching mechanisms as

∗This work was partly supported by the German Research Foundation (DFG)
under grants no. SCHR 603/8-1, SCHR 603/9-1, and SFB/TR 89 (project C1).

introduced in the SLOTH kernel and makes better use of the
central hardware part of any time-triggered kernel: the hardware
timer facility.

This paper provides the following contributions:
• We develop a comprehensive design for mapping time-

triggered tasks and kernel timing services to hardware
timer cells and present SLOTH ON TIME, the first real-
time kernel that utilizes arrays of hardware timers (see
Section IV).

• By evaluating our SLOTH ON TIME kernel and comparing
it to traditional time-triggered kernel implementations, we
show that our design minimizes the number of interrupts
and the kernel-induced overhead at run time, yielding
lower latencies, reduced jitter, increased schedulability,
and better energy efficiency for real-time applications (see
Section V).

• We discuss the implications of the SLOTH ON TIME
approach on the design of time-triggered kernels and
time-triggered applications (see Section VI).

Before explaining the SLOTH ON TIME design and system,
we first describe the time-triggered system model that we use
in this paper in Section II and provide necessary background
information on the original SLOTH and SLEEPY SLOTH kernels
and the microcontroller hardware model that we use as a basis
for our description in Section III.

II. SYSTEM MODEL FOR TIME-TRIGGERED
TASK ACTIVATION

In this section, we describe the system model that we use for
time-triggered task scheduling throughout this paper. Since our
model is motivated by the kernel point of view on time-triggered
tasks, we take the terminology and semantics from publicly
available embedded operating system specifications. Those
include the specification for the time-triggered OSEKtime
kernel [13] and the AUTOSAR OS specification, which
targets an event-triggered kernel that features a schedule table
abstraction and timing protection facilities [2]. Both of those
standards were developed by leading automotive manufacturers
and suppliers based on their experiences with requirements
on real-time kernels; this is why they are widely used in the
automotive industry. Additionally, since the standards are also
implemented by commercially available kernels, we are able
to directly compare kernel properties between our SLOTH
ON TIME operating system and those kernels by writing
benchmarking applications against the respective OS interfaces.

[C7?] Proceedings of the 33rd IEEE International Symposium on Real-Time Systems (RTSS ’12)

RTSS ’12 123

t
0 200 400 600 800 1000 1200

idle

Task1

Task2

dispatcher round length

Fig. 1: The model for time-triggered activation and deadlines
used in this paper, based on the OSEKtime specification [13].
In this example of a dispatcher table, task activations are
depicted by circles, their deadlines by crosses. Later task
activations preempt currently running tasks, yielding a stack-
based execution pattern.

A. Time-Triggered OSEKtime

The central component of OSEKtime is a preplanned
dispatcher table of fixed round length that cyclically activates
tasks at given offsets (see example in Figure 1). An activated
task always preempts the currently running task until its
termination, resulting in a stack-based scheduling policy.
Additional OSEKtime features include synchronization with a
global time source and task deadline monitoring for detecting
misbehaving tasks. The latter is done by checking whether a
task is neither running nor preempted at given points in time
within a dispatcher round (see crosses in Figure 1).

B. AUTOSAR OS Schedule Tables and Execution Budgets

In contrast to OSEKtime, AUTOSAR OS approaches time-
triggered activations in a more complex way and offers seamless
integration with the event-triggered model specified by the
same system. Although the basic structure of statically defined
dispatcher tables (called schedule tables) is the same as in
OSEKtime, a time-triggered activation in AUTOSAR OS will
not inevitably result in preempting any running task, but instead
the activated task will be scheduled according to its own static
priority and the priorities of other active tasks. In an AUTOSAR
system, a distinction between time-triggered and event-triggered
tasks does not exist, and both types of activations share the
same priority space. Further extensions consist in the possibility
to have multiple schedule tables run simultaneously and to
have non-cyclic tables, which are executed only once.

AUTOSAR OS also specifies the ability to restrict the
execution budget available to individual tasks. Although this is
not related to time-triggered scheduling in particular, we will
show that the mechanisms developed in SLOTH ON TIME are
suitable for an efficient implementation of this feature as well.

III. BACKGROUND

In order to understand the concept and design principles
behind SLOTH ON TIME, we first provide background infor-
mation about the original event-triggered SLOTH kernel that
SLOTH ON TIME is based on, and we describe the requirements
on the underlying microcontroller hardware, introducing the
abstract terminology used throughout the rest of the paper.

A. SLOTH Revisited

The main idea in the original event-triggered SLOTH ker-
nel [7] is to have application tasks run as interrupt handlers
internally in the system. Each task is statically mapped to a
dedicated interrupt source of the underlying hardware platform
at compile time; the IRQ source’s priority is configured to
the task priority and the corresponding interrupt handler is
set to the user-provided task function. SLOTH task system
calls are implemented by modifying the state of the hardware
IRQ controller: The activation of a task, for instance, is
implemented by setting the pending bit of the corresponding
IRQ source. This way, the interrupt controller automatically
schedules and dispatches SLOTH tasks depending on the current
system priority. By these means, SLOTH is able to achieve
low overheads in its system calls, both in terms of execution
latency and in terms of binary code size and lines of source
code.

The original SLOTH kernel can only schedule and dispatch
basic run-to-completion tasks as mandated by the OSEK BCC1
conformance class, in which the execution of control flows
is strictly nested—which means that a task preempted by
higher-priority tasks can only resume after those have run
to completion. Thus, all tasks are executed on the same stack—
the interrupt stack—which is used both for the execution of
the current task and for storing the contexts of preempted tasks.
The enhanced SLEEPY SLOTH kernel [8] additionally handles
extended tasks that can block in their execution and resume at
a later point in time (specified by OSEK’s ECC1 conformance
class). SLEEPY SLOTH implements these extended tasks by
providing a full task context including a stack of its own for
each of them; additionally, a short task prologue is executed
at the beginning of each task’s interrupt handler every time
that a task is being dispatched. The prologue is responsible
for switching to the corresponding task stack and then either
initializes or restores the task context depending on whether
the task was unblocked or whether it is being run for the first
time.

B. Microcontroller Hardware Model and Requirements

With SLOTH ON TIME, we describe a hardware-centric
and efficient way to design time-triggered services in a real-
time kernel. Our concept makes use of timer arrays with
multiple timer cells, which are available on many modern
microcontroller platforms such as the Freescale MPC55xx and
MPC56xx embedded PowerPC families (64 timer cells) or
the Infineon TriCore TC1796 (256 timer cells)—the reference
platform for SLOTH ON TIME. As shown in the following
section on its design, SLOTH ON TIME requires one timer
cell per task activation and deadline in a dispatcher round in
its base implementation; the SLOTH approach is to leverage
available hardware features (in this case, an abundance of timer
cells) to improve non-functional properties of the kernel. For
platforms with fewer timer cells than activation and deadline
points, however, we describe a slightly less efficient alternative
design that uses partial multiplexing in Section IV-F.

“Sloth on Time: Efficient Hardware-Based Scheduling for Time-Triggered RTOS” [C7?]

124 RTSS ’12

Clock Source

Control Cell

Timer Cell

Timer Cell

Counter

Cell Enable

Compare Value

Request Enable

IRQ Source

Counter

Cell Enable

Compare Value

Request Enable

IRQ SourceFig. 2: The abstract model for available timer components on
modern microcontroller platforms, introducing the terminology
used in this paper.

If the hardware offers hierarchical timer cells for controlling
lower-order cells, SLOTH ON TIME can optionally make use
of that feature, too. Additionally, as in the original SLOTH
kernel, we require the hardware platform to offer as many IRQ
sources and IRQ priorities as there are tasks in the system; the
platforms mentioned before offer plenty of those connected to
their timer arrays.

In the rest of the paper, we use the following terminology
for the timer array in use (see Figure 2). We call an individual
timer of the array a timer cell, which features a counter register;
it is driven by a connected clock signal, which increments or
decrements the counter depending on the cell configuration. If
the counter value matches the value of the compare register or
has run down in decrement mode, it triggers the pending bit
in the attached IRQ source, but only if the request enable bit
is set. The whole cell can be deactivated by clearing the cell
enable bit, which stops the internal counter.

IV. SLOTH ON TIME

The main design idea in SLOTH ON TIME is to map the
application timing requirements to hardware timer arrays with
multiple timer cells—pursuing efficient execution at run time.
SLOTH ON TIME tailors those timer cells for different purposes
within a time-triggered operating system, introducing different
roles of timer cells (see overview in Figure 3)—including
task activation cells, table control cells, deadline monitoring
cells, execution budget cells, and time synchronization cells,
as described in this section. Additionally, we show how time-
triggered and event-triggered systems can be integrated in
SLOTH ON TIME, and we highlight the design of multiplexed
timer cells for hardware platforms with fewer available timer
cells.

A. Time-Triggered SLOTH

Traditional time-triggered kernels implement task activations
by instrumenting a single hardware timer, which then serves
as the system timer. The system timer is programmed and
reprogrammed by the kernel at run time whenever a scheduling
decision has to be performed; the next system timer expiry
point is usually looked up in a static table representing the
application schedule.

Dispatcher Table 0 Sync Cell 0

C
on

tro
lC

el
l0 Task 0

Activation Cell 0 Deadline Cell 0

Activation Cell 1 Deadline Cell 1

Task 1
Activation Cell 5 Deadline Cell 3

Dispatcher Table 1 Sync Cell 1

C
on

tro
lC

el
l1 Task 2

Activation Cell 8 Deadline Cell 5

Activation Cell x Deadline Cell x

Task x
Activation Cell x Deadline Cell x

Execution Budgeting
Task 0
Budget Cell 0

Task 1
Budget Cell 1

Task 2
Budget Cell 2

Fig. 3: The different roles that SLOTH ON TIME uses avail-
able hardware timer cells for. Some roles are only used in
OSEKtime-like systems, others are only used in AUTOSAR-
OS-like systems.

SLOTH ON TIME tries to avoid dynamic decisions—and,
therefore, run time overhead—as far as possible by instrument-
ing multiple timer cells. This way, programming the timers can
mostly be limited to the initialization phase; during the system’s
productive execution phase, the overhead for time-triggered
task execution is kept to a minimum.

1) Static Design: SLOTH ON TIME not only comprises the
actual time-triggered kernel, but also consists of a static analysis
and generation component (see Figure 4). As its input, the
analysis tool takes the task activation schedule as provided by
the application programmer (see Artifact A in Figure 4) and
the platform description of the timer hardware (Artifact B),
and, in an intermediate step, outputs a mapping of the included
expiry points to individual activation cells (Artifact C), which
are subject to platform-specific mapping constraints due to the
way the individual timer cells are interconnected1. The timer
cells for SLOTH ON TIME to use are taken from a pool of cells
marked as available by the application; this information is also
provided by the application configuration. If the number of
available timer cells is not sufficient, SLOTH ON TIME uses
partial multiplexing, which we describe in Section IV-F.

In the next step, the calculated mapping is used to generate
initialization code for the involved timer cells (Artifact D).
The compare values for all cells are set to the length of
the dispatcher round so that the cell generates an interrupt
and resets the counter to zero after one full round has been
completed. The initial counter value of a cell is set to the
round length minus the expiry point offset in the dispatcher
round. This way, once the cell is enabled, it generates its first
interrupt after its offset is reached, and then each time a full
dispatcher round has elapsed.

Additionally, code for starting the dispatcher is generated

1The mapping algorithm is work in progress; currently, the timer cells still
have to be assigned manually to respect platform restrictions.

[C7?] Proceedings of the 33rd IEEE International Symposium on Real-Time Systems (RTSS ’12)

RTSS ’12 125

Static Application Configuration:
roundLength = 1000;
expiryPoints = {
100 => Task1,
200 => Task2,
600 => Task1

};
deadlines = {
450 => Task1,
350 => Task2,
950 => Task1

};
availableTimerCells =
{Cell7, ..., Cell12, Cell42};

Cell and IRQ Map:
100 => Cell7 // Activation
200 => Cell8 // Activation
600 => Cell9 // Activation
450 => Cell10 // Deadline
350 => Cell11 // Deadline
950 => Cell12 // Deadline
Cell7 => IRQTask1
Cell8 => IRQTask2
Cell9 => IRQTask1

Analysis and Cell Mapping
Timer Hardware Description:
TimerArray0 = {
Cell0 = {
irqSource => 128,
isMaster => false,
controls => {},
...

},
...
Cell42 = {
irqSource => 170,
isMaster => true,
controls => {7, ..., 12},
...

},
...

Cell Initialization Code:
void initCells(void) {
Cell7.compare = 1000;
...
Cell7.value = 1000 - 100;
...

}
void startDispatcher(void) {
#ifndef CONTROLCELLS
Cell7.enable = 1;
...

#else
// Control Cell 42 for Cells 7-12
Cell42.output = 1;

#endif
}

IRQ Initialization Code:
void initIRQs(void) {
Cell7.irqPrio =
triggerPrio;

...
Cell7.handler =
&handlerTask1;

...
Cell10.handler =
&deadlineViolationHandler;

...
}

Code Generation Task Handler Code:
void handlerTask1(void) {
// Prologue
savePreemptedContext();
setCPUPrio(execPrio);
Cell10.reqEnable = 1;
Cell12.reqEnable = 1;

userTask1();

// Epilogue
Cell10.reqEnable = 0;
Cell12.reqEnable = 0;
restorePreemptedContext();
iret();

}

A BC

D E F

Input Input

Intermediate

Output

Output

Output

Fig. 4: Static analysis and generation in SLOTH ON TIME, producing the mapping of expiry points and deadlines to timer cells
and IRQ sources, the corresponding timer and interrupt initialization code, and task handler code with prologues and epilogues.
The example values correspond to the sample application schedule depicted in Figure 1.

that enables all involved activation cells consecutively (Artifact
D). If the underlying hardware platform features hierarchically
connected cascading timer cells, then a higher-order cell is used
as a so-called control cell to switch all connected lower-order
timer cells on or off simultaneously. If such a control cell is
available, enabling it will enable all connected activation cells of
a dispatcher round (see also the timer model in Figure 2). This
mechanism enables completely accurate and atomic starting
and stopping of dispatcher rounds by setting a single bit in the
respective control cell (see also evaluation in Section V-B3).

Furthermore, since tasks are bound to interrupt handlers for
automatic execution by the hardware, the interrupt system needs
to be configured appropriately (Artifact E). This entails setting
the IRQ priorities of the involved cells to the system trigger
priority (see explanation in Section IV-A2) and registering the
corresponding interrupt handler for the cell’s task.

2) Run Time Behavior: At run time, no expiry points and
dispatcher tables need to be managed by SLOTH ON TIME,
since all required information is encapsulated in the timer
cells that are preconfigured during the system initialization.
Once the dispatcher is started by enabling the control cell
or the individual timer cells, the interrupts corresponding to
task dispatches will automatically be triggered at the specified
expiry points by the timer system. The hardware interrupt
system will then interrupt the current execution, which will

either be the system’s idle loop or a task about to be preempted,
and dispatch the associated interrupt handler, which in SLOTH
ON TIME basically corresponds to the task function as specified
by the user, surrounded by a small wrapper.

The only functions that are not performed automatically by
the hardware in SLOTH ON TIME are saving the full preempted
task context when a new time-triggered task is dispatched and
lowering the CPU priority from the interrupt trigger priority
to the execution priority (see generated code in Artifact F in
Figure 4). This lowering is needed to achieve the stack-based
preemption behavior of tasks in the system, such as mandated
by the OSEKtime specification [13], for instance (see also
Figure 1). By configuring all interrupts to be triggered at a
high trigger priority and lowering interrupt handler execution
to a lower execution priority, every task can be preempted
by any task that is triggered at a later point in time, yielding
the desired stack-based behavior. Thus, a task activation with
a later expiry point implicitly has a higher priority than any
preceding task activation.

B. Deadline Monitoring

Deadlines to be monitored for violation are implemented in
SLOTH ON TIME much in the same way that task activation
expiry points are (see Figure 4). Every deadline specified
in the application configuration is assigned to a deadline

“Sloth on Time: Efficient Hardware-Based Scheduling for Time-Triggered RTOS” [C7?]

126 RTSS ’12

cell (see also Figure 3), which is a timer cell configured
to be triggered after the deadline offset, and then after one
dispatcher round has elapsed (Artifacts C and D in Figure 4).
The interrupt handler that is registered for such deadline cells
is an exception handler for deadline violations that calls an
application-provided handler to take action (Artifact E).

In contrast to traditional implementations, SLOTH ON TIME
disables the interrupt requests for a deadline cell once the
corresponding task has run to completion, and re-enables them
once the task has started to run. This way, deadlines that are
not violated do not lead to unnecessary IRQs, which would
disturb the execution of other real-time tasks in the system (see
also evaluation in Section V-B). In the system, this behavior
is implemented by enhancing the generated prologues and
epilogues of the time-triggered tasks; here, the request enable
bits of the associated deadline cells are enabled and disabled,
respectively (see generated Artifact F in Figure 4).

C. Combination of Time-Triggered and Event-Triggered Sys-
tems

In the OSEK and AUTOSAR automotive standards that we
use as a basis for our investigations, there are two approaches to
combine event-triggered elements with a time-triggered system
as implemented by SLOTH ON TIME. The OSEK specifications
describe the possibility of a mixed-mode system running an
event-triggered OSEK system during the idle time of the
time-triggered OSEKtime system running on top, whereas the
AUTOSAR OS standard specifies a system with event-triggered
tasks that can optionally be activated at certain points in time
using the schedule table abstraction. In this section, we show
how we implement both approaches in the SLOTH ON TIME
system.

1) Mixed-Mode System: Since the original SLOTH kernel im-
plements the event-triggered OSEK OS interface [14], whereas
SLOTH ON TIME implements the time-triggered OSEKtime
interface, we combine both systems by separating their priority
spaces by means of configuration. By assigning all event-
triggered tasks priorities that are lower than the time-triggered
execution and trigger priorities, the event-triggered system is
only executed when there are no time-triggered tasks running;
it can be preempted by a time-triggered interrupt at any time.
Additionally, we make sure that the event-triggered SLOTH
kernel synchronization priority, which is used to synchronize
access to kernel state against asynchronous task activations, is
set to the highest priority of all event-triggered tasks but lower
than the time-triggered priorities. Thus, the integration of both
kinds of systems can easily be achieved without jeopardizing
the timely execution of the time-triggered tasks.

2) Event-Triggered System with Time-Triggered Elements:
In contrast to the mixed-mode approach, AUTOSAR OS defines
an event-triggered operating system with static task priorities;
its schedule table abstraction only provides means to activate
the event-triggered tasks at certain points in time, which does
not necessarily lead to dispatching them as in purely time-
triggered systems (in case a higher-priority task is currently
running). AUTOSAR tasks have application-configured and

potentially distinct priorities; at run time, they can raise their
execution priority by acquiring resources for synchronization
or even block while waiting for an event.

The schedule table abstraction therefore does not strictly
follow the time-triggered paradigm, but it is implemented in
SLOTH ON TIME in a way that is very similar to the time-
triggered dispatcher table. Instead of configuring the priorities
of the IRQ sources attached to the timer system to the system
trigger priority, however (see Artifact E in Figure 4), they
are set to the priority of the task they activate. This way, the
time-dependent activation of tasks is seamlessly integrated into
the execution of the rest of the SLOTH system, since after the
IRQ pending bit has been set, it does not matter whether this
was due to a timer expiry or by synchronously issuing a task
activation system call.

To fully implement AUTOSAR OS schedule tables, the
SLOTH ON TIME timer facility is enhanced in three ways. First,
AUTOSAR allows multiple schedule tables to be executed
simultaneously and starting and stopping them at any time.
Thus, SLOTH ON TIME introduces the corresponding system
calls to enable and disable the control cell for the corresponding
schedule table (see also Section IV-A1). Second, AUTOSAR
defines non-repeating schedule tables, which encapsulate expiry
points for a single dispatcher round, executed only once when
that schedule table is started. SLOTH ON TIME implements this
kind of schedule table by preconfiguring the corresponding
timer cells to one-shot mode; this way, they do not need
to be manually deactivated at the end of the schedule table.
Third, schedule tables can be started with a global time offset
specified dynamically at run time. In that case, SLOTH ON
TIME reconfigures the statically configured timer cells for that
schedule table to include the run time parameter in its offset
calculation before starting it by enabling its control cell.

D. Execution Time Protection

In contrast to deadline monitoring, which is used in time-
triggered systems like OSEKtime (see Section IV-B), AU-
TOSAR prescribes timing protection facilities using execution
time budgeting for fault isolation. Each task is assigned a max-
imum execution budget per activation, which is decremented
while that task is running, yielding an exception when the
budget is exhausted. In its design, SLOTH ON TIME employs
the same mechanisms used for expiry points and deadlines
to implement those task budgets. It assigns one budget cell
to each task to be monitored (see also Figure 3), initializes
its counter with the execution time budget provided by the
application configuration, and configures it to run down once
started. The associated IRQ source is configured to execute a
user-defined protection hook as an exception handler in case
the budget cell timer should expire.

Furthermore, the dispatch points in the system are in-
strumented to pause, resume, and reset the budget timers
appropriately. First, this entails enhancing the task prologues,
which pause the budget timer of the preempted task and start
the budget timer of the task that is about to run. Second,
the task epilogues executed after task termination are added

[C7?] Proceedings of the 33rd IEEE International Symposium on Real-Time Systems (RTSS ’12)

RTSS ’12 127

instructions to reset the budget to the initial value configured
for this task, as suggested by the AUTOSAR specification, and
to resume the budget timer of the previously preempted task
about to be restored.

This design allows for light-weight monitoring of task
execution budgets at run time without the need to maintain and
calculate using software counters; this information is implicitly
encapsulated and automatically updated by the timer hardware
in the counter registers.

E. Synchronization with a Global Time Base

Real-time systems are rarely deployed stand-alone but often
act together as a distributed system. Therefore, in time-triggered
systems, synchronization of the system nodes with a global time
base needs to be maintained. This feature has to be supported
by the time-triggered kernel by adjusting the execution of
dispatcher rounds depending on the detected clock drift.

If support for synchronization is enabled, SLOTH ON TIME
allocates a dedicated sync cell (see also Figure 3) and configures
its offset to the point after the last deadline in a dispatcher round
(e.g., 950 in the example schedule in Figure 1). This point has to
be specified in the configuration by the application programmer
and can be used to apply a limited amount of negative drift
depending on the remaining length of the dispatcher round (50
in the example). Positive drifts are, of course, not restricted in
this way.

The interrupt handler attached to the sync cell then checks
at run time whether a drift occurred. If so, it simply modifies
the counter values of all activation, deadline, and sync cells
that belong to the dispatcher table, corrected by the drift
value (see Figure 5). Since the cell counters are modified
sequentially, the last counter is changed later than the first
counter of a table. However, since the read–modify–write cycle
of the counter registers always takes the same amount of time
and the modification value is the same for all counters, in
effect it does not matter when exactly the counter registers are
modified. In case the synchronization handler is not able to
reprogram all affected cell counters by the next task activation
point in the schedule, it resumes execution at the next cell to
be reprogrammed once it becomes active again in the next
round.

F. Timer Cell Multiplexing

If the hardware platform does not have enough timer cells
to allocate one cell per time-triggered event, SLOTH ON TIME
also allows to partially fall back to multiplexing—allocating
only one timer cell for each role (activation and deadline) per
task and partly reconfiguring it at run time.

For multiplexed deadline monitoring, if the current deadline
has not been violated, the task epilogue reconfigures the
expiration point of the deadline cell to the next deadline instead
of disabling it. The deltas between the deadline points are
retrieved from a small offset array held in ROM.

For multiplexed activations of the same task, another offset
array contains the deltas between the activation points of that
task. The enhanced task prologue then reconfigures the compare

value of the activation cell to the next activation point every
time that task is dispatched.

V. EVALUATION

In order to assess the effects of our proposed timer-centric
architecture on the non-functional properties of a time-triggered
kernel, we have implemented SLOTH ON TIME with all the
kernel features described in Section IV on the Infineon TriCore
TC1796 microcontroller, which is widely used for control
units in the automotive domain. Since from a functional point
of view, SLOTH ON TIME implements the OSEKtime and
AUTOSAR OS standards, we can directly compare our kernel to
a commercial OSEKtime system and a commercial AUTOSAR
OS system, both of which are available for the TC1796. This
way, we can take benchmarking applications written against
the respective OS interface and run them unaltered on both
SLOTH ON TIME and the commercial kernels.

A. The Infineon TriCore TC1796 Microcontroller

The TC1796, which serves as a reference platform for SLOTH
ON TIME, is a 32-bit microcontroller that features a RISC
load/store architecture, a Harvard memory model, and 256
interrupt priority levels. The TC1796’s timer system is called its
general-purpose timer array and includes 256 timer cells, which
can be configured to form a cascading hierarchy if needed. The
cells can be routed to 92 different interrupt sources, whose
requests can be configured in their priorities and the interrupt
handlers that they trigger. The timer and interrupt configuration
is performed by manipulating memory-mapped registers.

For the evaluation, we clocked the chip at 50 MHz (corre-
sponding to a cycle time of 20 ns); however, we state the results
of our latency and performance measurements in numbers
of clock cycles to be frequency-independent. We performed
all measurements from internal no-wait-state RAM (both for
code and data), so caching effects did not apply. The actual
measurements were carried out using a hardware trace unit
by Lauterbach. All of the quantitative evaluation results were
obtained by measuring the number of cycles spent between two
given instructions (e.g., from the first instruction of the interrupt
handler to the first user code instruction of the associated task)
repeatedly for at least 1,000 times and then averaging these
samples. In some situations, the distribution of the samples
exhibits two distinct peaks of similar height, which are located
exactly 4 cycles apart and presumably related to unstableness
in measuring conditional jumps. Aside from this effect, the
deviations from the average have shown to be negligible in all
measurements of SLOTH ON TIME.

B. Qualitative Evaluation

While running our test applications on SLOTH ON TIME and
both commercial kernels, we could observe several effects of
our design on the qualitative execution properties by examining
the execution traces from the hardware tracing unit.

“Sloth on Time: Efficient Hardware-Based Scheduling for Time-Triggered RTOS” [C7?]

128 RTSS ’12

global
time

local
time

1000 2000 3000

1000 2000 3000

Act. Act. Sync Act. Act. SyncAct. Act. Sync

dispatcher round adjustment dispatcher round

detected drift

Fig. 5: Synchronization to a global time is implemented in SLOTH ON TIME by adjusting the current counter values of the cells
involved in a dispatcher round one after the other, requiring only one read–modify–write cycle per cell.

(a) SLOTH ON TIME

(b) Commercial OSEKtime system

Fig. 6: Comparison of execution traces of an OSEKtime
application with two deadlines in (a) SLOTH ON TIME and
(b) a commercial OSEKtime system. Non-violated deadlines
of Task1 and Task2 interrupt the execution of Task3 in the
commercial system, but not in SLOTH ON TIME.

1) Avoiding Unnecessary IRQs: For one, both commercial
kernels exhibit unnecessary interrupts with unnecessary inter-
rupt handlers executing, possibly interrupting and disturbing
application control flows. All of those interrupts are not needed
by the application semantics, and the SLOTH ON TIME design
can avoid all of them in its running implementation.

Figure 6 shows the execution traces for an application
with three tasks and three deadlines per dispatcher round,
running on SLOTH ON TIME and the commercial OSEKtime
implementation. The commercial OSEKtime issues an interrupt
for every deadline to be monitored, since it then checks if the
corresponding task is still running (see interruptions of Task3
in Figure 6b). These interrupts take 95 clock cycles each,
possibly interrupting application tasks for the violation check;
this number multiplies by the number of deadlines stated in the
application configuration to yield the overhead per dispatcher
round. Those unnecessary IRQs in the commercial OSEKtime
kernel are especially problematic since they also occur for
non-violated deadlines—which are, after all, the normal case
and not the exception.

SLOTH ON TIME can avoid those unnecessary IRQs com-
pletely (see continuous execution of Task3 in Figure 6a). It
uses dedicated deadline timer cells, which are turned off using a
single memory-mapped store instruction when the task has run
to completion in its task epilogue (see Section IV-B); this takes

(a) SLOTH ON TIME

(b) Commercial AUTOSAR OS system

Fig. 7: Execution trace revealing rate-monotonic priority
inversion in a commercial AUTOSAR OS system occurring
on time-triggered activation of lower-priority tasks Task1 and
Task2. The trace of the same dispatcher table in SLOTH ON
TIME shows no interruption of Task3.

10 clock cycles per deadline (see also Section V-C1). SLOTH
ON TIME effectively trades the overhead introduced by interrupt
handlers in the schedule as in traditional systems for overhead
introduced when a task terminates; this trade-off decision has
the advantage that it does not interrupt the execution of other
tasks, facilitating real-time analyses on the schedule. Note that
the commercial kernel could be implemented in a way similar
to SLOTH ON TIME to avoid additional interrupts; however,
the overhead for its software logic would probably exceed the
overhead that SLOTH ON TIME introduces (compare 10 cycles
per deadline in SLOTH ON TIME to 95 cycles per deadline
check interrupt in the commercial kernel).

2) Avoiding Priority Inversion: Second, in the commercial
AUTOSAR OS system, we could observe a certain kind of
priority inversion, which occurs when a low-priority task is
activated by the timer while a high-priority task is running (see
gaps in the execution of Task3 in Figure 7b). The high-priority
task is interrupted by the timer interrupt, whose handler then
checks which task is to be activated, and inserts this low-priority
task into the ready queue. Thus, code is executed on behalf of a
low-priority task while a high-priority task is running or ready
to run; Leyva del Foyo et al. coined the term rate-monotonic
priority inversion for that phenomenon [5]. The priority
inversion interruptions exhibited by the commercial AUTOSAR
OS kernel are really heavy-weight: The corresponding handlers
execute for 2,075 clock cycles each. This can lead to serious

[C7?] Proceedings of the 33rd IEEE International Symposium on Real-Time Systems (RTSS ’12)

RTSS ’12 129

deviations between the statically calculated WCET for a task
and its actual run time, which is potentially prolonged by
several of those low-priority interrupts.

In SLOTH ON TIME, those interrupts do not occur at all since
the corresponding timer cell activates the task not by executing
code on the main CPU but by setting the pending bit of the
associated IRQ source, configured with the task priority. Since
the high-priority task that is currently running runs at high
interrupt priority, the activation does not lead to an interruption
until the high-priority task blocks or terminates (see continuous
execution of Task3 in Figure 7a).

Thus, the SLOTH approach of running tasks as interrupt
service routines in combination with the SLOTH ON TIME
concept of using dedicated timer cells for time-dependent
activations minimizes the number of interrupts in the system,
facilitating real-time analyses. Interrupts only occur if an action
needs to be taken by the kernel on behalf of the application.
Traditional kernels with a single system timer cannot avoid
the described kind of priority inversion since they have to put
the activated task into the ready queue (even if it has a low
priority) and reconfigure the timer to the next expiry point; this
is an inherent design issue that SLOTH ON TIME overcomes.
In SLOTH ON TIME, those problems are avoided by design;
the timer hardware runs concurrently to the main CPU and
activates a task by setting the corresponding IRQ pending bit
without having to interrupt the CPU.

Furthermore, in traditional systems, the timer interrupt
handler needs to be synchronized with the kernel since it
accesses the kernel ready queue; this leads to jitter in the
task dispatch times since the timer interrupt handler might
additionally be delayed by a task executing a system call. The
SLOTH ON TIME approach eliminates that jitter source since
explicit kernel synchronization is not necessary—the ready
queue is implemented implicitly in the hardware IRQ state and
does not need to be synchronized in software.

3) Preciseness: We also investigated the preciseness of task
dispatch times as specified by the static schedule and the drift
between several consecutive dispatcher rounds. Both in our
SLOTH ON TIME kernel and the two commercial kernels, we
could not observe any drift since all of them rely on hardware
timers and static execution overhead in their timer interrupt
handlers.

Additionally, we could show that by using control cells as
proposed in Section IV-A1, all activation cells of the dispatcher
round or schedule table can be started simultaneously. This
way, the additional overhead introduced by starting all timer
cells in sequential machine instructions does not need to be
respected in the offset calculation for the individual activation
cells.

C. Quantitative Evaluation

Since non-functional properties such as kernel execution
times, latencies, and memory footprint are crucial to real-time
kernels, we also took comprehensive measurements to be able
to state the quantitative effects of our SLOTH ON TIME design
on these important properties.

<handlerTask2>:
mov %d0,2944
mtcr $psw,%d0 // enable global address registers
isync // synchronize previous instruction
st.a [+%a9]-4,%a8 // save preempted task ID on stack
mov.a %a8,2 // set new task ID
st.t <GPTA0_LTCCTR11>,3,1 // enable deadline cell
bisr 2 // set exec prio 2, save context, enable IRQs
call userTask2 // enter user code
disable // suspend IRQs for synchronization
st.t <GPTA0_LTCCTR11>,3,0 // disable deadline cell
rslcx // restore context
ld.a %a8,[%a9+] // restore preempted task ID from stack
rfe // return from interrupt handler (re-enables IRQs)

Fig. 8: Compiled time-triggered task interrupt handler in SLOTH
ON TIME on the TC1796 for Task2 with one deadline.

1) OSEKtime Evaluation: Since SLOTH ON TIME encapsu-
lates the expiry points of a dispatcher round in its timer cell
configuration and traditional implementations need a look-up
table to multiplex the system timer at run time, we expect
differences in the overhead of time-triggered task dispatch and
termination in SLOTH ON TIME and the commercial OSEKtime
kernel. The top of Table I shows our measurements, which
confirm that our approach yields very low latencies at run time
compared to traditional implementations like the commercial
OSEKtime, yielding speed-up numbers of 8.6 and 2.7 for task
dispatch and termination, respectively. This reduced overhead in
SLOTH ON TIME leads to additional slack time in a dispatcher
round, which can be used to include additional application
functionality (compare the idle times in Figure 6).

Note that the number of 14 clock cycles for the time-triggered
task dispatch includes all costs between the preemption of the
running task or the idle loop to the first user instruction in the
dispatched task (see assembly instructions in Figure 8). Thus,
the number reflects the complete SLOTH ON TIME prologue
wrapper, which itself entails saving the context of the preempted
task on the stack; since the system is strictly stack-based, all
tasks run on the same stack, so the stack pointer does not have
to be switched. The overhead numbers of 60–74 cycles for a
task activation in an event-triggered SLOTH system (presented
in [7]) exactly correspond to the 14 cycles for the context save
prologue plus the activation system call issued by the calling
task. Since SLOTH ON TIME activations are time-triggered,
the overhead for the system call is not applicable, yielding
the very low total number of 14 cycles. Enabling activation
cell multiplexing (see Section IV-F) adds 18 cycles to the
activation overhead for any task that benefits from this feature
due to multiple activations in a single dispatcher round. Tasks
activated only once per dispatcher round are not affected by
this and retain the usual overhead.

If deadline monitoring is used in the application, both
overhead numbers in SLOTH ON TIME increase by about 10
cycles for every deadline associated with a given task (see
bottom of Table I). This stems from the fact that SLOTH ON
TIME activates and deactivates the deadline cells for that task,
which compiles to a single memory-mapped store instruction
per cell (see also Figure 8); due to memory bus synchronization,

“Sloth on Time: Efficient Hardware-Based Scheduling for Time-Triggered RTOS” [C7?]

130 RTSS ’12

SLOTH ON TIME OSEKtime Speed-Up

Time-triggered (TT) dispatch 14 120 8.6
Terminate 14 38 2.7

TT dispatch w/ 1 deadline 26 120 4.6
TT dispatch w/ 2 deadlines 34 120 3.5
Terminate w/ 1 deadline 24 38 1.6
Terminate w/ 2 deadlines 34 38 1.1

TABLE I: Run time overhead of time-triggered task dispatch
and termination with deadline monitoring enabled, comparing
SLOTH ON TIME with a commercial OSEKtime implementation
(in number of clock cycles).

this instruction needs 10 clock cycles. If multiplexing of
deadline cells as described in Section IV-F is used instead,
no additional overhead is incurred during dispatch, but an
increase of 18 cycles is measured for the task termination,
representing the cost of maintaining the state of the offset array
and reconfiguring the deadline cell. However, this increased
overhead does not increase further with additional deadlines
to be monitored for the same task; starting with two deadlines
per task, multiplexing yields a performance advantage. This
advantage is traded for a slight increase in memory footprint
for the offset array and the associated index variable.

The dispatch overhead in the commercial OSEKtime system
remains the same independent of the number of deadlines;
however, as discussed in Section V-B1, it introduces additional
IRQs to a dispatcher round, executing for 95 cycles per
deadline.

In the mixed-system case, when an event-triggered OSEK
system runs in the idle time of the time-triggered OSEKtime
system, the commercial implementation exhibits the same
latency as in the time-triggered-only case (120 cycles). SLOTH’s
latency depends on the conformance class of the underlying
event-triggered system: If the application only includes basic
run-to-completion tasks (class BCC1), then its latencies remain
the same as in the time-triggered-only case (14 cycles for task
activation and 14 cycles for task termination). If it also includes
extended tasks that can block at run time (class ECC1), then the
latencies rise the same way as described in SLEEPY SLOTH [8].
Since extended tasks have to run on stacks of their own because
they potentially block, an additional stack switch is needed
when a time-triggered task preempts an extended task of the
underlying event-triggered system. With the raised latency
being 28 cycles, even in that case SLOTH is still considerably
faster than the commercial kernel (speed-up of 4.3).

2) AUTOSAR OS Evaluation: We also evaluated the laten-
cies of event-triggered systems featuring time-triggered task
activation; the measurements use the AUTOSAR interface of
both SLOTH ON TIME and the commercial AUTOSAR OS
kernel.

First, we show the measurement numbers for the two relevant
system calls: StartScheduleTableRel(), which starts a
schedule table dispatcher round relative to the current time, and
StopScheduleTable(), which stops the execution of further
expiry points of a given table. The results are shown in Table II.
Due to the preconfiguration of corresponding timer cells during

SLOTH ON TIME AUTOSAR OS Speed-Up

StartScheduleTableRel() 108 1,104 10.2
StopScheduleTable() 20 752 37.6

TABLE II: Overhead of time-triggered system services in
event-triggered AUTOSAR OS systems, comparing SLOTH ON
TIME with a commercial implementation of the AUTOSAR
standard (in number of clock cycles).

the initialization, the system call latencies in SLOTH ON TIME
compared to the commercial implementation reach speed-up
numbers of 10.2 and 37.6 for starting and stopping a schedule
table at run time, respectively.

Second, we measured the latencies for activating a task at
certain points in time as specified by an AUTOSAR schedule
table; the results are shown in Table III. In SLOTH ON TIME,
activating a task using preconfigured timer cells and user task
functions connected to an interrupt source totals to between 14
and 77 clock cycles, depending on the types of the involved
tasks. If full stack switches are needed (since extended tasks
are able to block), the latency is higher compared to when
only basic tasks are involved, which run to completion and can
therefore run on the same stack. Again, those numbers reflect
the execution of the whole wrapper prologue, measuring the
time from the timer interrupt to the first user task instruction;
thus, they include the whole context switch, including the
stack switch if an extended task is involved. The commercial
AUTOSAR system needs 2,344 to 2,400 clock cycles to
achieve this, resulting in speed-up numbers for SLOTH ON
TIME between 31.2 and 171.4. Dispatches resulting from
task termination amount to 14 to 88 cycles, again depending
on the involved task types. The commercial AUTOSAR
implementation takes 382 to 532 clock cycles for those test
cases, yielding speed-up numbers of 6.0 to 38.0 for SLOTH
ON TIME.

3) Memory Footprint: Since SLOTH ON TIME is highly
configurable, its memory footprint depends on factors such as
the selected set of features and the configured number of tasks,
activation points, deadlines, et cetera. As a ballpark figure for
the memory usage of SLOTH ON TIME, we created a minimal
time-triggered application with one task and one deadline but
no actual user code and measured a total of 8 bytes of RAM
usage and 1,480 bytes of ROM (of which 624 bytes are claimed
by the platform start-up code). In comparison, equivalent setups
in the commercial implementations allocate 52 bytes of RAM
and 2,600 bytes of ROM (OSEKtime) and 900 bytes of RAM
and 34,514 bytes of ROM (AUTOSAR OS).

D. Overall Benefit for the Application

By using SLOTH ON TIME instead of one of the commercial
kernels, a time-triggered application will be executed more
predictably, since unnecessary interrupts and priority inversion
can be avoided in SLOTH ON TIME. The gained slack time per
dispatcher round depends on the degree that the application
makes use of the operating system—on its number of activation
points, deadline monitoring points, and executed system calls.

[C7?] Proceedings of the 33rd IEEE International Symposium on Real-Time Systems (RTSS ’12)

RTSS ’12 131

SLOTH ON TIME AUTOSAR OS Speed-Up

Time-triggered task activation with dispatch idle loop to basic task 14 2,344 167.4
Time-triggered task activation with dispatch basic task to basic task 14 2,400 171.4
Time-triggered task activation with dispatch extended task to extended task 77 2,400 31.2

Task termination with dispatch basic task to idle loop 14 382 27.3
Task termination with dispatch basic task to basic task 14 532 38.0
Task termination with dispatch extended task to extended task 88 532 6.0

TABLE III: Latencies of time-triggered task activation and dispatching in event-triggered AUTOSAR OS systems, comparing
SLOTH ON TIME with a commercial AUTOSAR OS implementation (in number of clock cycles).

However, since SLOTH ON TIME has a lower overhead in all
microbenchmarks, the application will always experience a
benefit.

For OSEKtime systems, the number of additionally available
clock cycles per dispatcher round is 130 per task activation
point without a deadline, plus 114 per task activation with one
or more associated deadlines, plus 95 per monitored deadline.
For AUTOSAR OS systems, the total benefit in clock cycles is
at least 2,767 per task activation, plus 996 per schedule table
start system call, plus 732 per schedule table stop system call,
plus the SLOTH and SLEEPY SLOTH benefit for the regular
event-triggered operation (see [7] and [8]). The gained slack
time allows the application to include additional functionality.

VI. DISCUSSION

In this section, we discuss the general applicability of our
SLOTH ON TIME approach and the impact it has on applications
running on top of the kernel.

A. Applicability

The applicability of the proposed SLOTH ON TIME design
depends on the timer architecture of the underlying hardware
platform. Due to the instrumentation of timer cells in different
role types, an appropriate number of timer cells that are not
otherwise used by the application needs to be available for the
kernel to use, specified in the configuration (see Artifact A
in Figure 4). Many modern microcontrollers, especially those
that are used in control systems, offer plenty of configurable
timers—like the Freescale MPC55xx and MPC56xx embedded
PowerPC families and the Infineon TriCore TC1796, the
reference platform for SLOTH ON TIME.

Since timer cells and connected interrupt sources are usually
not freely configurable, the mapping of scheduling points
to timer cells can be challenging for the developer of the
hardware model (see Artifact B in Figure 4). On the TC1796,
for instance, restrictions apply that make it necessary to use
two adjacent cells per activation; additionally, four cells are
connected to a single interrupt source. Thus, on that platform,
a second activation of the same task in a dispatcher round can
be accommodated with minimal additional hardware resources.
More than two activations will be subject to a trade-off
decision, probably favoring a multiplexing implementation
if cells become scarce (see Section IV-F).

In theory, SLOTH ON TIME competes with the application for
the timer cells, which may limit their availability for the kernel.
In practice, however, timer arrays are only used for control

algorithms that bear latency and activation rate requirements
so tight that traditional RTOS cannot fulfill them; by using
the timer hardware directly, the application also becomes less
portable. SLOTH ON TIME, on the other hand, offers very low
latencies, but hides its implementation beneath a platform-
independent OSEKtime API and configuration, shielding the
developer from porting the application from one hardware
timer API to another. We are convinced that, given an RTOS
that offers hardware-comparable latencies for task activations
such as SLOTH ON TIME, application developers would happily
migrate from using timer arrays directly to using time-triggered
task abstractions.

By using platform-specific timer hardware extensively, the
SLOTH ON TIME kernel itself is less portable than a traditional
time-triggered kernel with software multiplexing. Our reference
implementation runs on the Infineon TriCore TC1796; from our
experiences in porting the event-triggered SLOTH and SLEEPY
SLOTH kernels, however, we can state that the additional
porting effort can be contained by using a clear internal
abstraction boundary.

Since multi-core processors are used mainly for consolidation
purposes in the automotive market, the AUTOSAR standard
recently introduced hard task partitioning for multi-core appli-
cations. Schedule tables, which encapsulate task activations,
are therefore also bound to specific cores; thus, the SLOTH
ON TIME approach can be applied to each schedule table
separately by statically initializing the task interrupt sources
to route interrupt requests to the configured core.

B. Impact on Schedulability, Predictability, and Efficiency

The benefits of improved latency and system call perfor-
mance introduced by the SLOTH ON TIME concept have a
positive impact on the schedulability of tasks in the application.
As directly perceivable by comparing the idle times in the
execution traces in SLOTH ON TIME and the commercial
kernels (see Figures 6 and 7), the increased slack time can be
used to include additional application functionality by either
extending existing tasks or by introducing additional time-
triggered tasks. In application scenarios with highly loaded
schedules, an implementation using traditional kernels might
not even be possible, whereas the reduced overhead in SLOTH
ON TIME might make it feasible.

Schedules with activation points that are very close together
in time will cause problems in traditional kernels, since the
software scheduler will delay the second activation through
its overhead for the first task activation. By activating and

“Sloth on Time: Efficient Hardware-Based Scheduling for Time-Triggered RTOS” [C7?]

132 RTSS ’12

dispatching in hardware, the minimal overhead caused by
SLOTH ON TIME can accommodate close activation points—
as they occur when scheduling tasks with high activation
frequencies, for instance. Taking into account the dispatching
overheads caused by the kernels, SLOTH ON TIME supports a
maximum dispatch frequency of 1.7 MHz of a single minimal
task, whereas the commercial AUTOSAR kernel only supports
17 kHz, for example.

The fact that SLOTH ON TIME has very few data structures
in the software part of the kernel not only reduces its footprint
in RAM, but also in the platform’s data cache. This reduced
kernel-induced cache load increases application performance
by letting it execute out of the cache more often, and, more
importantly, reduces caching effects caused by the kernel—
thereby increasing the predictability of the application. This
facilitates the development of the real-time schedule with
tightened WCETs.

Additionally, the reduced kernel-induced load in SLOTH ON
TIME systems positively influences the energy consumption of
embedded devices. Since most of those systems spend the
majority of their time in sleep mode, the lower overhead
introduced by the operating system has a significant impact on
energy efficiency—and, therefore, battery life, which is crucial
in mobile embedded systems.

VII. RELATED WORK

The idea of hardware-based and hardware-assisted real-
time scheduling is not new. Existing approaches, like Ata-
lanta [17], cs2 [11], HW-RTOS [3], FASTCHART [9], and
Silicon TRON [12], but also the work presented in [16], [4],
however, focus on event-triggered real-time systems and employ
customized hardware synthesized on an FPGA or a similar
component. SLOTH ON TIME, in contrast, employs commodity
hardware to implement scheduling with focus on time-triggered
systems; the seamless integration of mixed-mode systems is
possible by employing the techniques presented in our previous
papers [7], [8].

The fact that only little work so far has focused on hardware
assistance for time-triggered schedulers might be rooted in the
generally simple and straight-forward software implementations
of such schedulers [10]. On the other hand, aiming for efficient
software-based timer abstractions has a long tradition in the
operating systems community, including concepts such as timer
wheels [18], soft timers [1], and adaptive timers [15]. These
concepts, however, are all based on the assumptions that 1)
hardware timers are sparse and that 2) they are costly to
reprogram [6]. The first assumption is no longer valid with
current 32-bit microcontroller platforms; the second still is, but
SLOTH ON TIME can avoid the reprogramming costs by using
dedicated timer cells for each task and deadline.

VIII. CONCLUSION

We have presented our SLOTH ON TIME RTOS design, which
exploits standard timer array hardware available on modern
microcontrollers to efficiently offload schedules in a time-
triggered or mixed-mode real-time system to the hardware.

With our design, tasks are scheduled and dispatched with
low latency by the platform’s timer and interrupt controller.
SLOTH ON TIME instruments the available timer cells not
only for task activation, but also for schedule table control,
deadline monitoring, and time synchronization; thereby it
entirely prevents issues of rate-monotonic priority inversion.

The resulting performance boost is convincing: We have
evaluated our approach by implementing the OSEKtime OS
standard and the AUTOSAR OS schedule table facility, both
of which are omnipresent in the automotive industry. With a
dispatch latency of 14 cycles, SLOTH ON TIME outperforms
leading commercial implementations of these standards by a
factor of up to 171 x. Our results show that it is time (sic!)
to exploit the capabilities of modern microcontrollers in time-
triggered real-time kernels.

REFERENCES

[1] Mohit Aron and Peter Druschel. Soft timers: Efficient microsecond
software timer support for network processing. ACM TOCS, 18(3):197–
228, 2000.

[2] AUTOSAR. Specification of operating system (version 4.0.0). Technical
report, Automotive Open System Architecture GbR, 2009. http://autosar.
org/download/R4.0/AUTOSAR_SWS_OS.pdf.

[3] Sathish Chandra, Francesco Regazzoni, and Marcello Lajolo. Hard-
ware/software partitioning of operating systems: A behavioral synthesis
approach. In GLSVLSI ’06, pages 324–329, 2006.

[4] Uwe Dannowski and Hermann Härtig. Policing offloaded. In RTAS ’00,
pages 218–228, 2000.

[5] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz.
Predictable interrupt management for real time kernels over conventional
PC hardware. In RTAS ’06, pages 14–23, 2006.

[6] Antônio Augusto Fröhlich, Giovani Gracioli, and João Felipe Santos.
Periodic timers revisited: The real-time embedded system perspective.
Computers & Electrical Engineering, 37(3):365–375, 2011.

[7] Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-
Preikschat. Sloth: Threads as interrupts. In RTSS ’09, pages 204–213,
2009.

[8] Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat.
Sleepy Sloth: Threads as interrupts as threads. In RTSS ’11, pages
67–77, 2011.

[9] Lennart Lindh and Frank Stanischewski. FASTCHART – A fast time
deterministic CPU and hardware based real-time-kernel. In Euromicro
Workshop on Real-Time Systems, pages 36–40, 1991.

[10] Jane W. S. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

[11] Andrew Morton and Wayne M. Loucks. A hardware/software kernel for
system on chip designs. In SAC ’04, pages 869–875, 2004.

[12] Takumi Nakano, Andy Utama, Mitsuyoshi Itabashi, Akichika Shiomi,
and Masaharu Imai. Hardware implementation of a real-time operating
system. In 12th TRON Project International Symposium (TRON ’95),
pages 34–42, 1995.

[13] OSEK/VDX Group. Time triggered operating system specification 1.0.
Technical report, OSEK/VDX Group, 2001. http://portal.osek-vdx.org/
files/pdf/specs/ttos10.pdf.

[14] OSEK/VDX Group. Operating system specification 2.2.3. Technical
report, OSEK/VDX Group, 2005. http://portal.osek-vdx.org/files/pdf/
specs/os223.pdf.

[15] Simon Peter, Andrew Baumann, Timothy Roscoe, Paul Barham, and
Rebecca Isaacs. 30 seconds is not enough! A study of operating system
timer usage. In EuroSys ’08, pages 205–218, 2008.

[16] John Regehr and Usit Duongsaa. Preventing interrupt overload. In
LCTES ’05, pages 50–58, 2005.

[17] Di-Shi Sun, Douglas M. Blough, and Vincent John Mooney III. Atalanta:
A new multiprocessor RTOS kernel for system-on-a-chip applications.
Technical report, Georgia Institute of Technology, 2002.

[18] G. Varghese and T. Lauck. Hashed and hierarchical timing wheels: Data
structures for the efficient implementation of a timer facility. In SOSP

’87, pages 25–38, 1987.

[C7?] Proceedings of the 33rd IEEE International Symposium on Real-Time Systems (RTSS ’12)

RTSS ’12 133

Feature Consistency in
Compile-Time–Configurable System Software ∗

Facing the Linux 10,000 Feature Problem

Reinhard Tartler, Daniel Lohmann, Julio Sincero, Wolfgang Schröder-Preikschat
Friedrich–Alexander University Erlangen–Nuremberg
{tartler, lohmann, sincero, wosch}@cs.fau.de

Abstract
Much system software can be configured at compile time to
tailor it with respect to a broad range of supported hardware
architectures and application domains. A good example is the
Linux kernel, which provides more than 10,000 configurable
features, growing rapidly.

From the maintenance point of view, compile-time con-
figurability imposes big challenges. The configuration model
(the selectable features and their constraints as presented to
the user) and the configurability that is actually implemented
in the code have to be kept in sync, which, if performed man-
ually, is a tedious and error-prone task. In the case of Linux,
this has led to numerous defects in the source code, many of
which are actual bugs.

We suggest an approach to automatically check for
configurability-related implementation defects in large-scale
configurable system software. The configurability is extracted
from its various implementation sources and examined for
inconsistencies, which manifest in seemingly conditional
code that is in fact unconditional. We evaluate our approach
with the latest version of Linux, for which our tool detects
1,776 configurability defects, which manifest as dead/super-
fluous source code and bugs. Our findings have led to numer-
ous source-code improvements and bug fixes in Linux: 123
patches (49 merged) fix 364 defects, 147 of which have been
confirmed by the corresponding Linux developers and 20 as
fixing a new bug.

∗ This work was partly supported by the German Research Foundation (DFG)
under grant no. SCHR 603/7-1 and SFB/TR 89.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys ’11, April 10–13, 2011, Salzburg, Austria.
Copyright c© 2011 ACM 978-1-4503-0634-8/11/04. . . $10.00

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design; D.2.9 [Management]: Soft-
ware configuration management

General Terms Algorithms, Design, Experimentation,
Management, Languages

Keywords Configurability, Maintenance, Linux, Static
Analysis, VAMOS

1. Introduction
I know of no feature that is always needed. When we
say that two functions are almost always used together,
we should remember that "almost" is a euphemism for
"not". DAVID L. PARNAS [1979]

Serving no user value on its own, system software has
always been “caught between a rock and a hard place”. As a
link between hardware and applications, system software is
faced with the requirement for variability to meet the specific
demands of both. This is particularly true for operating
systems, which ideally should be tailorable for domains
ranging from small, resource-constrained embedded systems
over network appliances and interactive workstations up to
mainframe servers. As a result, many operating systems are
provided as a software family [Parnas 1979]; they can (and
have to) be configured at compile time to derive a concrete
operating-system variant.

Configurability as a system property includes two sepa-
rated – but related – aspects: implementation and configu-
ration. Kernel developers implement configurability in the
code; in most cases they do this by means of conditional com-
pilation and the C preprocessor [Spinellis 2008], despite all
the disadvantages with respect to understandability and main-
tainability (“#ifdef hell”) this approach is known for [Liebig
2010, Spencer 1992]. Users configure the operating system
to derive a concrete variant that fits their purposes. In simple
cases they have to do this by (un-)commenting #define di-
rectives in some global configure.h file; however, many op-
erating systems today come with an interactive configuration
tool. Based on an internal model of features and constraints,

[C14?] Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2011 (EuroSys ’11)

EuroSys ’11 135

this tool guides the user through the configuration process by
a hierarchical / topic-oriented view on the available features.
In fact, it performs implicit consistency checks with respect
to the selected features, so that the outcome is always a valid
configuration that represents a viable variant. In today’s op-
erating systems, this extra guidance is crucial because of the
sheer enormity of available features: eCos, for instance, pro-
vides more than 700 features, which are configured with (and
checked by) ECOSCONFIG [Massa 2002]; the Linux kernel is
configured with KCONFIG and provides more than 10,000 (!)
features. This is a lot of variability – and, as we show in this
paper, the source of many bugs that could easily be avoided
by better tool support.

Our Contributions
This article builds upon previous work. In [Sincero 2010], we
have introduced the extraction of a source-code variability
model from C Preprocessor (CPP)-based software, which rep-
resents a building block for this work. A short summary of
this approach is presented in Section 3.2.3. In this paper, we
extend that work by incorporating other sources of variability
and automatically (cross-) checking them for configurability-
related implementation defects in large-scale configurable
system software. We evaluate our approach with the latest
version of Linux. In summary, we claim the following contri-
butions:

1. It is the first work that shows the problem with the
increasing configurability in system software that causes
serious maintenance issues. (Section 2.2)

2. It is the first work that checks for configurability-related
implementation defects under the consideration of both
symbolic and logic integrity. (Section 3.1)

3. It presents an algorithm to effectively slice very large
configuration models, which are commonly found in
system software. This greatly assists our crosschecking
approach. (Section 3.2.2)

4. It presents a practical and scalable tool chain that has
detected 1,776 configurability-related defects and bugs in
Linux 2.6.35; for 121 of these defects (among them 22
confirmed new bugs) our fixes have already been merged
into the mainline tree. (Section 4)

In the following, we first analyze the problem in further detail
before presenting our approach in Section 3. We evaluate
and discuss our approach in Section 4 and Section 5, respec-
tively, and discuss related work in Section 6. The problem
of configurability-related defects will be introduced in the
context of Linux, which will also be the case study used
throughout this paper. Our findings and suggestions, how-
ever, also apply to other compile-time configurable system
software.

2. Problem Analysis
Linux today provides more than 10,000 configurable fea-
tures, which is a lot of variability with respect to hardware
platforms and application domains. The possibility to leave
out functionality that is not needed (such as x86 PAE support
in an Atom-based embedded system) and to choose between
alternatives for those features that are needed (such as the
default IO scheduler to use) is an important factor for its on-
going success in so many different application and hardware
domains.

2.1 Configurability in Linux
The enormous configurability of the Linux kernel demands
dedicated means to ensure the validity of the resulting Linux
variants. Most features are not self-contained; instead, their
possible inclusion is constrained by the presence or absence
of other features, which in turn impose constraints on further
features, and so on. In Linux, variant validity is taken care of
by the KCONFIG tool chain, which is depicted in Figure 1:

Ê Linux employs the KCONFIG language to specify its con-
figurable features together with their constraints. In ver-
sion 2.6.35 a total of 761 Kconfig files with 110,005 lines
of code define 11,283 features plus dependencies. We call
the thereby specified variability the Linux configuration
space.

The following KCONFIG lines, for instance, describe the
(optional) Linux feature to include support for hot CPU
plugging in an enterprise server:
config HOTPLUG_CPU

bool "Support for hot-pluggable CPUs"

depends on SMP && HOTPLUG

&& SYS_SUPPORTS_HOTPLUG_CPU

The HOTPLUG_CPU feature depends on general support for
hot-pluggable hardware and must not be selected in a single-
processor system.

Ë The KCONFIG configuration tool implicitly enforces all
feature constraints during the interactive feature selection
process. The outcome is, by construction, the description
of a valid Linux configuration variant.

Technically, the output is a C header file (autoconf.h) and
a Makefile (auto.make) that define a CONFIG_<FEATURE>

preprocessor macro and make variable for every selected
KCONFIG feature:
#define CONFIG_HOTPLUG_CPU 1

#define CONFIG_SMP 1

It’s a convention that all and only KCONFIG flags are prefixed
with CONFIG_.

Ì Features are implemented in the Linux source base.
Whereas some coarse-grained features are enforced by in-
cluding or excluding whole compilation units in the build
process, the majority of features are enforced within the
source files by means of the conditional compilation with

“Feature Consistency in Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” [C14?]

136 EuroSys ’11

1

2

3

4

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

source files

KConfig files

config HOTPLUG_CPU
 bool "Support for ..."
 depends on SMP && ...

autoconf.h

#define CONFIG_HOTPLUG_CPU
#define CONFIG_SMP
...

auto.make

gcc

user selectionconfiguration space

Kbuild

Kconfig

implementation variantimplementation space

configuration variant

Figure 1. Linux build process (simplified).

the C preprocessor. A total of 27,166 source files contain
82,116 #ifdef blocks. We call the thereby implemented
variability the Linux implementation space.

Í The KBUILD utility drives the actual variant compilation
and linking process by evaluating auto.make and embed-
ding the configuration variant definition autoconf.h into
every compilation unit via GCC’s “forced include”1 mech-
anism. The result of this process is a concrete Linux im-
plementation variant.

2.2 The Issue
Overall, the configurability of Linux is defined by two sep-
arated, but related models: The configuration space defines
the intended variability, whereas the implementation space
defines the implemented variability of Linux. Given the size
of both spaces – 110 kloc for the configuration space and
12 mloc for the implementation space in Linux 2.6.35 –, it
is not hard to imagine that this is prone to inconsistencies,
which manifest as configurability defects, many of which are
bugs. We have identified two types of integrity issues, namely
symbolic and logic, which we introduce in the following by
examples from Linux:

Consider the following change, which corrects a simple
feature misnaming (detected by our tool and confirmed as a
bug) in the file kernel/smp.c2:

diff --git a/kernel/smp.c b/kernel/smp.c

--- a/kernel/smp.c

+++ b/kernel/smp.c

-#ifdef CONFIG_CPU_HOTPLUG

+#ifdef CONFIG_HOTPLUG_CPU

Patch 1. Fix for a symbolic defect

The issue, which was present in Linux 2.6.30, is an example
of a symbolic integrity violation; the implementation space
references a feature that does not exist in the configuration

1 implemented by the -include command-line switch
2 Shown in unified diff format. Lines starting with -/+ are being re-
moved/added

spaces, so the actual implementation of the HOTPLUG_CPU

feature is incomplete. This bug remained undetected in the
kernel code base for more than six months. We cannot claim
credit for detecting this particular bug (it had been reported
to the respective developer just before we submitted our
patch); however, we have found 116 similar defects caused
by symbolic integrity violation that have been confirmed as
new.

A symbolic integrity violation indicates a configuration–
implementation space mismatch with respect to a feature
identifier. However, consistency issues also occur at the level
of feature constraints. Consider the following fix, which fixes
what we call a logic integrity violation:
diff --git a/arch/x86/include/asm/mmzone_32.h

b/arch/x86/include/asm/mmzone_32.h

--- a/arch/x86/include/asm/mmzone_32.h

+++ b/arch/x86/include/asm/mmzone_32.h

@@ -61,11 +61,7 @@ extern s8 physnode_map[];

static inline int pfn_to_nid(unsigned long pfn)

{

-#ifdef CONFIG_NUMA

return((int) physnode_map[(pfn)

/ PAGES_PER_ELEMENT]);

-#else

- return 0;

-#endif

}

/*

Patch 2. Fix for a logical defect

The patch itself does not look too complicated – the partic-
ularities of the issue it fixes stem from the context: In the
source, the affected pfn_to_nid() function is nested within
a larger code block whose presence condition is #ifdef

CONFIG_DISCONTIGMEM. According to the KCONFIG model,
however, the DISCONTIGMEM feature depends on the NUMA fea-
ture, which means that it also implies the selection of NUMA
in any valid configuration. As a consequence, the #ifdef

CONFIG_NUMA is superfluous; the #else branch is dead and
both are removed by the patch. The patch has been confirmed
as fixing a new defect by the respective Linux developers
and is currently processed upstream for final acceptance into
mainline Linux.

Compared to symbolic integrity violations, logic integrity
violations are generally much more difficult to analyze and
fix. So far we have fixed 38 logic integrity violations that
have been confirmed as new defects.

Note that Patch 2 does not fix a real bug – it only improves
the source-code quality of Linux by removing some dead
code and superfluous #ifdef statements. Some readers might
consider this as “less relevant cosmetical improvement”;
however, such “cruft” (especially if it contributes to “#ifdef

[C14?] Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2011 (EuroSys ’11)

EuroSys ’11 137

version features #ifdef blocks source files

2.6.12 (2005) 5338 57078 15219
2.6.20 7059 62873 18513
2.6.25 8394 67972 20609
2.6.30 9570 79154 23960
2.6.35 (2010) 11223 84150 28598

relative growth (5 years) 110% 47% 88%

Table 1. Growth of configurability in Linux

hell”) causes long-term maintenance costs and impedes the
general accessibility of the source.

2.3 Problem Summary
Overall, we find 1,316 symbolic + 460 logic integrity viola-
tions in Linux 2.6.35 – numbers that speak for themselves.
The situation becomes more severe every day, given how
quickly Linux is growing: Within the last five years, the
number of configuration-conditional blocks in the source
(#if blocks that test for some KCONFIG item) has grown by
around fifty percent, the number of features (KCONFIG items)
and source files have practically doubled (Table 1).

We think that configurability as a system property has to
be seen as a significant (and so far underestimated) cause of
software defects in its own respect.

3. The Approach
As pointed out in Section 2.2, many configurability-related
defects are caused by inconsistencies that result from the fact
that configurability is defined by two (technically separated,
but conceptually related) models: the configuration space and
the implementation space. The general idea of our approach
is to extract all configurability-related information from
both models into a common representation (a propositional
formula), which is then used to cross-check the variability
exposed within and across both models in order to find
inconsistencies. We call these inconsistencies configurability
defects:

A configurability defect (short: defect) is a
configuration-conditional item that is either dead
(never included) or undead (always included) un-
der the precondition that its parent (enclosing
item) is included.

Examples for items in Linux are: KCONFIG options, build
rules, and (most prominent) #ifdef blocks. The CONFIG_NUMA
example discussed in Section 2.2 (see Figure 2) bears two
defects in this respect: Block2 is undead and Block3 is dead.
Defects can be further classified as:

Confirmed – a defect that has been confirmed as uninten-
tional by the corresponding developers. If the defect has
an effect on the binary code of at least one Linux imple-
mentation variant, we call it a bug.

Rule violation – a defect that, even though it breaks a gen-
erally accepted development rule, has been confirmed as
intentional by the corresponding developers.

Patch 1 discussed in Section 2.2 fixes a bug, Patch 2 a
confirmed defect. In the case of Linux a rule violation is
usually the use of the CONFIG_ prefix for preprocessor flags
that are not (yet) defined by KCONFIG. We will discuss the
source of rule violations more thoroughly in Section 5.1.

3.1 Challenges in Analyzing Configurability
Consistency – “What’s wrong with GREP?”

Since version 2.6.23, Linux has included the (AWK/GREP-
based) script checkkconfigsymbols.sh. This script is sup-
posed to be used by maintainers to check for referential in-
tegrity between the KCONFIG model and the source code
before committing their changes.

However, for Linux 2.6.30 this script reports 760 issues,
among them the CONFIG_CPU_HOTPLUG issue discussed in
Section 2.2, which remained in the kernel for more than
six months. Apparently, kernel maintainers do not use this
script systematically. While we can only speculate why this
is the case, we have identified a number of shortcomings:

Accuracy. The output is disturbed by many false positives,
defect reports that are not valid, but caused by some
CONFIG_ macros being mentioned in a historical comment.
We consider this as a constant annoyance that hinders the
frequent employment of the script.

Performance. The script can only be applied on the com-
plete source tree. On reasonable modern hardware (Intel
quadcore with 2.83 GHz) it takes over 7 minutes until
the output begins. We consider this as too long and too
inflexible for integration into the daily incremental build
process.

Coverage. Despite its verbosity, the script misses many valid
defects. False negatives are caused, on the one hand, by
logic integrity issues, like the CONFIG_NUMA example from
Figure 2, as logic integrity is not covered at all. However,
even many referential integrity issues are not detected
– the script does not deal well with KCONFIG’s tristate
options (which are commonly used for loadable kernel
modules). We consider this as a constant source of doubt
with respect to the script’s output.

The lack of accuracy causes a lot of noise in the output.
This, and the fact that the script cannot be used during
incremental builds, renders the script barely usable. Most
of these shortcomings come from the fact that it does not
actually parse and analyze the expressed variability, but
just employs regular expressions to cross-match CONFIG_

identifiers. We conclude that the naïve GREP-based approach
is (too) limited in this respect and that this problem has not
been considered seriously in the past.

“Feature Consistency in Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” [C14?]

138 EuroSys ’11

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else
// Block3

endif
#endif

C = (FLATMEM → MEMORY MODEL)

∧ (DISCONTIGMEM → MEMORY MODEL)

∧ (SPARSEMEM → MEMORY MODEL)

∧ (NUMA → MEMORY MODEL)

∧ (DISCONTIGMEM → NUMA)

I = (Block1 ↔ DISCONTIGMEM)

∧ (Block2 ↔ Block1 ∧ (NUMA)

∧ (Block3 ↔ Block1 ∧ ¬Block2)

implementation space constraints

implementation space

configuration space constraints

configuration space

dead? sat(C ∧ I ∧ BlockN)

undead? sat(C ∧ I ∧ ¬BlockN

∧ parent(BlockN))

configurability defects

Figure 2. Our approach at a glance: The variability constraints defined by both spaces are extracted separately into propositional
formulas, which are then examined against each other to find inconsistencies we call configurability defects.

3.2 Our Solution
Essential for the analysis of configurability problems is a
common representation of the variability that spreads over
different software artifacts. The idea is to individually convert
each variability source (e.g., source files, KCONFIG, etc.)
to a common representation in form of a sub-model and
then combine these sub-models into a model that contains
the whole variability of the software project. This makes it
possible to analyze each sub-model as well their combination
in order to reveal inconsistencies across sub-models.

Most of the constructs that model the variability both in
the configuration and implementation spaces can be directly
translated to propositional logic; therefore, propositional
logic is our abstraction means of choice. As a consequence,
the detection of configuration problems boils down to a
satisfiability problem.

Linux (and many other systems) keep their configuration
space (C) and their implementation space (I) separated. The
variability model (V) can be represented by the following
boolean formula:

V = C ∧ I (1)

V 7→ {0, 1} is a boolean formula over all features of the
system; C and I are the boolean formulas representing the
constraints of the configuration and implementation spaces,
respectively. Properly capturing and translating the variability
of different artifacts into the formulas C and I is crucial for
building the complete variability model V . Once the model V
is built we use it to search for defects.

With this model, we validate the implementation for
configurability defects, that is, we check if the conditions
for the presence of the block (BlockN) are fulfillable in the

model V . For example, consider Figure 2: The formula shown
for dead blocks is satisfiable for Block1 and Block2, but
not for Block3. Therefore, Block3 is considered to be dead;
similarly the formula for undead blocks indicates that Block2
is undead.

3.2.1 Challenges
In order to implement the solution sketch described above in
practice for real-world large-scale system software, we face
the following challenges:

Performance. As we aim at dealing with huge code bases,
we have to guarantee that our tools finish in a reasonable
amount of time. More importantly, we also aim at sup-
porting programmers at development time when only a
few files are of interest. Therefore, we consider the effi-
cient check for variability consistency during incremental
builds essential.

Flexibility. Projects that handle thousands of features will
eventually contain desired inconsistencies with respect to
their variability. Gradual addition or removal of features
and large refactorings are examples of efforts that may
lead to such inconsistent states within the lifetime of a
project. Also, evolving projects may change their require-
ments regarding their variability descriptions. Therefore,
a tool that checks for configuration problems should be
flexible enough to incorporate information about desired
issues in order to deliver precise and useful results; it
should also minimize the number of false positives and
false negatives.

[C14?] Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2011 (EuroSys ’11)

EuroSys ’11 139

Require: S initialized with an initial set of items
1: R = S
2: while S 6= ∅ do
3: item = S.pop()
4: PC = presenceCondition(item)
5: for all i such that i ∈ PC do
6: if i /∈ R then
7: S.push(i)
8: R.push(i)
9: end if

10: end for
11: end while
12: return R

Figure 3. Algorithm for configuration model slicing

In order to achieve both performance and flexibility, the im-
plementation of our approach needs to take the particularities
of the software project into account. Moreover, the preci-
sion of the configurability extraction mechanism has direct
a impact on the rate of false positive and false negative re-
ports. As many projects have developed their own, custom
tools and languages to describe configuration variability, the
configurability extraction needs to be tightly tailored.

In the following sections, we describe how we have
approached these challenges to achieve good performance,
flexibility, and, at the same time, a low number of false
positives and false negatives.

3.2.2 Configuration Space
There are several strategies to convert configuration space
models into boolean formulas [Benavides 2005, Czarnecki
2007]. However, due to the size of real models – the KCONFIG
model contains more than 10,000 features –, the resulting
boolean formulas become very complex. The search for a
solution to problems that use such formulas may become
intractable.

Therefore, we have devised an algorithm that implements
model slicing for KCONFIG. This allows us to generate sub-
models from the original model that are smaller than the
complete model. To illustrate, suppose we want to check if
a specific block of the source code can be enabled by any
valid user configuration. This is expressed by the satisfiability
of the formula V ∧ BlockN . With a full model, the term V
would contain all user-visible features as logical variables; for
the Linux kernel it would have more than 10,000 variables.
Nevertheless, not all features influence the solution for this
specific problem. The key challenge is to find a sufficient –
and preferably minimal – subset of features that can possibly
influence the selection of the code block under analysis.

Our slicing algorithm for this purpose is depicted in
Figure 3. The goal is to find the set of configuration items that
can possibly affect the selection of one or more given initial
items. (In our tool, which we will present in Section 4.1, this
initial set of items will be taken from the #ifdef expressions.)

The basic idea is to check the presence conditions of each
item for additional relevant items. Both direct and indirect
dependencies from the initial set of features are thus taken
into account such that the resulting set contains all features
that can influence the features in the initial set.

In the first step (Line 1) the resulting set R is initial-
ized with the list of input features. Then, the algorithm it-
erates until the working stack S is empty. In each itera-
tion (Lines 2–11), a feature is taken from the stack and
its presence condition is calculated through the function
presenceCondition(feature), which returns a boolean for-
mula of the form feature → ϕ. This formula represents the
condition under which the feature can be enabled; ϕ is a
boolean formula over the available features. Then, all fea-
tures that appear in ϕ and have not already been processed
(Line 6), are added to the working stack S and the result set
R. This algorithm always terminates; in the worst case, it
will return all features and the slice will be exactly like the
original model.

To implement our algorithm for Linux, we also have to
implement the function presenceCondition() that takes the
semantic details of the KCONFIG language into account. In
a nutshell, the KCONFIG language supports the definitions
of five types of features. Moreover, the features can have
a number of attributes like prompts, direct and reverse de-
pendencies, and default values. The presence condition of
a feature is the set of conditions that must be met, so that
either the user can select it or a default value is set automati-
cally. Consider the following feature defined in the KCONFIG
language:
config DISCONTIGMEM

def_bool y

depends on (!SELECT_MEMORY_MODEL &&

ARCH_DISCONTIGMEM_ENABLE) ||

DISCONTIGMEM_MANUAL

The presence condition for the feature DISCONTIGMEM is sim-
ply the selection of the feature itself and the expression of
the depends on option. If a feature has several definitions of
prompts and defaults, the feature implies the disjunction of
the condition of each option that control its selection. The
formal semantics of the KCONFIG language has been stud-
ied elsewhere [Berger 2010, Zengler 2010]; such formalisms
describe in detail how to correctly derive the presence condi-
tions.

3.2.3 Implementation Space
Many techniques [Baxter 2001, Hu 2000] have been proposed
to translate the CPP semantics to boolean formulas. However,
for our approach, we need to consider the language features
of CPP that implement conditional compilation only. There-
fore we devised an algorithm [Sincero 2010] that is tailored
in this respect in order to be precise and have good perfor-
mance. In short, our algorithm generates a boolean formula
that describes a source file by means of its conditional com-

“Feature Consistency in Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” [C14?]

140 EuroSys ’11

pilation structures; it therefore examines the CPP directives
#ifdef, #ifndef, #if, #elif, #else, which are the con-
structs responsible for conditional compilation. As result, we
receive a formula that describes the presence conditions for
each conditional block. It thereby includes all flags (features)
that appear in any conditional compilation expression as a
logical variable. We build the presence condition PC of the
conditional block bi as follows:

PC(bi) = expr(bi)∧noPredecessors(bi)∧parent(bi) (2)

Let bi be a conditional block. In order for this block to be
selected, it is required that its expression expr(bi) evalu-
ates to true, in #elif cascades none of its predecessors are
selected noPredecessors(bi), and for nested blocks, its en-
closing #ifdef block parent(bi) is selected. If all these con-
ditions are met, then CPP will necessarily select this block.
Additionally, also the reverse is true: if the CPP selects the
block, all these presence conditions need to hold. This results
in a biimplication: bi ↔ PC(bi). Therefore, the formula for
a file with several blocks can be built as follows:

Fu(~f,~b) =
∧

i=1..m

bi ↔ PC(bi) (3)

where ~f is a vector containing all flags present in the
file, and ~b is a vector containing a variable for each
block of the file. An example is shown on the right
hand side of Figure 2: in the upper part we show the
source code, and in the lower part we show the generated
formula by our algorithm; note that in this example
Fu([DISCONTIGMEM, NUMA], [Block1, Block2, Block3]) =
PC(Block1) ∧ PC(Block2) ∧ PC(Block3) = I

3.2.4 Crosschecking Among Variability Spaces
Our approach converts the different representations of vari-
ability to a common format so that we can check for incon-
sistencies, the configurability defects. Defects appear in two
ways, either as dead, that is, unselectable blocks, or undead,
that is, always present blocks. Both kinds of defects indicate
code that is only seemingly conditional. They can be found
within single models as presented in the previous two sections
in isolation as well as across multiple models.

Within a single model we have implementation-only
defects, which represent code blocks that cannot be se-
lected regardless of the systems’ selected features; the struc-
ture of the source file itself contains contradictions that
impede the selection of a block. This can be determined
by checking the satisfiability of the formula sat(bi ↔
PC(bi)). Configuration-only defects represents features that
are present in the configuration-space model but do not ap-
pear in any valid configuration of the model, which means
that the presence condition of the feature is not satisfiable.
We can check for such defects by solving: sat(feature →
presenceCondition(feature)).

KConfig
files

config HOTPLUG_CPU
 bool "Support for ..."
 depends on SMP && ...

DEFECT
REPORTS
defect
reports

undertaker

CPP
Parser

SAT
Engine

KConfig
Parser

crosscheck

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

Linux
source

Figure 4. Principle of Operation

Across multiple models we have configuration-
implementation defects, which occur when the rules
from the configuration space contradict rules from the
implementation space. We check for such defects by
solving sat((bi ↔ PC(bi)) ∧ V). Referential defects are
caused by a missing feature (m) that appears in either the
configuration or the implementation space only. That is,
sat((bi ↔ PC(bi))∧V ∧¬(m1∨· · ·∨mn)) is unsatisfiable.

Implementation-only defects have already been addressed
in [Sincero 2010]; this paper focuses on the detection
of configuration-implementation and referential defects in
Linux. The defect analysis can be done using the dead and
undead formulas as shown in the center of Figure 2.

We categorize all identified defects as either logic or
symbolic. Logic defects are those that can only be found by
determining the satisfiability of a complex boolean formula.
Symbolic defects belong to a sub-group of referential defects
where the expression of the analyzed block exp(bi) is an
atomic formula.

4. Evaluation
In order to evaluate our approach, we have developed a
prototype tool for Linux and a workflow to submit our
results to the kernel developers. We started submitting our
first patches in February 2010, at which time Linux version
2.6.33 has just been released. Most of our patches entered
the mainline kernel tree during the merge window of version
2.6.36. In the following, we describe our tool and summarize
the results.

4.1 Implementation for Linux
We named our tool UNDERTAKER, because its task is to iden-
tify (and eventually bury) dead and undead CPP-Blocks. Its ba-
sic principle of operation is depicted in Figure 4: The different
sources of variability are parsed and transformed into proposi-
tional formulas. For CPP parsing, we use the BOOST::WAVE3

parsing library; for proper parsing of the Kconfig files, we
have hooked up in the original Linux KCONFIG implementa-
tion. The outcome of these parsers is fed into the crosscheck-

3 http://www.boost.org

[C14?] Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2011 (EuroSys ’11)

EuroSys ’11 141

ing engine as described in Section 3.2.4 and solved using
the PICOSAT4 package. The tool itself is published as Free
Software and available on our website.5

Our tool scans each .c and .h file in the source tree
individually. Unlike the script checkkonfigsymbols.sh as
discussed in Section 3.1, this allows developers to focus
on the part of the source code they are currently work-
ing on and to get instant results for incremental changes.
The results come as defect reports per file: For each file
all configurability-related CPP blocks are analyzed for sat-
isfiability, which yields the defect types described in the
previous section. For instance, the report produced for the
configuration-implementation defect from Figure 2 looks like
this:

Found Kconfig related DEAD in arch/parisc/include/asm/mmzone.h,

line 40: Block B6 is unselectable, check the SAT formula.

Based on this information, the developer now revisits the
KCONFIG files. The basis for the report is a formula that is
falsified by our SAT solver. For this particular example the
following formula was created:

1 #B6:arch/parisc/include/asm/mmzone.h:40:1:logic:undead

2 B2 &
3 !B6 &

4 (B0 <-> !_PARISC_MMZONE_H) &
5 (B2 <-> B0 & CONFIG_DISCONTIGMEM) &
6 (B4 <-> B2 & !CONFIG_64BIT) &
7 (B6 <-> B2 & !B4) &
8 (B9 <-> B0 & !B2) &

9 (CONFIG_64BIT -> CONFIG_PA8X00) &
10 (CONFIG_ARCH_DISCONTIGMEM_ENABLE -> CONFIG_64BIT) &
11 (CONFIG_ARCH_SELECT_MEMORY_MODEL -> CONFIG_64BIT) &
12 (CONFIG_CHOICE_11 -> CONFIG_SELECT_MEMORY_MODEL) &
13 (CONFIG_DISCONTIGMEM -> !CONFIG_SELECT_MEMORY_MODEL &

CONFIG_ARCH_DISCONTIGMEM_ENABLE | CONFIG_DISCONTIGMEM_MANUAL) &
14 (CONFIG_DISCONTIGMEM_MANUAL -> CONFIG_CHOICE_11 &

CONFIG_ARCH_DISCONTIGMEM_ENABLE) &
15 (CONFIG_PA8X00 -> CONFIG_CHOICE_7) &
16 (CONFIG_SELECT_MEMORY_MODEL -> CONFIG_EXPERIMENTAL |

CONFIG_ARCH_SELECT_MEMORY_MODEL)

This formula can be deciphered easily by examining its parts
individually. The first line shows an “executive summary” of
the defect; here, Block B6, which starts in Line 40 in the
file arch/parisc/include/asm/mmzone.h, inhibits a logical
configuration defect in form of a block that cannot be unse-
lected (“undead”). Lines 4 to 8 show the presence conditions
of the corresponding blocks (cf. Section 3.2.3 and [Sincero
2010]); they all start with a block variable and by construc-
tion cannot cause the formula to be unsatisfiable. From the
structure of the formula, we see that Block B2 is the enclos-
ing block. Lines 9ff. contain the extracted implications from
KCONFIG (cf. Section 3.2.2). In this case, it turns out that the
KCONFIG implications from Line 9 to 16 show a transitive
dependency from the KCONFIG item CONFIG_DISCONTIGMEM

(cf. Block B2, Line 5) to the item CONFIG_64BIT (cf. Block
B4, Line 6). This means that the KCONFIG selection has no
impact on the evaluation of the #ifdef expression and the

4 http://fmv.jku.at/picosat/
5 http://vamos.informatik.uni-erlangen.de/trac/undertaker/

code can thus be simplified. We have therefore proposed the
following patch to the Linux developers6:

1 diff --git a/arch/parisc/include/asm/mmzone.h b/arch/parisc/include/

asm/mmzone.h

2 --- a/arch/parisc/include/asm/mmzone.h

3 +++ b/arch/parisc/include/asm/mmzone.h

4 @@ -35,6 +35,1 @@ extern struct node_map_data node_data[];

5

6 -#ifndef CONFIG_64BIT

7 #define pfn_is_io(pfn) ((pfn & (0xf0000000UL >> PAGE_SHIFT)) == (0

xf0000000UL >> PAGE_SHIFT))

8 -#else

9 -/* io can be 0xf0f0f0f0f0xxxxxx or 0xfffffffff0000000 */

10 -#define pfn_is_io(pfn) ((pfn & (0xf000000000000000UL >> PAGE_SHIFT))

== (0xf000000000000000UL >> PAGE_SHIFT))

11 -#endif

Please note that this is one of the more complicated
examples. Most of the defects reports have in fact only a
few lines and are much easier to comprehend.

Results. Table 2 (upper half) summarizes the defects that
UNDERTAKER finds in Linux 2.6.35, differentiated by sub-
system. When counting defects in Linux, some extra care
has to be taken with respect to architectures: Linux employs
a separate KCONFIG-model per architecture that may also
declare architecture-specific features. Hence, we need to run
our defect analysis over every architecture and intersect the
results. This prevents us from counting, for example, MIPS-
specific blocks of the code as dead when compiling for x86.
An exception of this rule is the code below arch/, which is
architecture-specific by definition and checked against the
configuration model of the respective architecture only.

Most of the 1,776 defects are found in arch/ and
drivers/, which together account for more than 75 percent
of the configurability-related #ifdef-blocks. For these sub-
systems, we find more than three defects per hundred #ifdef-
blocks, whereas for all other subsystems this ratio is below
one percent (net/ below two percent). These numbers sup-
port the common observation (e.g., [Engler 2001]) that “most
bugs can be found in driver code”, which apparently also
holds for configurability-related defects. They also indicate
that the problems induced by “#ifdef-hell” grow more than
linearly, which we consider as a serious issue for the increas-
ing configurability of Linux and other system software.

Even though the majority of defects (74%) are caused by
symbolic integrity issues, we also find 460 logic integrity vi-
olations, which would be a lot harder to detect by “developer
brainpower”.

Performance. We have evaluated the performance of our
tool with Linux 2.6.35. A full analysis of this kernel processes
27,166 source files with 82,116 configurability-conditional
code blocks. This represents the information from the im-
plementation space. The configuration space provides 761
KCONFIG files defining 11,283 features.

A full analysis that produces the results as shown in Table 2
takes around 15 minutes on a modern Intel quadcore with
2.83 GHz and 8 GB RAM. However, the implementation

6 http://lkml.org/lkml/2010/5/12/202

“Feature Consistency in Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” [C14?]

142 EuroSys ’11

subsystem #ifdefs logic symbolic total
arch/ 33757 345 581 926
drivers/ 32695 88 648 736
fs/ 3000 4 13 17
include/ 7241 6 11 17
kernel/ 1412 7 2 9
mm/ 555 0 1 1
net/ 2731 1 49 50
sound/ 3246 5 10 15
virt/ 53 0 0 0
other subsystems 601 4 1 5∑

85291 460 1316 1776
fix proposed 150 (1) 214 (22) 364 (23)
confirmed defect 38 (1) 116 (20) 154 (21)
confirmed rule-violation 88 (0) 21 (2) 109 (2)
pending 24 (0) 77 (0) 101 (0)

Table 2. Upper half: #ifdef blocks and defects per subsys-
tem in Linux version 2.6.35; Lower half: acceptance state of
defects (bugs) for which we have submitted a patch

< 0.5 s 93.69%
< 5 s 99.65%

< 30 s 100%

Figure 5. Processing time for 27,166 Linux source files

still leaves a lot of room for optimization: Around 70 percent
of the consumed CPU time is system time, which is mostly
caused by the fact that we fork() the SAT solver for every
single #ifdef block.

Despite this optimization potential, the runtime of UNDER-
TAKER is already appropriate to be integrated into (much
more common) incremental Linux builds. Figure 5 depicts
the file-based runtime for the Linux source base: Thanks to
our slicing algorithm, 94 percent of all source files are ana-
lyzed in less than half a second; less than one percent of the
source files take more than five seconds and only four files
take between 20 and 30 seconds. The upper bound (29.1 sec-
onds) is caused by kernel/sysctl.c, which handles a very
high number of features; changes to this file often require a
complete rebuild of the kernel anyway. For an incremental
build that affects about a dozen files, UNDERTAKER typically
finishes in less than six seconds.

4.2 Evaluation of Findings
To evaluate the quality of our findings, we have given our
defect reports to two undergraduate students to analyze them,
propose a change, and submit the patch upstream to the
responsible kernel maintainers. Figure 6 depicts the whole
workflow.

The first step is defect analysis: The students have to
look up the source-code position for which the defect is
reported and understand its particularities, which in the
case of logical defects (as in the CONFIG_NUMA example
presented in Figure 2) might also involve analyzing KCONFIG
dependencies and further parts of the source code. This

information is then used to develop a patch that fixes the
defect.

Based on the response to a submitted patch, we improve
and resubmit and finally classify it (and the defects it fixes)
in two categories: accept (confirmed defect) and reject (con-
firmed rule violation). The latter means that the responsible
developers consider the defect for some reason as intended;
we will discuss this further in Section 5.1. As a matter of
pragmatics, these defects are added into a local whitelist to
filter them out in future runs.

In the period of February to July 2010, the students so
far have submitted 123 patches. The submitted patches focus
on the arch/ and driver/ subsystems and fix 364 out of
1,776 identified defects (20%). 23 (6%) of the analyzed and
fixed defects were classified as bugs. If we extrapolate this
defect/bug ratio to the remaining defects, we can expect to
find another 80+ configurability-related bugs in the Linux
kernel.

defect
reports

whitelist
filter reject

rule violation

defect
analysis

document
in whitelist

submit
patch

upstream

accept
confirmed bug

improve
and

resubmit

Figure 6. Based on the analysis of the defect reports, a patch
is manually created and submitted to kernel developers. Based
on the acceptance, we classify the defects that are fixed by our
patch either as confirmed rule violation or confirmed defect.

Reaction of Kernel Maintainers. Table 3 lists the state of
the submitted patches in detail; the corresponding defects
are listed in Table 2 (lower half). In general, we see that our
patches are well received: 87 out of 123 (71%) have been
answered; more than 70 percent of them within less than one
day, some even within minutes (Figure 7). We take this as
indication that many of our patches are easy to verify and in
fact appreciated.

Contribution to Linux. Table 3 also classifies the submitted
patches as critical and noncritical, respectively. Critical
patches fix bugs, that is, configurability defects that have
an impact on the binary code. We did not investigate in
detail the run-time observable effects of the 23 identified
bugs. However, what can be seen from Table 3 is that the
responsible developers consider them as worth fixing: 16 out
of 17 (94%) of our critical patches have been answered; 9
have already been merged into Linus Torvalds’ master git
tree for Linux 2.6.36.

The majority of our patches fixes defects that affect the
source code only, such as the examples shown in Section 2.2.
However, even for these noncritical patches 57 out of 106
(54%) have already reached acknowledged state or better.

[C14?] Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2011 (EuroSys ’11)

EuroSys ’11 143

<1 hour 28.74%
<1 day 72.41%
<1 week 90.8%

Figure 7. Response time of 87 answered patches

 0

 10

 20

 30

 40

 50

 60

 70

v2.6.30-rc1

v2.6.30

v2.6.31-rc1

v2.6.31

v2.6.32-rc1

v2.6.32

v2.6.33-rc1

v2.6.33

v2.6.34-rc1

v2.6.34

v2.6.35-rc1

v2.6.35

v2.6.36-rc1

New and Fixed Configuration Defects over Linux Releases

Introduced Defects
Fixed Defects

Figure 8. Evolution of defect blocks over various Kernel
versions. Most of our work was merged after the release of
Linux version 2.6.35.

These patches clean up the kernel sources by removing 5,129
lines of configurability-related dead code and superfluous
#ifdef statements (“cruft”). We consider this as a strong
indicator that the Linux community is aware of the negative
effects of configurability on the source-code quality and
welcomes attempts to improve the situation.

Figure 8 depicts the impact of our work on a larger scale.
To build this figure, we ran our tool on previous kernel
versions and calculated the number of configurability defects
that were fixed and introduced with each release. Most of
our patches entered the mainline kernel tree during the merge
window of version 2.6.36. Given that the patch submissions of
two students have already made such a measurable impact, we
expect that a consequent application of our approach, ideally
directly by developers that work on new or existing code,
could significantly reduce the problem of configurability-
related consistency issues in Linux.

5. Discussion
Our findings have yielded a notable number of configura-
bility defects in Linux. In the following, we discuss some
potential causes for the introduction of defects and rule viola-
tions, threats to validity, and the broader applicability of our
approach.

5.1 Interpretation of the Feedback
About 57 of the 123 submitted patches were accepted without
further comments. We take this as indication that experts can
easily verify the correctness of our submissions. Because
of the distributed development of the Linux kernel, drawing

patch status critical noncritical
∑

submitted 17 106 123
unanswered 1 35 36
ruleviolation 1 14 15
acknowledged 1 14 15
accepted 5 3 8
mainline 9 40 49

Table 3. Critical patches do have an effect on the resulting
binaries (kernel and runtime-loadable modules). Noncritical
patches remove text from the source code only.

the line between acknowledged and accepted (i.e., patches
that have been merged for the next release), is challenging.
We therefore count the 87 patches for which we received
comments by Linux maintainers that maintain a public branch
on the internet or are otherwise recognized in the Linux
community as a confirmation that we identified a valid defect.

Causes for Defects. We have not yet analyzed the
causes for defects systematically; doing this (e.g., using
HERODOTOS [Palix 2010]) remains a topic for further re-
search. However, we can already name some common causes,
for which we need to consider how changes get integrated
into Linux:

Logical defects are often caused by copy and paste (which
confirms a similar observation in [Engler 2001]). Apparently
code is often copied together with an enclosing #ifdef–
#else block into a new context, where either the #ifdef

or the #else branch is always taken (i.e., undead) and the
counterpart is dead.

The most common source for symbolic defects is spelling
mistakes, such as the CONFIG_HOTPLUG example in Patch 1.
Another source for this kind of defects is incomplete merges
of ongoing developments, such as architecture-specific code
that is maintained by respective developer teams who main-
tain separate development trees and only submit hand-
selected patch series for inclusion into the mainline. Ob-
viously, this hand selection does not consider configurability-
based defects – despite the recommendations in the patch
submission guidelines:7

6: Any new or modified CONFIG options don’t muck up the config menu.
7: All new Kconfig options have help text.
8: Has been carefully reviewed with respect to relevant Kconfig

combinations. This is very hard to get right with testing --
brainpower pays off here.

Our approach provides a systematic, tool-based approach for
this demanded checking of KCONFIG combinations.

Reasons for Rule Violations. On the other hand, we count
15 patches that were rejected by Linux maintainers. For
all these patches, the respective maintainers confirmed the
defects as valid (in one case even a bug!), but nevertheless
prefer to keep them in the code. Reasons for this (besides
carelessness and responsibility uncertainties) include:

7 Documentation/SubmitChecklist in the Linux source.

“Feature Consistency in Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” [C14?]

144 EuroSys ’11

Documentation. Even though all changes to the Linux
source code are kept in the version control system (GIT),
some maintainers have expressed their preference to keep
outdated or unsupported feature implementations in the
code in order to serve as a reference or template (e.g.,
to ease the porting of driver code to a newer hardware
platform).

Out-of-tree development. In a number of cases, we find
configurability-related items that are referenced from code
in private development trees only. Keeping these symbolic
defects in the kernel seems to be considered helpful for
future code submission and review.

While it is debatable if all of the above are good reasons or
not, of course we have to accept the maintainers preferences.
The whitelist approach provides a pragmatic way to make
such preferences explicit – so that they are no longer reported
as defects, but can be addressed later if desired.

5.2 Threats to Validity
Accuracy. A strong feature of our approach is the accuracy
with which configurability defects can be found. In our
approach, false positives are conditional blocks that are
falsely reported as unselectable. This means that there is a
KCONFIG selection for which the code is seen by the compiler.
By design, our approach operates exact and avoids this kind
of error. Since by construction we avoid false positives (sans
implementation bugs), the major threat to validity is the
rate of false negatives, that is, the rate of the remaining,
unidentified issues.

In fact, we have found for 2 (confirmed) defects explicit
#error statements in the source that provoke compilation
errors in case an invalid set of features has been selected.
In our experiment, we classified these defects as confirmed
rule violations. On top of that, we can find 28 similar #error
statements in Linux 2.6.35. This indicates some distrust of
developers in the variability declarations in KCONFIG, which
our tool helps to mitigate by checking the effective constraints
accurately.

Coverage. So far we do not consider the (discouraged)
509 #undef and #define CONFIG_ statements that we find
in the code. However, these statements could possibly lead to
incomplete results for only at most 4.51 percent of the 11,283
KCONFIG items.

Another restriction of the current implementation is that
we do not yet analyze nonpropositional expressions in #ifdef

statements, like comparisons against the integral value of
some CONFIG_ flag. This affects about 2% out of 82,116
#ifdef blocks. We are currently looking into improving
our implementation to reduce this number even further by
rewriting the extracted constraints and process them using
a satisfiability modulo theories (SMT) or constraint solving
problem (CSP) engine.

An important, yet not considered source of feature con-
straints is the build system (makefiles). 91 percent of the
Linux source files are feature-dependent, that is, they are
not compiled at all when the respective feature has not been
selected. Incorporation of these additional constraints into
our approach is straight-forward: they can simply be added
as further conjunctions to the variability model. These addi-
tional constraints could possibly restrict the variability even
further, and thereby lead to false negatives.

Subtle semantic details and anachronisms of the KCONFIG
language and implementation [Berger 2010, Zengler 2010]
made our engineering difficult and contributed to the number
of false negatives. At the time we conducted the experiment
in Section 4, our implementation did not completely support
the KCONFIG features default value and select. Meanwhile,
we have fixed these issues in the undertaker, which increases
the raw number of defects from 1,776 to 2,972.

In no case our approach resulted in a change that proposes
to remove blocks that are used in production. However, in
one case8 we stumbled across old code that is useful with
some additional debug-only patches that have never been
merged. It turned out that the patches in question are no longer
necessary in favor of the new tracing infrastructure. Our patch
therefore has contributed to the removal of otherwise useless
and potentially confusing code.

Despite all potential sources of false negatives: Compared
to the 760 issues reported by the GREP-based approach
(including many false positives!, see Section 3.1), our tool
already finds more than twice as many defects. As our
approach prevents false positives, this has to be considered
as a lower bound for the number of configurability defects in
Linux!

5.3 General Applicability of the Approach
Linux is the most configurable piece of software we are
aware of, which made it a natural target to evaluate accuracy
and scalability of our approach. However, the approach can
be implemented for other software families as well, given
there is some way to extract feature identifiers and feature
constraints from all sources of variability. This is probably
always the case for the implementation space (code), which
is generally configured by CPP or some similar preprocessor.
Extracting the variability from the configuration space is
straight-forward, too, as long as features and constraints are
described by some semi-formal model (such as KCONFIG).
The configurability of eCos, for instance, is described in
the configuration description language (CDL) [Massa 2002],
whose expressiveness is comparable to KCONFIG.

KCONFIG itself is employed by more and more software
families besides Linux. Examples include OpenWRT9 or

8 http://kerneltrap.org/mailarchive/linux-ext4/2010/2/8/

6762333/thread
9 http://www.openwrt.org

[C14?] Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2011 (EuroSys ’11)

EuroSys ’11 145

BusyBox.10 For these software families our approach could
be implemented with minimal effort.

However, even if the system software is configured by
a simple configure script (such as FreeBSD), it would still
be possible to extract feature identifiers and, hence, use our
approach to detect symbolic configurability defects – which
in the case of Linux account for 74 percent of all defects.
Feature constraints, on the other hand, are more difficult to
extract from configure files, as they are commonly given as
human-readable comments only. A possible solution might
be to employ techniques of natural language processing
to automatically infer the constraints from the comments,
similar to the approach suggested in [Tan 2007].

In a more general sense, our approach could be combined
with other tools to make them configurability aware. For
instance, modifications on in-kernel APIs and other larger
refactorings are commonly done tool assisted (e.g., Padioleau
[2008]). However, refactoring tools are generally not aware
of code liveness and suggest changes in dead code. Our
approach contributes to avoiding such useless work.

5.4 Variability-Aware Languages
The high relevance of static configurability for system soft-
ware gives rise to the question if we are in need of better
programming languages. Ideally, the language and compiler
would directly support configurability (implementation and
configuration), so that symbolic and semantic integrity issues
can be prevented upfront by means of type-systems or at least
be checked for at compile-time.

With respect to implementation of configurability it is
generally accepted that CPP might not be the right tool for
the job [Liebig 2010, Spencer 1992]. Many approaches
have been suggested for a better separation of concerns in
configurable (system) software, including, but not limited
to: object-orientation [Campbell 1993], component models
[Fassino 2002, Reid 2000], aspect-oriented programming
(AOP) [Coady 2003, Lohmann 2009], or feature-oriented
programming (FOP) [Batory 2004]. However, in the systems
community we tend to be reluctant to adopt new program-
ming paradigms, mostly because we fear unacceptable run-
time overheads and immature tools. C++ was ruled out of
the Linux kernel for exactly these reasons.11 The authors
certainly disagree here (in previous work with embedded op-
erating systems we could show that C++ class composition
[Beuche 1999] and AOP [Lohmann 2006] provide excellent
means to implement overhead-free, fine-grained static con-
figurability). Nevertheless, we have to accept CPP as the still
de-facto standard for implementing static configurability in
system software [Liebig 2010, Spinellis 2008].

With respect to modeling configurability, feature model-
ing and other approaches from the product line engineering

10 http://www.busybox.net
11 Trust me – writing kernel code in C++ is a BLOODY STUPID IDEA
LINUS TORVALDS [2004], http://www.tux.org/lkml/#s15-3

domain [Czarnecki 2000, Pohl 2005] provide languages and
tooling to describe the variability of software systems, includ-
ing systematic consistency checks. KCONFIG for Linux or
CDL for eCos fit in here. However, what is generally miss-
ing is the bridge between the modeled and the implemented
configurability. Hence tools like the UNDERTAKER remain
necessary.

6. Related Work
Automated bug detection by examining the source code has a
long tradition in the systems community. Many approaches
have been suggested to extract rules, invariants, specifica-
tions, or even misleading source-code comments from the
source code or execution traces [Engler 2001, Ernst 2000,
Kremenek 2006, Li 2005, Tan 2007]. Basically, all of these
approaches extract some internal model about what the code
should look like/behave and then match this model against
the reality to find defects that are potential bugs. For instance,
iComment [Tan 2007] employs means of natural language
processing to find inconsistencies between the programmer’s
intentions expressed in source-code comments and the ac-
tual implementation; Kremenek [2006] and colleagues use
logic and probability to automatically infer specifications that
can be checked by static bug-finding tools. However, none
of the existing approaches takes configurability into account
when inferring the internal model. In fact, the existing tools
are more or less configurability agnostic – they either ig-
nore configuration-conditional parts completely, fall back to
simple heuristics, or have to be executed on preprocessed
source code. Thereby, important information is lost. Our anal-
ysis framework could be combined with these approaches
to make them configurability-aware and to systematically
improve their coverage with respect to the (extremely high)
number of Linux variants. However, we also think that con-
figurability has to be understood as a significant source of
bugs in its own respect. Our approach does just that.

A reason for the fact that existing source-code analy-
sis tools ignore configurability (more or less) might be
that conditionally-compiled code tends to be hard to ana-
lyze in real-world settings. Many approaches for analyzing
conditional-compilation usage have been suggested, usually
based on symbolic execution. However, even the most pow-
erful symbolic execution techniques (such as KLEE [Cadar
2008]) would currently not scale to the size of the Linux
kernel. Hence, several authors proposed to apply transforma-
tion systems to symbolically simplify CPP code with respect
to configurability aspects [Baxter 2001, Hu 2000]. Our ap-
proach is technically similar in the sense that we also analyze
only the configurability-related subset of CPP. However, by
“simulating” the mechanics of the CPP using propositional
formulas [Sincero 2010], we can more easily integrate (and
check against) other sources of configurability, such as the
configuration-space model.

“Feature Consistency in Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” [C14?]

146 EuroSys ’11

So far we have submitted 123 patches to the Linux com-
munity, which is a reasonably high number to confirm many
observations of Guo [2009]: Patches for actively-maintained
files are a lot more likely to receive responses. It really is
worth the effort to figure out who is the principal maintainer
(which is not always obvious) and to ensure that patches are
easy reviewable and easy to integrate.

7. Summary and Conclusions
#ifdef’s sprinkled all over the place are neither an
incentive for kernel developers to delve into the code
nor are they suitable for long-term maintenance.12

To cope with a broad range of application and hardware set-
tings, system software has to be highly configurable. Linux
2.6.35, as a prominent example, offers 11,283 configurable
features (KCONFIG items), which are implemented at com-
pile time by 82,116 conditional blocks (#ifdef, #elif, . . .)
in the source code. The number of features has more than dou-
bled within the last five years! From the maintenance point of
view, this imposes big challenges, as the configuration model
(the selectable features and their constraints) and the config-
urability that is actually implemented in the code have to be
kept in sync. In the case of Linux, this has led to numerous
inconsistencies, which manifest as dead #ifdef-blocks and
bugs.

We have suggested an approach for automatic consistency
checks for compile-time configurable software. Our imple-
mentation for Linux has yielded 1,776 configurability issues.
Based on these findings, we so far have proposed 123 patches
(49 merged, 8 accepted, 15 acknowledged) that fix 364 of
these issues (among them 20 confirmed new bugs) and im-
prove the Linux source-code quality by removing 5,129 lines
of unnecessary #ifdef-code. The performance of our tool
chain is good enough to be integrated into the regular Linux
build process, which offers the chance for the Linux commu-
nity to prevent configurability-related inconsistencies from
the very beginning. We are currently finalizing out tools in
this respect to submit them upstream.

The lesson to learn from this paper is that configurability
has to be seen as a significant (and so far underestimated)
cause of software defects in its own respect. Our work is
meant as a call for attention on these problems – as well as a
first attempt to improve on the situation.

Acknowledgments
We would like to thank our students Christian Dietrich and
Christoph Egger for their enduring and admiring work on
the implementation and evaluation. We thank Julia Lawall
for inspiring conversations and her helpful comments on an
early version of this work. Many thanks go to the anonymous
reviewers for their constructive comments that helped to

12 Linux maintainer Thomas Gleixner in his ECRTS ’10 keynote “Realtime
Linux: academia v. reality”. http://lwn.net/Articles/397422

improve this paper a lot as well as to our shepherd Dawson
Engler.

References
[Batory 2004] Don Batory. Feature-oriented programming and the

AHEAD tool suite. In Proceedings of the 26th International
Conference on Software Engineering (ICSE ’04), pages 702–703.
IEEE Computer Society Press, 2004.

[Baxter 2001] Ira D. Baxter and Michael Mehlich. Preprocessor
conditional removal by simple partial evaluation. In Proceedings
of the 8th Working Conference on Reverse Engineering (WCRE

’01), page 281, Washington, DC, USA, 2001. IEEE Computer
Society Press. ISBN 0-7695-1303-4.

[Benavides 2005] D. Benavides, A. Ruiz-Cortés, and P. Trinidad.
Automated reasoning on feature models. In Proceedings of
the 17th International Conference on Advanced Information
Systems Engineering (CAISE ’05), volume 3520, pages 491–503,
Heidelberg, Germany, 2005. Springer-Verlag.

[Berger 2010] Thorsten Berger and Steven She. Formal semantics of
the CDL language. Technical note, University of Leipzig, 2010.

[Beuche 1999] Danilo Beuche, Abdelaziz Guerrouat, Holger Pa-
pajewski, Wolfgang Schröder-Preikschat, Olaf Spinczyk, and
Ute Spinczyk. The PURE family of object-oriented operating
systems for deeply embedded systems. In Proceedings of the
2nd IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC ’99), pages 45–53, St Malo,
France, May 1999.

[Cadar 2008] Cristian Cadar, Daniel Dunbar, and Dawson Engler.
KLEE: Unassisted and automatic generation of high-coverage
tests for complex systems programs. In 8th Symposium on Oper-
ating System Design and Implementation (OSDI ’08), Berkeley,
CA, USA, 2008. USENIX Association.

[Campbell 1993] Roy Campbell, Nayeem Islam, Peter Madany, and
David Raila. Designing and implementing Choices: An object-
oriented system in C++. Communications of the ACM, 36(9),
1993.

[Coady 2003] Yvonne Coady and Gregor Kiczales. Back to the fu-
ture: A retroactive study of aspect evolution in operating system
code. In Mehmet Akşit, editor, Proceedings of the 2nd Inter-
national Conference on Aspect-Oriented Software Development
(AOSD ’03), pages 50–59, Boston, MA, USA, March 2003. ACM
Press.

[Czarnecki 2000] Krysztof Czarnecki and Ulrich W. Eisenecker.
Generative Programming. Methods, Tools and Applications.
Addison-Wesley, May 2000. ISBN 0-20-13097-77.

[Czarnecki 2007] Krzysztof Czarnecki and Andrzej Wasowski. Fea-
ture diagrams and logics: There and back again. In Proceedings
of the 11th Software Product Line Conference (SPLC ’07), pages
23–34. IEEE Computer Society Press, Sept. 2007.

[Engler 2001] Dawson Engler, David Yu Chen, Seth Hallem, Andy
Chou, and Benjamin Chelf. Bugs as deviant behavior: a general
approach to inferring errors in systems code. In Proceedings
of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pages 57–72, New York, NY, USA, 2001. ACM
Press.

[C14?] Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems 2011 (EuroSys ’11)

EuroSys ’11 147

[Ernst 2000] Michael D. Ernst, Adam Czeisler, William G. Griswold,
and David Notkin. Quickly detecting relevant program invariants.
In Proceedings of the 22nd International Conference on Software
Engineering (ICSE ’00), pages 449–458, New York, NY, USA,
2000. ACM Press. ISBN 1-58113-206-9.

[Fassino 2002] Jean-Philippe Fassino, Jean-Bernard Stefani, Julia
Lawall, and Gilles Muller. THINK: A software framework for
component-based operating system kernels. In Proceedings of
the 2002 USENIX Annual Technical Conference, pages 73–86.
USENIX Association, June 2002.

[Guo 2009] Philip J. Guo and Dawson Engler. Linux kernel
developer responses to static analysis bug reports. In Proceedings
of the 2009 USENIX Annual Technical Conference, Berkeley, CA,
USA, June 2009. USENIX Association. ISBN 978-1-931971-68-
3.

[Hu 2000] Ying Hu, Ettore Merlo, Michel Dagenais, and Bruno
Lagüe. C/C++ conditional compilation analysis using symbolic
execution. In Proceedings of the 16th IEEE International
Conference on Software Maintainance (ICSM’00), page 196,
Washington, DC, USA, 2000. IEEE Computer Society Press.
ISBN 0-7695-0753-0.

[Kremenek 2006] Ted Kremenek, Paul Twohey, Godmar Back,
Andrew Ng, and Dawson Engler. From uncertainty to belief:
inferring the specification within. In 7th Symposium on Operating
System Design and Implementation (OSDI ’06), pages 161–176,
Berkeley, CA, USA, 2006. USENIX Association.

[Li 2005] Zhenmin Li and Yuanyuan Zhou. PR-miner: automatically
extracting implicit programming rules and detecting violations
in large software code. In Proceedings of the 10th European
Software Engineering Conference and the 13th ACM Symposium
on the Foundations of Software Engineering (ESEC/FSE ’00),
pages 306–315, New York, NY, USA, 2005. ACM Press. ISBN
1-59593-014-0.

[Liebig 2010] Jörg Liebig, Sven Apel, Christian Lengauer, Christian
Kästner, and Michael Schulze. An analysis of the variability in
forty preprocessor-based software product lines. In Proceedings
of the 32nd International Conference on Software Engineering
(ICSE ’10), New York, NY, USA, 2010. ACM Press.

[Lohmann 2009] Daniel Lohmann, Wanja Hofer, Wolfgang
Schröder-Preikschat, Jochen Streicher, and Olaf Spinczyk.
CiAO: An aspect-oriented operating-system family for resource-
constrained embedded systems. In Proceedings of the 2009
USENIX Annual Technical Conference, pages 215–228, Berke-
ley, CA, USA, June 2009. USENIX Association. ISBN 978-1-
931971-68-3.

[Lohmann 2006] Daniel Lohmann, Fabian Scheler, Reinhard Tartler,
Olaf Spinczyk, and Wolfgang Schröder-Preikschat. A quantitative
analysis of aspects in the eCos kernel. In Proceedings of the ACM
SIGOPS/EuroSys European Conference on Computer Systems
2006 (EuroSys ’06), pages 191–204, New York, NY, USA, April
2006. ACM Press.

[Massa 2002] Anthony Massa. Embedded Software Development
with eCos. New Riders, 2002. ISBN 978-0130354730.

[Padioleau 2008] Yoann Padioleau, Julia L. Lawall, Gilles Muller,
and René Rydhof Hansen. Documenting and automating col-
lateral evolutions in Linux device drivers. In Proceedings of
the ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008 (EuroSys ’08), Glasgow, Scotland, March 2008.

[Palix 2010] Nicolas Palix, Julia Lawall, and Gilles Muller. Tracking
code patterns over multiple software versions with Herodotos.
In Proceedings of the 9th International Conference on Aspect-
Oriented Software Development (AOSD ’10), pages 169–180,
New York, NY, USA, 2010. ACM Press. ISBN 978-1-60558-958-
9.

[Parnas 1979] David Lorge Parnas. Designing software for ease
of extension and contraction. IEEE Transactions on Software
Engineering, SE-5(2):128–138, 1979.

[Pohl 2005] Klaus Pohl, Günter Böckle, and Frank J. van der Linden.
Software Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, 2005. ISBN 978-3540243724.

[Reid 2000] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau,
and Eric Eide. Knit: Component composition for systems
software. In 4th Symposium on Operating System Design and
Implementation (OSDI ’00), pages 347–360, Berkeley, CA, USA,
October 2000. USENIX Association.

[Sincero 2010] Julio Sincero, Reinhard Tartler, Daniel Lohmann,
and Wolfgang Schröder-Preikschat. Efficient extraction and
analysis of preprocessor-based variability. In Proceedings of
the 9th International Conference on Generative Programming
and Component Engineering (GPCE ’10), New York, NY, USA,
2010. ACM Press.

[Spencer 1992] Henry Spencer and Gehoff Collyer. #ifdef consid-
ered harmful, or portability experience with C News. In Proceed-
ings of the 1992 USENIX Annual Technical Conference, Berkeley,
CA, USA, June 1992. USENIX Association.

[Spinellis 2008] Diomidis Spinellis. A tale of four kernels. In
Wilhem Schäfer, Matthew B. Dwyer, and Volker Gruhn, editors,
Proceedings of the 30th International Conference on Software
Engineering (ICSE ’08), pages 381–390, New York, NY, USA,
May 2008. ACM Press. ISBN 987-1-60558-079-1.

[Tan 2007] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou.
/*icomment: Bugs or bad comments?*/. In Proceedings of the
21st ACM Symposium on Operating Systems Principles (SOSP
’07), pages 145–158, New York, NY, USA, 2007. ACM Press.
ISBN 978-1-59593-591-5.

[Zengler 2010] Christoph Zengler and Wolfgang Küchlin. Encoding
the Linux kernel configuration in propositional logic. In Lothar
Hotz and Alois Haselböck, editors, Proceedings of the 19th
European Conference on Artificial Intelligence (ECAI 2010)
Workshop on Configuration 2010, pages 51–56, 2010.

“Feature Consistency in Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature Problem” [C14?]

148 EuroSys ’11

A Robust Approach for Variability Extraction from the
Linux Build System

Christian Dietrich Reinhard Tartler
Wolfgang Schröder-Preikschat Daniel Lohmann

{dietrich, tartler, wosch, lohmann}@cs.fau.de

Friedrich-Alexander University Erlangen-Nuremberg, Germany

ABSTRACT
With more than 11,000 optional and alternative features, the Linux
kernel is a highly configurable piece of software. Linux is generally
perceived as a textbook example for preprocessor-based product
derivation, but more than 65 percent of all features are actually
handled by the build system. Hence, variability-aware static analysis
tools have to take the build system into account.

However, extracting variability information from the build system
is difficult due to the declarative and turing-complete MAKE lan-
guage. Existing approaches based on text processing do not cover
this challenges and tend to be tailored to a specific Linux version
and architecture. This renders them practically unusable as a basis
for variability-aware tool support – Linux is a moving target!

We describe a robust approach for extracting implementation
variability from the Linux build system. Instead of extracting the
variability information by a text-based analysis of all build scripts,
our approach exploits the build system itself to produce this infor-
mation. As our results show, our approach is robust and works for
all versions and architectures from the (git-)history of Linux.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.2.9
[Management]: Software configuration management

General Terms
Design, Experimentation, Management

Keywords
Configurability, Maintenance, Linux, Build Systems, Kbuild, Static
Analysis, VAMOS

1. INTRODUCTION
System-software product lines usually employ compile-time con-

figuration as a simple and widely used technique for tailoring with
respect to a broad range of supported hardware architectures and
application domains. A prominent example is the Linux kernel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC ’12, September 02 – 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1094-9/12/09 ...$15.00.

KCONFIG features

11,821 [100%]

KBUILD interpreted

7,911 [66.9%]

KBUILD only

5,941 [50.3%]

75.1%

KBUILD/CPP

1,970 [16.7%]

24.9%

66.9%

KCONFIG internal

1,870 [15.8%]

15.8%

CPP interpreted

4,010 [33.9%]

CPP only

2,040 [17.3%]

50.9%

33.9%

49.1%

Ê

ÊË

Ë Ë

Ì

ÌÌ

Figure 1: Statistic how the features, declared in KCONFIG, are
referenced by source-code and Makefiles in Linux v3.2

The Linux KCONFIG feature model provides more than 11,000 con-
figurable features in Linux v3.2. The thereby described intended
variability is implemented by 28,000 source files containing 84,000
#ifdef-blocks.

In previous work, we could show that intended and actually im-
plemented variability (i.e., the KCONFIG feature model and the
variability points in the code) do not necessarily match. However,
many configurability-related defects, such as dead #ifdef-code, and
bugs, can be found upfront by better tool support [29]. This eventu-
ally has led to (accepted) fixes for twenty new bugs and the removal
of 5,000 superfluous lines of #ifdef-code in Linux v2.6.36. How-
ever, these numbers are just the tip of an iceberg. The lesson to be
learned from this is: Variability has to be understood, analyzed, and
tested as a system property in its own respect. For a system-software
product line at the size of Linux, this requires profound and robust
tool support.

1.1 The Role of the Build System
A crucial building block for variability-aware static checking

tools are reliable extractors that transform the actually implemented
variability from their various sources into a formal model. Ex-
isting studies (including our own) have mostly focused on the
C Preprocessor (CPP) as a means to implement features in Linux [13,
14, 25, 28, 29]; however, in Linux, variability is mostly implemented
in a more coarse-grained manner (Figure 1): Only a third (33.9%)
of all features do affect the work of the CPP, that is, have an effect
on the sub-file level. On the other hand, two third (66.9%) of all
features are referenced in the build system (KBUILD). These fea-
tures have an effect on the selection of whole files into the build
process. Hence, we need robust tools to extract the implementation
variability from the Linux build system.

[C6?] Proceedings of the 16th Software Product Line Conference (SPLC ’12)

SPLC ’12 149

1.2 Related Work in a Nutshell
Approaches to extract implementation variability from KBUILD

have previously been published by Berger et al. [4] and Nadi and
Holt [18]. A common characteristic of both approaches is that they
rely on text processing of makefiles, that is, they employ parsing
(Berger et al.) or clever regular expressions (Nadi and Holt) to extract
the presence implications for Linux source files from the build
scripts. However, the underlying MAKE language is a declarative
and turing-complete language; its advanced features, such as the
$(eval), $(shell), or $(wildcard) functions, make it notoriously
difficult to analyze. If these features are used, a text-processing–
based approach quickly hits its limits, since the enclosed fragments
may be for instance arbitrary shell command.

Even worse from a practical point of view is, however, that the
existing approaches are brittle with respect to evolutionary changes
in the KBUILD system itself: To achieve good results, they have to
provide explicit support for many corner cases of KBUILD analysis,
which effectively tailors them for a specific Linux version and ar-
chitecture. While this might be perfectly acceptable if the goal is to
analyze a certain Linux version, it renders them as practically unus-
able as a basis for general variability-aware tool support – Linux is
a moving target.

1.3 About this Paper
The contribution of this paper is a robust approach for extracting

implementation variability from the Linux KBUILD system. Instead
of text processing, our approach exploits the build system itself to
produce this information. Thereby, our approach is not only simple
to implement, but also robust with respect to evolutionary changes
and the usage of advanced MAKE features. Our evaluation results
show that our approach works for all versions and architectures from
the (git-)history of Linux and reliably extracts presence conditions
for more than 93% percent of all source code files. In two appli-
cations, we show that the presented implementation significantly
improves our previous results on configuration defects [29] and
configuration coverage (CC) [28].

The context of this work is the VAMOS 1 project, funded by the
German Research Council (DFG). The goal is to provide practical
tools for analysis and management of variability in system software.
So far the produced tool hav produced over 100 patches that have
been integrated into the Linux mainline kernel.

The remainder of this paper is structured as following: In Sec-
tion 2, we introduce the background and technical context and
analyze the challenges in build-system analysis. This is followed
by the description of the basics of our approach in Section 3. Then,
we analyze the results in Section 4, followed by two applications in
Section 5. After discussing the results in Section 6 and an overview
over further related work in Section 7, the paper concludes with
Section 8.

2. VARIABILITY IN LINUX
The scattered nature of variability and variability implementation

in Linux makes holistic reasoning challenging. In practice, the
analysis of the different models, languages and representations of
variability requires very specialized and sophisticated extraction
tools. A solid understanding of how the Linux build system KBUILD
and the configuration tool KCONFIG play together is instrumental to
correctly relate variability implementations from different extraction
tools. This subsection analyzes the mechanics of KBUILD and
identifies the challenges for an automated extraction of variability.

1Variability Management in Operating Systems

Source files

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

CPP

autoconf.h

ld numa.o <...> -o vmlinux

drivers.kovmlinuz

Root Feature

Kconfig
selection

1

.config

3

4

Build scripts

Makefile
arch/x86/init.c

arch/x86/...
arch/x86/entry32.S

lib/Makefile
kernel/sched.c
...

auto.conf

2

kbuildKbuild

kbuildKconfig

derives from

coarse-grained
variability

fine-grained
variability

drives and controls

derives from

gcc -O2 -Wall -c numa.c -o numa.o

Figure 2: Overview of the technical realization of software vari-
ability in Linux. The coarse-grained variability implemented in
makefile dominates fine-grained variability in CPP code.

2.1 Levels of Variability
In a nutshell, static configurability is specified and implemented in

Linux top-down on three major levels, for which Figure 1 illustrates
their quantitative relevance:

Ê The configuration system (KCONFIG) defines the available
features and their constraints (intended variability) and pro-
vides an interface to specify and manage a concrete (product)
configuration.

Ë The build system (KBUILD) implements coarse-grained vari-
ability in the code by inclusion and exclusion of complete
translation units in the build process. The produced build
products include object files, the bootable kernel image and
loadable kernel modules (LKMs).

Ì The CPP implements fine-grained variability by inclusion
or exclusion of #ifdef-blocks within the files selected by
KBUILD.

Figure 2 describes the Linux toolchain that drives the compilation
process. At the top, the Linux feature model defines the (inten-
tional) product line variability [16, 20]. Here, the user selects a
concrete product configuration with the KCONFIG tool and saves
his selection to a file named .config. The Linux build system
KBUILD transforms the thereby encoded feature selection into two
further representations: An auto.conf file in MAKE-syntax and an
autoconf.h file in CPP syntax (Figure 3). Technically, these repre-
sentations control the (extensional) software variability [16, 27] in
makefiles and C source code during the compilation process.

For the CPP representation, an additional normalization step is
applied for tristate features: Many features, especially device drivers,
can be configured as compiled into kernel, compiled as loadable
kernel module or disabled. To ease the use in #ifdef statements,
KCONFIG maps this to boolean flags by inserting an additional CPP
variable with the _MODULE, suffix into autoconf.h for each tristate
feature (Figure 3).

“A Robust Approach for Variability Extraction from the Linux Build System” [C6?]

150 SPLC ’12

(a) KCONFIG output: .config

SMP=n
PM=y
APM=m

(b) MAKE representation: auto.conf

CONFIG_SMP := n
CONFIG_PM := y
CONFIG_APM := m

(c) CPP representation: autoconf.h

#undef CONFIG_SMP
#define CONFIG_PM 1
#undef CONFIG_APM
#define CONFIG_APM_MODULE 1

Figure 3: Representation of a feature selection

In Step Ë, the MAKE representation of the current feature se-
lection is then used by KBUILD to implement the coarse-grained
variability on a per-file basis. All thereby included translation units
are passed to the compiler, which in turn uses the CPP representation
during preprocessing (Step Ì) to implement the fine-grained con-
figurability. The invocation of the compiler and linker is, however,
controlled by KBUILD,2 which again uses the MAKE representation
of the current feature selection to construct compiler and linker
options used in Step Í for creating the build goals: The vmlinuz

kernel image and the library of loadable driver objects.

2.2 Variability Implementation in Kbuild
As detailed in the previous section, KBUILD gets a file auto.conf

that describes all selected features and their values in MAKE syntax.
KBUILD then resolves which file implements what feature, deter-
mines the set of translation units that are relevant for a given config-
uration selection, and invokes the compiler for each translation unit
with potentially configuration-dependent settings and compilation
flags. Internally, KBUILD employs GNU MAKE [26] to control the
actual build process; in Linux v3.2 the mapping from features to
translation units is encoded in 1,568 makefiles that are spread across
the source tree. However, Linux makefiles look quite different from
typical text-book makefiles as they employ KBUILD-specific idioms
to implement Linux-specific (variability) requirements, such as [11]:

• Optional features: Many features, such as drivers, are
present (or absent) by deciding about the inclusion of their
respective implementation files.

• Tristate features: Linux allows most drivers to be compiled
either statically into the kernel or as LKM.

• Loose coupling: The decision about what set of files is used
for a given configuration can be specified at various levels of
granularity (such as disabling a complete subsystem by not
descending a subdirectory).

In the following, we provide further details on these idioms, as they
are relevant for this paper.

2.2.1 Optional and Tristate Features
In all makefile fragments, we can find two variables that collect

selected and unselected object files: The make variable obj-y con-
tains the list of all files that are to be statically compiled into the
2The exact mechanisms are fairly technical and have already been
discussed elsewhere (e.g., [11, 17]).

kernel. Similarly, the variable obj-m collects all object files that will
be compiled as LKM. Object files in the make variable obj-n are
not considered for compilation. The suffixes {y,m,n} are added
by the expansion of variables from auto.conf (Figure 3).3 This
pattern for managing variability with KBUILD is best illustrated by
a concrete example:

1 obj-y += fork.o
2 obj-$(CONFIG_SMP) += spinlock.o
3 obj-$(CONFIG_APM) += apm.o

In line 1, the target fork.o is unconditionally added to the list
obj-y, which instructs KBUILD to compile and link the file directly
into the kernel. In line 2, the variable CONFIG_SMP, which is taken
from the KCONFIG selection, controls the compilation of the target
spinlock.o. The variable derives from the feature SMP, which is
declared as boolean. Therefore, spinlock.o cannot be compiled
as LKM. When the feature selection from Figure 3 (b) is applied,
CONFIG_SMP has the value n, spinlock.o is added to obj-n and
therefore not compiled. In line 3 the file apm.o is handled in a
similar way to spinlock.o. Because the enabling feature APM is
declared as tristate, it might take value m. With the feature selection
from Figure 3 (b), APM has the value m, therefore apm.o is added to
obj-m and compiled as LKM.

Note that instead of mentioning the source files, the makefile
rules reference only the resulting build products. The mapping to
source files is implemented by implicit rules (for details, cf. [26,
Chapter 10]). This mapping has to be considered for any kind of
makefile variability analysis.

2.2.2 Loose Coupling
Programmers specify in KBUILD makefiles the conditions that

lead to the inclusion of source files in the compilation process. As
shown above, this commonly happens by mentioning the respective
build products in the special targets obj-y and obj-m. This works
for the majority of cases, where a feature is implemented by a
single implementation file. However, in order to control complete
subsystems, which generally consist of several implementation files,
the programmer can also include subdirectories:

obj-$(CONFIG_PM) += power/

This line adds the subdirectory power conditionally, depending on
the selection of the feature PM (power management). For each listed
subdirectory, its containing Makefile is evaluated during the build
process. This allows a more coarse-grained control of source file
compilation with KCONFIG configuration options. As we will show
later in this paper, the inclusion of most source files in Linux is
controlled by enabling a single configuration option.

2.3 Challenges in Build-System Analysis
While the selection process described in Section 2.2 is conceptu-

ally simple, an automated analysis is challenging because of engi-
neering reasons. Since KBUILD is implemented with the MAKE tool,
the kernel developer has many possibilities to express constraints.
Not only is MAKE a full-blown programming language that supports
a wide range of operations, including string modifications, condition-
als, and meta-programming, it also allows the execution of arbitrary
further programs ("shell escapes"). The Linux coding guidelines
do not pose any restrictions on what MAKE features should be used

3The idea of this pattern dates back to 1997 and was proposed
by Micheal Elizabeth Castain under the working title "Dancing
Makefiles" (https://lkml.org/lkml/1997/1/29/1). It was
globally integrated into the kernel makefiles by Linus Torvalds
shortly before the release of Linux v2.4.

[C6?] Proceedings of the 16th Software Product Line Conference (SPLC ’12)

SPLC ’12 151

in KBUILD. This subsection presents a few selected examples of
constructs that are present in the build system of Linux and are far
more expressive than the standard constructs.

The following example is taken from arch/x86/kvm/Makefile

and uses the function addprefix:

obj-$(CONFIG_KVM_ASYNC_PF) += \
$(addprefix ../../../virt/kvm/, async_pf.o)

The addprefix function takes an arbitrary amount of arguments,
prepends its first argument to the remaining ones, and returns them.
In this case using addprefix is not really necessary, because there
is only one additional argument and the whole expression is equal to
../../../virt/kvm/async_pf.o. Nevertheless, this case requires
special handling with a text-processing–based approach.

In KBUILD, programmers also use generative programming
techniques and loop constructs, like in this excerpt taken from
arch/ia64/kernel/Makefile:

ASM_PARAVIRT_OBJS = ivt.o entry.o fsys.o
define paravirtualized_native
AFLAGS_$(1) += -D__IA64_ASM_PARAVIRTUALIZED_NATIVE
[...]
extra-y += pvchk-$(1)
endef
$(foreach obj,$(ASM_PARAVIRT_OBJS),$(eval $(call

paravirtualized_native,$(obj))))

Here, a list of implementation files (ivt.S, entry.S and fsys.S) not
only need to be included, but also require special compilation flags.
In this example, the macro paravirtualized_native is evaluated
for all three implementation files by the MAKE tool at compilation-
time. Again, for a text-processing–based approach, this corner case
is challenging to implement in a general manner.

Even worse is the shell function, which makes it possible to
spawn an arbitrary external program to let it control (parts of) the
compilation process.

The text-processing–based approaches [4, 18] both fail on the
examples shown above. Luckily – and this comes to their rescue
– these MAKE language features are currently not used very fre-
quently in KBUILD. However, they are used4 and their usage is
not discouraged by Linux coding guidelines. On the longer term,
this implies a danger regarding the robustness of text processing
as a means to extract variability information from the Linux build
system. In the following, we therefore devise a pragmatic approach
that, conceptually and practically, is robust with respect to these
challenges.

3. EXPERIMENTAL PROBING FOR
BUILD-SYSTEM VARIABILITY

In order to enable variability analyses, such as consistency checks
with the KCONFIG feature model [29] or variability aware static anal-
ysis with existing tools [28], the results of the variability extractors
may require a normalization step. Literature proposes propositional
formulas as lingua franca for combining the different sources of
variability (e.g., [4, 13, 15, 18]). Similar to [4, 18] , we extract
propositional formulas that model the behavior of KBUILD, similar
as we did in previous work for the CPP [24].

The set of files that KBUILD produces during the compilation
process depends on selection of features done by KCONFIG. The
basic idea of our approach is to (partially) execute KBUILD with
different feature selections and observe the behavioral changes. This

4In Linux v3.2, we count for shell: 127, foreach: 16, eval: 3, and
addprefix: 88 occurrences.

allows to correlate variability points in the feature model with the
produced build products.

The presence implication of a source file is determined by the
feature selections that include the file in the compilation process.
Therefore, in order to extract the presence implication for a specific
source file, all feature selections that enable this file need to be
recorded. Our approach exploits this observation and determines for
each file all selections that include the file during the compilation
process.

Instead of parsing the makefile, our approach is based on "clever
probing": Basically, we "ask" the build system for each feature
which files it would built. The basic idea is to investigate a feature
selection Sbase, which uses the set Fbase during the compilation
process. Now we add one additional feature f1 to it. The new
feature selection S1 := Sbase + {f1} now compiles the set of files
F1. For every file that is in F1 but not in Fbase we have found a
feature selection that enables this particular file.

3.1 Subdirectories
As discussed in Section 2.2.2, not necessarily all subdirectories in

the Linux source tree are traversed at compilation time. Subdirecto-
ries are therefore not only used to organize files for the programmer,
but also for implementing build-system variability. We address this
in our approach by treating subdirectories that appear in the file
sets Fn+1 in a special way: For each subdirectory we determine the
condition under which the compilation process traverses it. If the
condition is non-trivial, then it is taken as precondition (the "base
expression") to all presence condition of its included files. After pro-
cessing all files in the file set Fn, each of the included subdirectories
is processed recursively.

3.2 From Feature Selections to File Sets
Our approach relies on the following primitive operation to find

the file set and all considered subdirectories that are associated to a
feature selection:

list : Selection 7−→ (FileSet, SubDirs) (1)

This primitive is essential for any build system that implements
variability. There are several options how this can be implemented
for a given build system. As a last resort, the mapping could be
extracted from build traces of a real build process [cf. 2]. However, in
order to avoid unnecessary compilation steps, an efficient extraction
of this mapping is essential.

For KBUILD, our implementation traverses the source tree in the
same way the regular compilation process. Hereby, MAKE collects
all selected files and the visited subdirectories into lists (technically
MAKE variables), which are used internally to drive the compilation.
We make use of these implementation internals and therefore exploit
the built-in KBUILD functionality to ensure an accurate operation of
the list primitive. The full implementation is available for download
from the VAMOS website [30].

As an additional optimization, our implementation ignores logical
constraints that stem from KCONFIG declarations, which allows us
to reduce the number of necessary probing steps. This optimization
would not have been possible to implement using build traces, which
(successfully) compiles and links only valid configurations.

3.3 Base Selection and Added Features
The algorithm starts with the empty selection S∅ as starting point

for the recursion, which serves as base point for the file set and
subdirectory differences. The empty selection contains no selected
feature at all; it is therefore not a valid configuration according
to the KCONFIG model. This base file set only includes files that

“A Robust Approach for Variability Extraction from the Linux Build System” [C6?]

152 SPLC ’12

are included in every configuration. One example of such a file is
kernel/fork.c, which is essential for the process creation and
therefore needed in every configuration.

(Fbase, Dbase) = list(S∅) (2)

The files Fbase selected by S∅ are unconditionally compiled into
the kernel. In Linux v3.2 arch-x86, our implementation detects
334 such unconditional files. S∅ also selects the subdirectories
Dbase, which are the starting point for the build system during the
source tree traversal. The presented approach uses Fbase and Dbase

in the same manner as starting point.
In the process of adding single features to the base selection, it is

necessary to know which variables have to be considered. We exploit
the fact that the Linux source tree is organized hierarchically: Each
conditional subdirectory carries, in addition to the base selection,
a base directory dbase. All features referenced in the makefile of a
base directory are added to the list of features to probe.

features_in_dir : Directory 7−→ FeatureSet (3)

For KBUILD, the features_in_dir function is straight-forward to
implement with regular expressions that extract all referenced vari-
ables in the Makefile that start with CONFIG_. This is also some
sort of text processing, but in contrast to the competing approaches
[4, 18], we just extract the feature identifiers and not their (context-
dependent) semantics. Therefore, the features_in_dir function also
detects referential KCONFIG ↔ KBUILD defects, similar as de-
scribed by Nadi and Holt in [18]. By excluding undeclared config-
uration variables from the FeatureSet, we reduce the number of
necessary probing steps.

3.4 Build-System Probing

1: function KBUILDPROBE
2: vDirs← empty set . set of visited dirs
3: filePC← empty map [File→ list [Selection]]
4: (Fbase, Dbase) = list(S∅)
5: for all dbase in Dbase do
6: KBuildProbeRecursion(dbase, S∅, Fbase)
7: end for
8: for all (file, selections) in filePC do
9: toPC(file, selections)

10: end for
11: end function

Figure 4: Starting-Point for the Build-System Probing

Figure 4 shows the recursion step over the source tree for probing
the file presence implications. The recursion is done only once
for each directory. In line 2, a set of already visited directories
is initialized. The resulting selections for each file is stored in
filePC, which holds a list of selections for each file (line 3). For
each directory that is considered by the empty selection S∅, we
start the recursion in line 6 to dig into the source tree beginning at
the directory. After all file sets have been calculated, the presence
implications for all source files are calculated by the helper function
toPC in line 9.

In Figure 5, the recursion step, which is executed for every subdi-
rectory that may be considered by KBUILD, is shown. The function
KBuildProbeRecursion takes three arguments: The first argument
dbase is the directory this function call should focus on. Sbase con-
tains the features that are necessary to visit dbase in the first place.
The third argument is the file set associated with Sbase. Our imple-

1: function KBUILDPROBERECURSION(dbase, Sbase, Fbase)
2: if dbase ∈ vDirs then . already visited
3: return
4: end if
5: vDirs← vDirs ∪ {dbase} . mark as visited
6: features← features_in_dir(dbase)
7: for all f in features do
8: Snew ← Sbase ∪ {f} . add one feature
9: (Fnew, Dnew)← list(Snew)

10: for all file in (Fnew − Fbase) do
11: filePC[file].append(Snew) . new files found
12: end for
13: for all dir in (Dnew −Dbase) do
14: KBuildProbeRecursion(dir, Snew, Fnew)
15: end for
16: end for
17: end function

Figure 5: Recursion step in the Build-System Probing.

mentation avoids unnecessary recalculation of Fbase by caching the
result.

Lines 2 to 5 ensure that each directory is only visited once and the
recursion terminates in finite steps. The function features_in_dir
is called in line 6 to determine all features that are used in the
directory’s makefile. These features will be probed together with the
base selection against this Makefile. A new feature selection Snew

is created (line 8) as an extention to Sbase for each of these features.
For this feature selection, all considered files and subdirectories
are collected by a call to list in line 9. The difference between the
new file set and the old file set are all files that are additionally
enabled by the current feature. The feature selection is added in
line 11 to all additionally enabled files. Similar to this, we recurse
into the file system hierarchy for each newly detected directory in
line 14. The newly detected directory is used as base directory and
Snew, with the associated file set, as base selection. The conversion
from the feature selections to the presence implications for a file is
straightforward:

toPC(File, Selection) = File→
∨

S∈Sels

∧

f∈S

f

 (4)

Each selection is a conjunction of the set features that must be en-
abled in order satisfy the developer-specified KBUILD constraint
to compile the file. Multiple selections occur when there are mul-
tiple rules that require the source file to be compiled. In case of
multiple selections, all selections are disjuncted, because any of
these disjunction leads to the inclusion of the file in the compilation
process.

The resulting propositional formula can by simplified, for instance
by removing selections that are a full subset of another selection.

4. EVALUATION
In the following, we evaluate our approach and compare it to

the existing approaches. We start with a general description and
compare the three respective implementations, which is followed by
analyses regarding run time, robustness and coverage.

4.1 Implementation Overview

The GOLEM tool
We have implemented the algorithms from Section 3 into the GOLEM
tool which is part of our VAMOS [30] toolchain [28, 29]. The
implementation encompasses about 1,000 lines of Python code.

[C6?] Proceedings of the 16th Software Product Line Conference (SPLC ’12)

SPLC ’12 153

The KBUILD specific probing primitives are implemented in two
additional "front-end" makefiles (about 120 lines of MAKE code),
so that not a single line in Linux had to be changed for the analysis.
The tools are freely available on the project website.

KBUILDMINER

KBUILDMINER by Berger and She [3] has been presented on a
poster at SPLC ’10 [5] and is further detailed in a technical report
[4]: A fuzzy parser transforms KBUILD makefiles into an abstract
syntax tree (AST), which is then transformed into presence condi-
tions. The implementation consists of about 1,400 lines of Scala
code and 450 lines of Java code. The tool, as well as a result set for
Linux v2.6.33.3, have been downloaded from [3]. Because this tool
requires manual modification of existing makefiles (the technical
report states that for Linux v2.6.28.6, 28 makefiles were adapted
manually [4]), it is not easily possible to apply it to arbitrary versions
of Linux.

The UNDERTAKER Extension by Nadi
Nadi and Holt [18] have implemented their KBUILD extractor in-
dependently from us. Similar to our GOLEM tool, this extractor
calculates logical constraints that our UNDERTAKER tool [29] can
use directly. Their implementation employs pattern matching in
Linux makefiles to identify variability in KBUILD. It consists of
about 750 lines of Java code. While not (yet) publicly available, the
authors have kindly provided us with the version that has been used
in [18].

4.2 Runtime
All parsing-based approaches are (persumably) much faster than

the GOLEM implementation presented in this paper. For KBUILD-
MINER [4], no run-time data is available. The parser by Nadi and
Holt [18] processes a architecture in under 30 seconds. The current
GOLEM implemenation takes approximately 90 minutes per archi-
tecture. The obvious bottleneck is the run-time and the amount of
probing steps, which have been described in Figure 4. For Linux
v3.2 arch-x86, the list operation takes about a second (depending
on the selected features and filesystem cache state) and was executed
7,073 times.

However, the list function does neither modify the analyzed
source tree, nor exhibit other side effects. We therefore see a great
potential in improving the performance by running several prob-
ing steps in parallel. For practical applications, the large runtime
overhead has little big impact on the usability of the approach, be-
cause for many applications, such as the applications in Section 5,
the variability extraction has to be done only once per version and
architecture.

4.3 Robustness
As Linux is a moving target, variability identification and

extraction approaches need to be both conceptually as well as
implementation-wise robust. In order to evaluate the property of
robustness for future versions of Linux, we test on a wide-ranged
number of Linux versions have been retrieved from the git history.
We choose five Linux releases with one year distance that cover
4 years of the Linux development (2008-2012). In order to keep
the results for the various implementations comparable, we refrain
from analyzing earlier versions than Linux v2.6.25, because the
arch-x86 architecture was introduced in v2.6.24 by merging the
32bit and 64bit variants, which were previously maintained sepa-
rately. Table 1 summarizes the results of this analysis.

In general we found it challenging to apply the parsing-based ap-
proaches to Linux versions for which they have not been tailored to.

Table 1: Direct quantitative comparsion over Linux versions
over the last 5 years. The Kernel versions are roughly equidis-
tant over the time and include all version for which dataset are
available for KBUILDMINER and the Nadi Parser.

All source files for v2.6.25 (w/o #included files) 6,826 (127)
Files hit by KBUILDMINER data not available
Files hit by GOLEM 6,274 (93.7%)
Files hit by Nadi parser tool crashes

All source files for v2.6.28.6 (w/o #included files) 7,665 (153)
Files hit by KBUILDMINER 7,243 (96.4%)
Files hit by GOLEM tool 7,032 (93.6%)
Files hit by Nadi parser tool crashes

All source files for v2.6.33.3 (w/o #included files) 9,827 (261)
Files hit by KBUILDMINER 9,090 (95%)
Files hit by GOLEM 9,079 (94.9%)
Files hit by Nadi parser 7,154 (74.8%)

All source files for v2.6.37 (w/o #included files) 10,958 (292)
Files hit by KBUILDMINER data not available
Files hit by GOLEM 10,145 (95.1%)
Files hit by Nadi parser 7,916 (74.2%)

All source files for v3.2 (w/o #included files) 11,862 (276)
Files hit by KBUILDMINER data not available
Files hit by GOLEM 11,050 (95.4%)
Files hit by Nadi parser 8,592 (74.2%)

For the fuzzy-parsing approach presented by Berger et al. [4], there
are only data sets for Linux version v2.6.28.6 [4] and v2.6.33.3 [3]
available. For all other versions we were unable to produce any
results, because of the necessary (but undocumented) changes of the
Linux makefiles. These modifications include the disabling parts
of arch/x86/Makefile in a way that break a regular compilation.
The technical report leaves it open what effects these changes have
on the extracted logical constraints.

The parsing approach presented by Nadi and Holt [18] does not
require any modifications to existing Makefiles. We were able to
produce presence implications for two additional versions. Unfortu-
nately, the tool crashes with an endless recursion and a stack over-
flow on Linux v2.6.28.6 and earlier, so that no logical constraints
could be obtained.

The presented approach and implementation in this article pro-
duces presence implications on all selected versions without requir-
ing any source code modification or version specific adaptations.
Also, the extraction process for the 22 other architectures in Linux
v3.2 did not require any further modification.

As shown in this section, both parsing-based approaches have
difficulties to achieve a robust operation on a wide range of versions.
Since the Linux build system is still in active development and
difficulties like those described in Section 2.3 may appear with every
new version, every new introduced MAKE idiom requires manual
(and thus error-prone) additional engineering in order to keep up
with the Linux development. In contrast to to that, our approach
works in a robust manner with stable results for each version without
any further adaptations.

4.4 Coverage
This subsection compares the results of the three KBUILD vari-

ability extractors quantitatively. We do this by analyzing for how
many source files the respective approach produces a logical formula
as metric for their coverage in the Linux v2.6.33.3 source tree for
arch-x86. We choose this source tree because it is the most recent
version of Linux for which results of all tools are available.

For that version, KBUILD handles a total of 9,827 source files. As
pointed out by Nadi and Holt [17], 276 of these source files (2.8%)
are referenced by #include-statements in other implementation

“A Robust Approach for Variability Extraction from the Linux Build System” [C6?]

154 SPLC ’12

Table 2: Configuration Defect Analysis Results with Linux v3.2

Configuration Defects without file constraints
Code defects 1835
Referential defects 415
Logical defects 83
Total: Σ 2333

Configuration Defects with file constraints
Code defects 1835
Referential defects 439
Logical defects 299
Total: Σ 2573

source files rather than KBUILD rules in KBUILD.
The UNDERTAKER extension by Nadi and Holt [18] approach

identifies presence implications for 7,154 out of all source files
(74.8%). For 2,412 source files, no logical implication was found. A
quick analysis of the data indicates that deficiencies in the mapping
from build products to source files (cf. Section 2.2.1) are part of the
problem for this relatively high number.

An analysis of the data provided for KBUILDMINER [3] on the
tool’s website for arch-x86 shows that the tool produces pres-
ence implications for 9,090 out of all source files (95%) on Linux
v2.6.33.3, arch-x86. This data is consistent to the technical re-
port [4], which states a coverage of 94 percent on Linux v2.6.28.6,
arch-x86.

The current implementation of our GOLEM tool calculates pres-
ence implications for 9,079 out of the 9,566 source files on Linux
v2.6.33.3 (94.9%) on arch-x86.

5. APPLICATIONS
As part of the VAMOS project [30], we aim at providing (Linux)

developers tool support for managing and maintaining variability.
This goal includes finding configuration defects [29] and making ex-
isting tools for static analysis variability-aware [28]. The remainder
of this section demonstrates the improvements of considering the
build system in these tools.

5.1 Configuration Defect Analysis
In earlier work [29], we have discussed and analyzed

configuration-derived defects in the variability implementation on
an earlier version of Linux v2.6.35. Such defects are inconsistencies
in the variability implementation, such as #ifdef blocks that either
cannot be selected under any configuration selection (a dead block),
or there is provably no configuration that deselects a CPP block (an
undead block). Our UNDERTAKER tool creates for each #ifdef

block a set of propositional formulas and checks their satisfiability
with a SAT Checker. The first formula includes only the constraints
that are found in the structure of the CPP statements [cf. 24]. If this
formula is unsatisfiable, then the block is classified as a code defect.
If it is satisfiable, logical constraints that derive from the KCONFIG
feature model are added as further conjunctions to the formula. If
the enriched formula is unsatisfiable, the UNDERTAKER tool clas-
sifies the CPP block as a logical defect. This formula may (still)
contain configuration variables that are not declared in the configu-
ration model for this architecture (e.g., CONFIG_ARM is not present on
arch-x86, etc.). The third formula therefore adds contraints to set
such absent variables to false, and checks for satisfiability again. If
this enriched formula is now unsatisfiable, then the UNDERTAKER
tool classifies the CPP block as referential defect.

For this kind of analysis, our tools, which (now) include the
extracted variability from KBUILD, do not only need to be robust
regarding the Linux version, but also the analyzed architecture. A

Table 3: CC-Analysis Results with Linux v3.2, arch-x86

Analyzed files 10,383
Number of variation points (files + #ifdef blocks) 25,369
1. Comparison with ’allyesconfig’

Number of compiler (tool) invocations 10,383
Rate of skipped invocations 18.5%
Configuration Coverage 67.2%

2. Expansion without file constraints
Number of partial configurations 14,169
Rate of skipped tool invocations (partial configurations) 83.6%
Configuration Coverage 37.4%

3. Expansion with file constraints
Number of partial configurations 12,388
Rate of skipped tool invocations (partial configurations) 18.2%
Configuration Coverage 78.6%

more detailed explanation of this experiment can be found in [29].
That work has yielded 1,776 configurability issues, for which 123
patches has been proposed (49 merged, 8 accepted, 15 acknowl-
edged), which in total have fixed 364 of these issues (among them
20 confirmed new bugs).

Table 2 compares the impact of the inclusion of the extracted
source file constraints by our GOLEM tool on the results produced
by the approach as presented in [29]. In this experiment, source file
constraints from all 23 architectures in Linux v3.2 have been used
to enrich the variability models. Every defect is tested against each
architecture individually (where applicable) and classified as such.

In this work, we define as variation point every CPP block and
source file that KCONFIG allows to include or exclude in the re-
sulting build products. This simplifaction is valid, because the
coarse-grained selection of source files by MAKE could also be
implemented by CPP by introducing additional #ifdef blocks that
contain the whole file.

We did not find any dead source files, that is, files that will
never be compiled due to the constraints from KBUILD. We can
therefore confirm that the contributions of Nadi and Holt [18] have
fixed all these "dead files". Nevertheless, by considering KBUILD-
derived constraints, the UNDERTAKER tool detects 216 additional
(+260.2%) logical defects in #ifdef-blocks. The number of con-
figuration defects increases by 10.3 percent. This shows that the
source-file constraints have an considerable improvement on the
results.

5.2 Configuration Coverage
This subsection investigates the effects of the extracted source-

file constraints on the configuration coverage (CC) [28]: We de-
fine CC as the fraction of selected variation points (#ifdef-blocks
and source files as defined in Section 2.1) divided by all possible
variation points. However, one has to be careful with calculating
the "possible" variation points on a specific architecture, because
architecture-specific drivers or #ifdef blocks that test for a specific
other architecture must not be counted. In order to get a fair com-
parison, we use our UNDERTAKER tool to detect such unselectable
variation points in the 11,862 source files considered by KBUILD
on arch-x86 and exclude them from all results in this subsection.

We calculate a set of configurations which, when combined (i.e.,
compile each configuration individually), maximize the CC. This
allows "traditional" tools for static analysis to uncover additional
defects that are hidden in seldomly selected #ifdef-blocks. Table 3
summarizes the results. Since the analyzed source files only ref-
erence a subset of all available KCONFIG features, the produced
configuration are “incomplete” in the sense that they define only
referenced features. Such a partial configuration sets only variation

[C6?] Proceedings of the 16th Software Product Line Conference (SPLC ’12)

SPLC ’12 155

points from the extracted software variability [27] of a given source
file. The remaining, unreferenced features need to be set in a way
that they do not conflict in order to obtain a concrete product con-
figuration, upon which traditional tools for static analysis can be
employed. We use the KCONFIG tool to expand such partial to full
configurations.

For comparison purposes, we first calculate the CC for the KCON-
FIG provided configuration preset allyesconfig. Interestingly,
allyesconfig is way off from a "full" configuration, as 1,917
(18.5%) of all source files for arch-x86 are not compiled. This,
and the fact that every file with #else and #elif statements require
more than one configuration to select all lines of code, account for
the missing 32.8% CC.

In previous work [28], we have calculated partial configurations
on all source files, and applied the KCONFIG infrastructure to expand
each partial configuration to a full configuration. In this work, we
consider both, KCONFIG-controlled #ifdef blocks (i.e., #ifdef

blocks with a logical expression that contains at least one reference
to a variable that starts with CONFIG_), as well as the inclusion
of a source file into the compilation process, as a variation point.
Therefore, the numbers of the calculated CC are hard to compare to
those in our previous work [28].

Table 3 shows that the number of calculated configurations is not
much higher than the number of analyzed source files (about 19.3%
more configurations than source files). This number is surprisingly
low because most files in Linux do not contain #ifdef blocks, but
are controlled by at most a single MAKE variable (cf. Section 2.2).
This means the majority of files in Linux require only a single
configuration to achieve full CC.

For each partial configuration, we check if the respective ex-
panded configuration would actually let KBUILD include the file in
the build process. Because of uncovered source file constraints in
the GOLEM implementation and incompleteness of our KCONFIG
variability model, this is not always the case. We do not count
variation points of a partial configuration that does not include its
corresponding file, because this configuration does not practically
cover any variation point.

When calculating the CC without considering source file con-
straints (the second experiment in Table 3), we notice a coverage
of only 9,492 out of 25,369 (37.4%) possible variation points. The
reason for this alarmingly low rate is that 11,844 out of 14,169
(83.6%) variation points have not been considered, because the cal-
culated configuration did not compile the source file for which it
has been calculated.

When calculating the CC with considering the file constraints
(the third experiment in Table 3), we observe a CC of 19,938 out of
25,369 (78.6%) variation points. The reason for this improvement
is that the rate of skipped configurations decreases dramatically to
16.4 percent. This number is still considerable. Since each skipped
configuration provably contains skipped variation points, we ex-
pect that additional engineering (cf. Section 6.1) will considerably
increase the CC even further. Additionally, a first analysis of the cal-
culated partial configurations shows that the quality of the expansion
process still leaves room for improvement: In many expanded con-
figurations, we observe omitted and wrongly set features. Improving
the expansion process would therefore improve the achieved CC as
well.

Because of the skipped partial configurations and the deficiencies
in the expansion process, the improvement of the calculated CC
has to be seen as lower bound that can be greatly improved by
more precise MAKE and KCONFIG models, and better expansion of
partial configurations. We are currently working on improving these
results.

6. DISCUSSION
As demonstrated by the two applications in the previous section,

the implementation of our approach greatly assists variability-aware
analyses. This subsection discusses the limitations and in what way
the results can be transferred to other systems.

6.1 Benefits and Limitations of the Approach
Compared to parsing-based approaches for extracting variability

from the build system [e.g., 4, 13, 18] our approach of build-system
probing exhibits a number of unique characteristics. While existing
parsing-based approaches suffer from technical implementation
challenges that require manual (and error-prone) engineering for
the many corner-cases, our approach handles complicated makefile
constructions as presented in Section 2.3 and shell escapes (i.e.,
invocation of external tools in the build system) error-free. It is
also much harder, as presented in Section 4.3, for a parsing based
approach to keep pace with the Linux development, whereas our
approach works predictably for a wide range of Linux versions and
architectures.

However, we also make a number assumptions on the build sys-
tem, which may impact the results of our approach:

1. We exploit the observation that the file presence implications
in KBUILD correspond to the hierarchical organiztion of di-
rectories along subsystems. If a feature is a prequisite for
enabling files in a subdirectories, then this constraint applies
for each file in that directory.

2. We assume that in a subdirectory, each file is only dependant
on single features and not by a conjunction of two or more
features.

3. In KBUILD, a feature always selects additional sources files
for compilation. In no case the selection of a feature causes
a source file to be removed from compilation process. This
is a rather uncommon feature for MAKE based systems but
more commonly found in systems that employ delta-oriented
programming (DOP) [22].

As shown in Section 4, the current implementation produces pres-
ence implications for 95.4% of all source files in Linux on arch-x86.
An investigation of the remaining 4.6% source files reveales that
the majority of files violate assumption #2. The violation of this
assumption is best explained with an example:

1 my-obj-$(CONFIG_FB_MATROX_G) += matroxfb_crtc2.o
2 obj-$(CONFIG_FB_MATROX) += $(my-obj-y)

Here the the file matroxfb_crtc2.o is only built if both features
FB_MATROX_G and FB_MATROX are enabled at the same time. The
helper function features_in_dir fails to detect that those two features
have a connection. Therefore both features are tested independently
and the build product matroxfb_crtc2.o does not show up in the
output of list.

In the future, we intend to cover these cases by employing some
simple heuristics (e.g., with data from the KCONFIG model) in the
helper function features_in_dir to probe for more than a single con-
figuration variable at the same time without increasing the number of
necessary probing steps excessively. We expect this to improve the
resulting logical constraints both the quantitatively and qualitatively
even further.

Depending on how the extracted build-system constraints are
employed, the higher runtime, compared to other approaches, might
be a limitation of the approach. However many applications require
the KBUILD constraints to be calculated exactly once and reuse

“A Robust Approach for Variability Extraction from the Linux Build System” [C6?]

156 SPLC ’12

them in analyses that take much longer compared to the extraction
process. This applies to both applications that have been presented
in Section 5.

6.2 Generalizability
In contrast to the parsing-based approaches, which rely heavily

the idiomatic style in which KBUILD makes use of the MAKE lan-
guage, we avoid this dependency by treating the build system as a
black box. Only two primitives, list and features_in_dir, have to
be reimplemented for other build systems. This thin connection to
the internal structures is the main reason for the robustness of the
probing based approach with respect to the presented application on
a wide range of Linux versions and architectures.

In order to show the portability of our approach, we have imple-
mented the necessary adaptations for two further software projects:
The build system of BUSYBOX [7], a toolbox of UNIX-tools for em-
bedded systems, and the build system of FIASCO [12], a L4-like
micro kernel. Both ports took less than 100 additional lines of code
and were straight-forward to implement. We are convinced that the
assumptions made on KBUILD in Section 6.1 also apply to other
build systems.

6.3 Comparison of the Calculated Source File
Constraints

For a qualitative evaluation of the extracted presence implications,
we compare the output of our GOLEM tool to the results of Berger
et al. [4] and Nadi and Holt [18]. For all the files that have a presence
implication in our model, the presence implication from the other
models is checked for semantic equivalence by using a SAT Checker.

φM1(f)↔ φM2(f) f ∈ files(M1) ∩ files(M2)

This equivalence check is done by instrumenting the SAT checker
to prove that the bi-implication of the presence implications is a
tautology and therefore have always the same implication. We use
this check to compare the GOLEM model to the models of Nadi and
Holt and Berger et al.

For the much smaller model of Nadi and Holt, 15 percent of the
7,082 common files have an equivalent presence implication and
81.9 percent have a presence implication that implies the GOLEM
presence implication. We conclude that this model is mostly sub-
sumed by the GOLEM model.

The comparison of the GOLEM model with the model from Berger
et al. shows that out of 8,885 common files, 99.6 percent fulfill this
bi-implication. This pratical equivalence shows that both tools are
similarly mature.

7. RELATED WORK
The analysis of variability in Linux is a hot topic in the Software

Engineering (SWE) and Software Product Line (SPL) community.
Zengler and Küchlin [31] show an attempt to derive formal seman-
tics of KCONFIG. She et al. [23] reverse-engineer the KCONFIG
variability declaration in order to reconstruct a feature model. In
[10] we have shown and quantified that the fine-grained variability
implementation by CPP is dominated by a more coarse-grained man-
agement in KBUILD. We therefore think that KBUILD variability
extractors, such as KBUILDMINER [3], the Nadi parser [18] or the
GOLEM tool presented in this article, are a necessary complement
for holistic variability analysis.

Berger et al. [6] investigate the configuration languages and tools
KCONFIG and configuration description language (CDL). While
the work shows that variability-management tools are employed
successfully in open-source operating systems, it covers only the
feature specification and modeling.

Adams et al. [2] demonstrate that analysis, visualization and in
essence, re-engineering of the Linux build system is feasible. Their
framework Makao [1] infers modularity in KBUILD by analyzing
build traces. However, the amount of variation points that we iden-
tify in KBUILD with this article indicates that the full re-engineering
of build-system variability remains an unsolved problem.

Kästner et al. [13] propose a technique coined "variability aware
parsing", which essentially integrates the CPP variability into tools
for variability aware type-checking. Mainly because of implemen-
tation challenges, TypeChef focuses on arch-x86 and requires
assistance in form of additional constraints by tools like KBUILD-
MINER [3]. Even with this, the approach is restricted to CPP based
variability—the build-system–derived variability remains out of
scope.

Palix et al. [19] try to reproduce a ten year old analysis on Linux
by Chou et al. [8] in order to investigate the evolutionary develop-
ment of Linux across the last decade. As the old experiment misses
to state the exact configuration that was used, the environment could
only be approximated. Hereby, the paper indirectly discusses CC in
the sense that the selected configuration can (and does) affect the
results of static analysis tools considerably. We take this anecdote
as call for further integration of configuration consistency checks
and CC into static analysis tools.

Inside the software verification community, Post and Sinz [21]
introduce a technique coined "configuration lifting", which translates
the variability expressed in KCONFIG, KBUILD and CPP into C
source code. The generated C files encode the variability of the
original source, the makefiles, and the feature model, and is verified
with the CBMC tool by Clarke, Kroening, and Lerda [9]. While
"configuration lifting" has similar goals, it remains unclear if that
approach scales to the size of Linux.

8. SUMMARY AND CONCLUSION
To cope with a broad range of application and hardware settings,

system software has to be highly configurable. Linux v3.2, as a
prominent example, offers 11,000 configurable features. The imple-
mentation of this huge amount of static variability is implemented
by #ifdef-blocks in the source code, but especially by the Linux
make system. From the maintenance point of view, this imposes
big challenges, as the feature model and the configurability that is
actually implemented in the code have to be kept in sync. This calls
for tool support.

A major hurdle for acceptance by the Linux developers is that
such tools have to work reliably on the latest development version
of Linux. Robustness against evolutionary changes in Linux, which
includes both C code and the build system, is a strong requirement.
In this paper, we have presented such a robust approach for extract-
ing variability from the Linux build system that extracts logical
constraints for 95.4% of all source files in Linux v3.2 on the x86
architecture. Unlike existing approaches, our approach does not try
to analyze the makefiles, but exploits the build system itself to infer
the effects of selected features on the set of compiled files. Instead
of manual and error-prone engineering that tailors the variability
extractor to a specific version or architecture of Linux, our approach
requires only two basic and straightforward to implement primitives.
This thin interface to the build system allows a straight-forward to
implement adaptation of the approach to other software projects,
which has been demonstrated for BUSYBOX [7] and FIASCO [12].

9. ACKNOWLEDGMENTS
We whish to thank our anonymous reviewers for their helpful sug-

gestions. Special thanks got to Sarah Nadi and Thorsten Berger for

[C6?] Proceedings of the 16th Software Product Line Conference (SPLC ’12)

SPLC ’12 157

providing access to their tools and data and their helpful comments
on a draft of this paper.

This work was supported by the German Research Council (DFG)
under grants no SCHR 603/7-2 and LO 1719/2-2.

References
[1] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De

Meuter. “Design recovery and maintenance of build systems”. In: Pro-
ceedings of the 23st IEEE International Conference on Software Main-
tainance (ICSM’07). IEEE Computer Society Press, 2007. DOI: 10.
1109/ICSM.2007.4362624.

[2] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De
Meuter. “The Evolution of the Linux Build System”. In: Electronic
Communications of the EASST (2007).

[3] Thorsten Berger and Steven She. Google Code Project: various vari-
ability extraction and analysis tools. URL: http://code.google.
com/p/variability/ (visited on 02/16/2012).

[4] Thorsten Berger, Steven She, Krzysztof Czarnecki, and Andrzej Wa-
sowski. Feature-to-Code Mapping in Two Large Product Lines. Tech-
nical report. University of Leipzig (Germany), University of Waterloo
(Canada), IT University of Copenhagen (Denmark), 2010.

[5] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and
Andrzej Wasowski. “Feature-to-code mapping in two large product
lines”. In: Proceedings of the 14th Software Product Line Conference
(SPLC ’10). Volume 6287. Lecture Notes in Computer Science. Poster
session. Springer-Verlag, 2010.

[6] Thorsten Berger, Steven She, Rafael Lotufo, and Andrzej Wasowski
und Krzysztof Czarnecki. “Variability Modeling in the Real: A Per-
spective from the Operating Systems Domain”. In: Proceedings of the
25th IEEE/ACM International Conference on Automated Software En-
gineering (ASE ’10). ACM Press, 2010. DOI: 10.1145/1858996.
1859010.

[7] BusyBox Project Homepage. URL: http://www.busybox.net/
(visited on 05/11/2012).

[8] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. “An empirical study of operating systems errors”. In: Proceed-
ings of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01). ACM Press, 2001. DOI: 10.1145/502034.502042.

[9] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for
Checking ANSI-C Programs”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems. Volume 2988. Lecture Notes in
Computer Science. Springer-Verlag, 2004. DOI: 10.1007/978- 3-
540-24730-2_15.

[10] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. “Understanding Linux Feature Distribution”.
In: Proceedings of the 2nd AOSD Workshop on Modularity in Sys-
tems Software (AOSD-MISS ’12). ACM Press, 2012. DOI: 10.1145/
2162024.2162030.

[11] Kai Germaschewski and Sam Ravnborg. “Kernel configuration and
building in Linux 2.5”. In: Proceedings of the Linux Symposium. 2003.

[12] Michael Hohmuth. The Fiasco kernel: System architecture. Technical
report. TU Dresden, 1998.

[13] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian
Erdweg, Klaus Ostermann, and Thorsten Berger. “Variability-Aware
Parsing in the Presence of Lexical Macros and Conditional Com-
pilation”. In: Proceedings of the 26th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA ’11). ACM Press, 2011. DOI: 10.1145/2048066.2048128.

[14] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner,
and Michael Schulze. “An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines”. In: Proceedings of the
32nd International Conference on Software Engineering (ICSE ’10).
ACM Press, 2010. DOI: 10.1145/1806799.1806819.

[15] Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki.
“SAT-based analysis of feature models is easy”. In: Proceedings of the
13th Software Product Line Conference (SPLC ’09). Carnegie Mellon
University, 2009.

[16] Andreas Metzger, Patrick Heymans, Klaus Pohl, Pierre-Yves
Schobbens, and Germain Saval. “Disambiguating the Documentation
of Variability in Software Product Lines: A Separation of Concerns,
Formalization and Automated Analysis”. In: Proceedings of the 15th
IEEE Conference on Requirements Engineering (RE ’07). IEEE Com-
puter Society, 2007. DOI: 10.1109/RE.2007.61.

[17] Sarah Nadi and Richard C. Holt. “Make it or Break it: Mining Anoma-
lies from Linux Kbuild”. In: Proceedings of the 18th Working Con-
ference on Reverse Engineering (WCRE ’11). 2011. DOI: 10.1109/
WCRE.2011.46.

[18] Sarah Nadi and Richard C. Holt. “Mining Kbuild to Detect Variability
Anomalies in Linux”. In: Proceedings of the 16th European Confer-
ence on Software Maintenance and Reengineering (CSMR ’12). To
appear. IEEE Computer Society Press, 2012.

[19] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia L.
Lawall, and Gilles Muller. “Faults in Linux: Ten years later”. In: Pro-
ceedings of the 16th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS

’11). ACM Press, 2011. DOI: 10.1145/1950365.1950401.

[20] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag, 2005.

[21] Hendrik Post and Carsten Sinz. “Configuration Lifting: Verifica-
tion meets Software Configuration”. In: Proceedings of the 23th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE ’08). IEEE Computer Society, 2008. DOI: 10.1109/
ASE.2008.45.

[22] Ina Schaefer, Lorenzo Bettini, Ferruccio Damiani, and Nico Tanzarella.
“Delta-oriented programming of software product lines”. In: Proceed-
ings of the 14th Software Product Line Conference (SPLC ’10). Vol-
ume 6287. Lecture Notes in Computer Science. Springer-Verlag, 2010.
DOI: 10.1007/978-3-642-15579-6_6.

[23] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and
Krzysztof Czarnecki. “Reverse Engineering Feature Models”. In: Pro-
ceedings of the 33nd International Conference on Software Engi-
neering (ICSE ’11). ACM Press, 2011. DOI: 10 . 1145 / 1985793 .
1985856.

[24] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolf-
gang Schröder-Preikschat. “Efficient Extraction and Analysis of
Preprocessor-Based Variability”. In: Proceedings of the 9th Interna-
tional Conference on Generative Programming and Component Engi-
neering (GPCE ’10). ACM Press, 2010. DOI: 10.1145/1868294.
1868300.

[25] Diomidis Spinellis. “A Tale of Four Kernels”. In: Proceedings of the
30th International Conference on Software Engineering (ICSE ’08).
ACM Press, 2008. DOI: 10.1145/1368088.1368140.

[26] Richard M. Stallman, Roland McGrath, and Paul D. Smith. GNU make
manual. A Program for Directing Recompilation. Free Software Foun-
dation. GNU Press, 2010.

[27] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. “A Taxonomy of
Variability Realization Techniques”. In: Software - Practice and Expe-
rience 35.8 (2006). DOI: 10.1002/spe.v35:8.

[28] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Eg-
ger, and Julio Sincero. “Configuration Coverage in the Analysis of
Large-Scale System Software”. In: Proceedings of the 6th Work-
shop on Programming Languages and Operating Systems (PLOS ’11).
ACM Press, 2011. DOI: 10.1145/2039239.2039242.

[29] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolf-
gang Schröder-Preikschat. “Feature Consistency in Compile-Time-
Configurable System Software: Facing the Linux 10,000 Feature Prob-
lem”. In: Proceedings of the ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2011 (EuroSys ’11). ACM Press, 2011.
DOI: 10.1145/1966445.1966451.

[30] VAMOS - Variability Management in Operating Systems. FAU
Erlangen-Nuremberg, 2012. URL: http://www4.informatik.uni-
erlangen.de/Research/VAMOS/.

[31] Christoph Zengler and Wolfgang Küchlin. “Encoding the Linux Ker-
nel Configuration in Propositional Logic”. In: Proceedings of the 19th
European Conference on Artificial Intelligence (ECAI 2010) Workshop
on Configuration 2010. 2010.

“A Robust Approach for Variability Extraction from the Linux Build System” [C6?]

158 SPLC ’12

Automatic OS Kernel TCB Reduction
by Leveraging Compile-Time Configurability

Reinhard Tartler1, Anil Kurmus2,
Bernhard Heinloth1, Valentin Rothberg1, Andreas Ruprecht1, Daniela Dorneanu2,

Rüdiger Kapitza3, Wolfgang Schröder-Preikschat1, and Daniel Lohmann1

1Friedrich-Alexander University Erlangen-Nürnberg
2IBM Research - Zurich

3TU Braunschweig

Abstract
The Linux kernel can be a threat to the dependability of
systems because of its sheer size. A simple approach
to produce smaller kernels is to manually configure the
Linux kernel. However, the more than 11,000 configura-
tion options available in recent Linux versions render this
a demanding task. We report on designing and implement-
ing the first automated generation of a workload-tailored
kernel configuration and discuss the security gains such
an approach offers in terms of reduction of the Trusted
Computing Base (TCB) size. Our results show that the ap-
proach prevents the inclusion of 10% of functions known
to be vulnerable in the past.

1 Introduction

The Linux kernel is a commonly attacked target. In 2011,
148 Common Vulnerabilities and Exposures (CVE)1 en-
tries for Linux have been recoded, and this number is
expected to grow every year. This is a serious prob-
lem for system administrators who rely on a distribution-
maintained kernel for the daily operation of their systems.
On the Linux distributor side, kernel maintainers can
make only very few assumptions on the kernel configura-
tion for their users: Without a specific use case, the only
option is to enable every available configuration option
to maximize the functionality. The ever-growing kernel
code size, caused by the addition of new features, such as
drivers, file systems and so on, indicates that the risk of
undetected vulnerabilities will constantly increase in the
foreseeable future.

If the intended use of a system is known at kernel com-
pilation time, an effective approach to reduce the kernel’s
attack surface is to configure the kernel to not compile
unneeded functionality. However, finding a fitting con-
figuration requires extensive technical expertise about
currently more than 11,000 Linux configuration options,

1http://cve.mitre.org/

and needs to be repeated at each kernel update. There-
fore, maintaining such a custom-configured kernel entails
considerable maintenance and engineering costs.

This paper presents a tool-assisted approach to auto-
matically determine a kernel configuration that enables
only kernel functionalities that are actually necessary in a
given scenario. We quantify the security gains in terms of
reduction of the Trusted Computing Base (TCB) size. The
evaluation section (Section 3) focuses on an appliance-
like virtual machine that runs a web server similar to those
used to power large distributed web services in the cloud.
Our approach exhibits promising security improvements
for this use case: Compared with a default distribution
kernel, 10% of the kernel functions (i.e., 17 out of 179),
for which in total 31 vulnerabilities have been reported,
are removed from the tailored kernel.

The remainder of this paper is structured as follows:
Section 2 presents the design and implementation of the
first automated workload-specific kernel-build generation
tool. Section 3 evaluates the usability of such an ap-
proach in a real-world scenario. Security benefits of the
tailored Linux kernel are discussed in Section 4. Sec-
tion 5 presents the related work. The paper concludes in
Section 6.

2 Kernel-Configuration Tailoring

The goal of our approach is to compile a Linux kernel
with a configuration that has only those features enabled
which are necessary for a given use case. This section
shows the fundamental steps of our approach to tailor
such a kernel. The six necessary steps are depicted in
Figure 1.

Ê Enable tracing. The first step is to prepare the ker-
nel so that it records which parts of the kernel code are
executed at run time. We use the Linux-provided ftrace

feature, which is enabled with the KCONFIG configuration
option CONFIG_FTRACE. Enabling this configuration op-
tion modifies the Linux build process to include profiling

1

[W5?] Proceedings of the 8th International Workshop on Hot Topics in System Dependability (HotDep ’12)

HotDep ’12 159

enable
tracing

1

run workload
& store trace

2

correlate to
source line locations

Makefile
arch/x86/init.c:59

arch/x86/...
arch/x86/entry32.S:14

lib/Makefile
kernel/sched.c:723
...

3
B00 <-> CONFIG_X86
&&
B1 <-> CONFIG_NUMA
&&
B2 <-> ! B1
&&
...

establish a
propositional

formula

4
CONFIG_X86=y
CONFIG_NUMA=y
CONFIG_SCSI=m
...
...

derive a kernel
configuration

5

tailored
Linux Kernel

6

Figure 1: Workflow of the approach

code that can be evaluated at runtime.
In addition, our approach requires a kernel built with

debugging information so that any function addresses
in the code segment can be correlated to functions and
thus source file locations in the source code. For Linux,
this is configured with the KCONFIG configuration option
CONFIG_DEBUG_INFO.

Ë Run workload. In this step, the system administra-
tor runs the targeted application after enabling ftrace.
The ftrace feature now records all addresses in the text
segment that have been instrumented. For Linux, this
covers most code, except for a small amount of critical
code such as interrupt handling, context switches and the
tracing feature itself.

To avoid overloading the system with often accessed
kernel functions, ftrace’s own ignore list is dynamically
being filled with functions when they are used. This
prevents such functions from appearing more than once in
the output file of ftrace. We use a small wrapper script
for ftrace to set the correct configuration before starting
the trace, as well as to add functions to the ignore list
while tracing and to parse the output file, printing only
addresses that have not yet been encountered.

Ì Correlation to source lines. A system service trans-
lates the raw address offsets to source line locations using
the ADDR2LINE tool from the binutils tool suite. This
identifies the source files and the #ifdef blocks that are
actually being executed during the tracing phase. Techni-
cally, the tool stores its result to a text file with source-file
names and line numbers on each line.

Í Establishment of the propositional formula. This
step translates the source-file locations into a proposi-
tional formula. The propositional variables of this for-
mula are the variation points the Linux configuration tool
KCONFIG controls during the compilation process. This
means that every C Preprocessor (CPP) block, KCONFIG
item and source file can appear as a propositional variable
in the resulting formula. This formula is constructed with
the variability constraints that have been extracted from
#ifdef blocks, KCONFIG feature descriptions and Linux
Makefiles. The extractors we use have been developed,
described and evaluated in previous work [5, 21, 22]. The
resulting formula holds for every KCONFIG configuration
that enables all source lines simultaneously.

Î Derivation of a tailored kernel configuration. A
SAT checker proves the satisfiability of this formula and
returns one concrete configuration that fulfills all these
constraints. Note that finding an optimal solution to this
problem is an NP-hard problem and was not the focus
of our work. Instead, we rely on heuristics and config-
urable search strategies in the SAT checker to obtain a
sufficiently small configuration.

As the resulting kernel configuration will contain some
additional unwanted code, such as the tracing functional-
ity itself, whitelists and blacklists are employed, allowing
the user to specify additional constraints in order to force
the selection (or deselection) of certain KCONFIG features.
This results in additional constraints being conjugated to
the formula just before invoking the SAT checker.

Ï Compiling the kernel. The resulting solution to the
propositional formula, obtained as described above, can
only cover KCONFIG features of code that has been traced.
As the KCONFIG feature descriptions declare non-trivial
dependency constraints [25], special care must be taken to
ensure that as many KCONFIG features as possible are not
selected while still fulfilling all dependency constraints.
We therefore use the KCONFIG tool itself to process this
feature selection to a KCONFIG configuration that is both
consistent and selects as few features as possible.

3 Practical Application

We evaluate the usefulness of our approach by setting up
a Linux, Apache, MySQL and PHP (LAMP)-based web
presence in a manner that is suited for deployment in a
cloud environment. The system serves static webpages,
the collaboration platform DOKUWIKI [7] and the mes-
sage board system PHPBB3 [19] as an example for typical
real-world applications. We use the distribution-provided
packages from the Debian distribution without further spe-
cific configuration changes or optimization. Evaluation
results are summarized in Table 1.

3.1 Kernel Tailoring

To derive a minimized kernel configuration, the first
step consists of compiling a tracing-enabled Linux ker-

2

“Automatic OS Kernel TCB Reduction by Leveraging Compile-Time Configurability” [W5?]

160 HotDep ’12

nel. We use the standard Linux kernel source and
configuration from the Debian distribution (version
2.6.32-41squeeze2) as a template for our tracing kernel
(Step Ê in Figure 1). On this kernel, we enable the fea-
tures CONFIG_FTRACE and CONFIG_DEBUG_INFO to include
the ftrace tracing infrastructure and compile with debug-
ging symbols. As our current prototype is not able to
resolve functions from loadable kernel modules (LKMs)
yet, we disable module support in the kernel configura-
tion, which causes all compiled code to be loaded into the
system at boot time.

Furthermore, a number of drivers cause compilation
and linking errors when not compiled as LKMs. Most
of these issues stem from drivers in the staging2 area.
Also, when trying to boot this kernel, we observe kernel
panics during the initialization of a range of watchdog
drivers. As these drivers turn out to be unnecessary for this
application scenario, we turn off the KCONFIG options
CONFIG_STAGING and CONFIG_WATCHDOG. These configura-
tion changes account for the difference in size and fea-
tures between the kernel shipped with Debian (∼42 MB
of code in the text segment) and the intermediary kernel
that is used for collecting traces (∼36 MB of code in the
text segment).

With this intermediary tracing kernel, the system is
tested against a test workload that covers all required
functionality. We use the Skipfish [24] security analysis
tool to systematically access all functionality of the appli-
ance in an automated manner. This corresponds to Step Ë
in Figure 1 and results in a total of 5,377 observed kernel
functions.

These traced kernel functions correlate to 4,686 differ-
ent source lines in 379 source files (Step Ì). We use a
modified version of the UNDERTAKER tool [22] to estab-
lish the propositional formula (Step Í) and to derive a
solution for it (Step Î). To avoid unwanted functionality
enabled in the resulting kernel, such as the ftrace infras-
tructure itself and LKM support, the UNDERTAKER tool
obeys a blacklist that consists of the KCONFIG options
CONFIG_FTRACE and CONFIG_MODULES. Also, we add eight
additional,3 use-case–agnostic KCONFIG items to the
whitelist in Step Î to enable features that are used by the
initialization startup scripts, which run before the system-
wide tracing process starts. These steps take 69 sec on a
commodity 2.8 GHz quad-core workstation with 4 GB of
RAM.

2The staging area contains unfinished and incomplete drivers that
are included as a technology preview.

3Specifically: CONFIG ACPI, CONFIG UNIX, CONFIG DEVTMPFS,
CONFIG DEVTMPFS MOUNT, CONFIG SERIAL 8250 CONSOLE and
CONFIG INOTIFY USER, CONFIG PM

Kernel Shipped by Debian
Loaded Code 5,465,602 Bytes
Total Loadable Code 42,188,538 Bytes
Loaded Kernel Modules 29
Kconfig options set to y 1,093
Kconfig options set to m 2,299
Functions with CVE entries 179

Intermediary kernel used for tracing
Loaded Code 36,341,888 Bytes
Total Loadable Code 36,341,888 Bytes
Loaded Kernel Modules 0
Kconfig options set to y 3,298
Kconfig options set to m 0
Functions with CVE entries 207

Resulting application-tailored kernel
Loaded Code 3,990,153 Bytes
Total Loadable Code 3,990,153 Bytes
Loaded Kernel Modules 0
Kconfig options set to y 379
Kconfig options set to m 0
Functions with CVE entries 162

Table 1: Results of the experiment at a glance. The code
sizes were obtained with the SIZE tool from the BINU-
TILS suite by adding the sizes of the text segments of the
bootable kernel image and all loadable .ko files.

Sheet1

Page 1

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Debian tailored

requests per second

re
p

lie
s

p
e

r
se

co
n

d

Figure 2: Comparison of reply rates of the web server with
the tailored kernel and the standard distribution kernel.

3.2 Evaluation

To ensure the functionality of the appliance, we run the
Skipfish [24] security scan again on the system with the
tailored kernel, and compare the results with the previous
run on the tracing kernel. The comparison of these two
reports indicates no differences in the number of vulnera-
bilities or other issues.

The performance is tested with the httperf tool [18].
The tool accesses a static website continuously, at a con-
stant number of requests per second in each run. We did
two setups of the same test scenario, both times using
the same system, but once booted with the Debian stan-
dard kernel, and once with our tailored kernel. The data
shows that our tailored kernel achieves a performance
very similar to that of the original kernel provided by the
distribution.

3

[W5?] Proceedings of the 8th International Workshop on Hot Topics in System Dependability (HotDep ’12)

HotDep ’12 161

4 Discussion

After the presentation of a practical use case for our ap-
proach, this section now evaluates the security benefits.
For this, we present an applicable security model to de-
termine the TCB, and discuss security improvements in
terms of TCB reduction.

Security Model. In the context of the web service pre-
sented, we assume both local and remote malicious attack-
ers that target the kernel. However, we do not consider
attackers that have physical access to the machine nor
attacks that directly target hardware and firmware vulner-
abilities.

The security goal is to prevent an attacker from gaining
full control with arbitrary code execution in kernel mode,
information leakage (e.g., recover uninitialized kernel
memory content) to breach confidentiality, and denial-
of-service attacks by crashing the kernel to reduce the
availability of the system.

TCB sizes. Following the literature [13], we define the
TCB as “the subset of components that need to be trusted
to fulfill the security goals given in the security model”.
Therefore, in the security model above, the TCB is solely
composed of the kernel, including all LKM loaded during
normal operation.

We apply three different metrics to measure the TCB
reduction: a) the compiled code (text segment) size of the
kernel, b) the total number of features that are enabled in
KCONFIG and c) the number of functions compiled into
the kernel for which there has been an CVE entry in the
past 10 years. More precisely, through a semi-automated
process, we map a subset of 197 out of 873 CVE entries
to vulnerabilities in 215 unique functions in the kernel,
and use this dataset. The results for all three kernels used
in the experiment in Section 3 are shown in Table 1.

Results. The data shows that the Linux kernel shipped
by Debian loads 5.5 MB of program code into the mem-
ory for the virtual machine in the scenario described in
Section 3. Compared with the code size of 4 MB for our
tailored kernel, the total TCB size is reduced by 27%.

The number of features enabled is also reduced signif-
icantly, from 3,392 (with 1,093 features compiled stat-
ically into the kernel and 2,299 as LKM) to 379. The
omission of functionality to load further LKMs consti-
tutes an additional security benefit.

Finally, for each function in the TCB, we record the
number of known vulnerabilities that have been reported
in the past 10 years. When comparing the default distribu-
tion kernel to the tailored kernel, we observe a reduction
of 10% of functions for which vulnerabilities have been

reported in the past. However, this number is a lower-
bound estimate, as the Linux kernel supports on-demand
insertion of LKM, resulting in a higher initial TCB size,
and therefore higher TCB reduction.

Sampling bias. Compared with the code size reduction
results above, the CVE reduction numbers may seem
lower than expected. We hypothesize that this impression
can be attributed to sampling bias: code that is used more
often is also audited more often, and better care is taken
in documenting the vulnerabilities of such functions. A
comparison of the average number of CVEs in kernel
functions that are loaded and used (9.8‰) with the aver-
age number of CVEs in kernel functions that are not used
(3.7‰) supports this hypothesis. Previous studies [3]
have also shown that code in the drivers/ sub-directory
of the kernel, which is known to contain a significant
number of rarely-used code, on average contains signifi-
cantly more bugs than any other parts of the kernel tree.
Consequently, it is likely that unused features provided by
the kernel still contain a significant amount of relatively
easy-to-find vulnerabilities. This further confirms the im-
portance of reducing the TCB size as presented in this
work.

Unexpected impacts. The presented approach in this
work could in turn cause a reduction of the security of
the system – a drawback that is common to many security
software but is often overlooked. Reviewing the process
described in Section 2 (Step Ï), we cannot rule out that
for some application scenarios, performance-critical or
security features might be removed from the base ker-
nel. Possible reasons for this include that a) the feature
was not triggered during the system-wide trace, b) the
functionality has been excluded from the instrumenta-
tion with ftrace (e.g., for performance reasons), or c)
the configuration options influence the resulting kernel
in non-functional ways (e.g., different compilation flags,
etc.). Although we were not able to find any results con-
firming this in this experiment — for example, we have
verified that the CONFIG_CC_STACKPROTECTOR configura-
tion option, which toggles the inclusion of the GCC flag
for adding a stack frame canary, remains enabled, in fu-
ture work we intend to further evaluate potential adverse
impacts.

Applicability and Incomplete Traces. The presented
approach relies on the assumption that the use-case of the
system is clearly defined. Thanks to this a priori knowl-
edge, it is possible to determine what kernel functional-
ities the application requires and therefore, what kernel
configuration options have to be enabled. Still, the lack
of guarantees that a trace of a given scenario is sufficient

4

“Automatic OS Kernel TCB Reduction by Leveraging Compile-Time Configurability” [W5?]

162 HotDep ’12

and captures all required functionality may raise concerns.
However, this does not invalidate the approach. Our ap-
proach works best for service providers that instantiate
fairly homogeneous services, for which the the chance
to capture all necessary functionality is highest. Unfor-
tunately, even the best tracing mechanism could still not
guarantee catching all possible cases. Such a guarantee
could only be provided with formal analysis and verifica-
tion – a method that stands mathematical proof. However,
for many scenarios organizations and system operators are
likely to accept less costly approaches – such as the one
presented in this paper. With the increasing importance
of compute clouds, where customers employ virtual ma-
chines for very dedicated services such as the web server
presented in Section 3, we expect that our approach can
be easily applied to further use cases that are commonly
deployed in the cloud.

Fortunately, incomplete traces do not lead to system
crashes. With KCONFIG, changing the static configura-
tion of the Linux kernel statically restricts the provided
functionality to applications that interact with the kernel
via well-defined interfaces. These interfaces, and the care-
ful maintenance of kernel developers, allows applications
to check for the presence of kernel features that are re-
quired for correct operation. In the absence of kernel
bugs, applications must not be able to crash the kernel.
On the other hand, applications that crash because of miss-
ing kernel features fail to provide proper error handling –
which alone makes them unsuitable for security sensitive
environments. In summary, crashes that occur because
of incomplete traces always stem from easy-to-address
software bugs for the scenario presented in this paper.

Usability. Most of the steps presented in Section 2 re-
quire no domain specific knowledge of Linux internals.
We therefore expect that they can be conducted in a
straightforward manner by system administrators without
specific experience in Linux kernel development. The
system administrator, however, continues to use a code
base that continuously receives maintenance in form of
bug fixes and security updates from the Linux distributor.
We therefore are confident that our approach to automati-
cally tailor a kernel configuration for specific use-cases
is both practical and feasible to implement in real-world
scenarios.

Extensibility. The experiment in Section 3 shows that
the resulting kernel requires eight additional KCONFIG
options for proper operation. Alternatively to adding
these features to the whitelist with distribution-specific
knowledge, starting the application tracer at the start of the
boot process would also capture the missing functionality.
However, in this way we demonstrate the ability to specify
wanted or unwanted KCONFIG options independently of

the tracing. This allows our approach to be assisted in
the future by methods to determine kernel features that
tracers such as ftrace cannot observe at all.

5 Related work

As we show below, this work relates to two research areas.

Kernel specialization. Several researchers have sug-
gested approaches to tailor the Linux kernel, although
security is usually not a goal, but improvements in code
size or execution speed are: Lee et al. [14] manually
modify the source code (e.g., by removing unnecessary
system calls) based on a static analysis of the applications
and the kernel. Chanet et al. [2], in contrast, propose
a method based on link-time binary rewriting, but also
employ static analysis techniques to infer and specialize
the set of system calls to be used. Both approaches, how-
ever, do not leverage any of the built-in configurability of
Linux to reduce unneeded code. Moreover, our approach
is completely automated.

TCB reduction has always been a major design goal for
micro-kernels [1, 15], which in turn facilitates a formal
verification of the kernel [10] or its implementation in
type-lafe languages, such as OCaml [16].

Kernel attack surface reduction. The security model
used in this paper is commonly used when building sand-
boxing or isolation solutions, in which each process must
be contained within a particular security domain, such
as [4, 9, 17], which are all based on the Linux Security
Module (LSM) framework [23]. The idea of directly re-
stricting the system call interface on a per-process basis
has been previously explored as well, e.g., by Fraser,
Badger, and Feldman [6], Ko et al. [11], or Provos [20],
although not with specific focus on reducing the kernel’s
attack surface. Seccomp [8] directly tackles this issue
by allowing processes to be sandboxed at the system call
interface. Ktrim [12] is a current research project which
goes beyond simply limiting the system call interface, and
explores the possibility of finer-granularity kernel attack
surface reduction by restricting individual functions (or
sets of functions) inside the kernel. In contrast, this work
focuses on compile-time removal of functionality from
the kernel at a system-wide level instead of a runtime
removal at a per-application level.

6 Conclusion and Future Work

This paper presents an approach for automatically tailor-
ing a Linux kernel configuration to a given use case. The
result is a Linux kernel in which unnecessary functionality
is removed at compile-time, hence significantly reducing

5

[W5?] Proceedings of the 8th International Workshop on Hot Topics in System Dependability (HotDep ’12)

HotDep ’12 163

TCB size. The reduction can be quantified with 27%
less code loaded and at least 10% fewer kernel functions
which were previously vulnerable to attacks.

While the current prototype shows promising results,
we intend to improve on the usability and applicability to
additional use-cases. For instance, the current prototype
unconditionally disables module loading support. As this
may be undesirable in some cases, we intend to improve
the handling of LKMs, as well as to remove the the need
for an intermediary tracing kernel.

Acknowledgments

This research has been partially supported by the TClouds
projecta funded by the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
number ICT-257243.

ahttp://www.tclouds-project.eu

References
[1] Mike Accetta, Robert Baron, David Golub, Richard

Rashid, Avadis Tevanian, and Michael Young. “MACH:
A New Kernel Foundation for UNIX Development”. In:
USENIX Summer Conference. USENIX, 1986.

[2] Dominique Chanet, Bjorn De Sutter, Bruno De Bus, Ludo
Van Put, and Koen De Bosschere. “System-wide Com-
paction and Specialization of the Linux Kernel”. In: 2005
ACM SIGPLAN/SIGBED Conf. on Languages, Compil-
ers and Tools for Embedded Systems (LCTES ’05). ACM,
2005. DOI: 10.1145/1065910.1065925.

[3] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. “An empirical study of operating
systems errors”. In: 18th ACM Symp. on OS Princi-
ples (SOSP ’01). ACM, 2001. DOI: 10.1145/502034.
502042.

[4] Kees Cook. Yama LSM. 2010. URL: http://lwn.net/
Articles/393012/ (visited on 06/04/2012).

[5] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. “A Robust Approach
for Variability Extraction from the Linux Build System”.
In: 16th Software Product Line Conf. (SPLC ’12). (To
appear). ACM, 2012.

[6] Timothy Fraser, Lee Badger, and Mark Feldman. “Hard-
ening COTS software with generic software wrappers”.
In: 20th Symp. on Security and Privacy. IEEE, 1999. DOI:
10.1109/SECPRI.1999.766713.

[7] Andreas Gohr. DokuWiki. URL: http://dokuwiki.
org (visited on 06/03/2012).

[8] Google Seccomp Sandbox for Linux. URL: http://
code . google . com / p / seccompsandbox / wiki /
overview (visited on 06/05/2012).

[9] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka.
“Task Oriented Management Obviates Your Onus on
Linux”. In: Japan Linux Conference (2004).

[10] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood.
“seL4: formal verification of an OS kernel”. In: 22nd
ACM Symp. on OS Principles (SOSP ’09). ACM, 2009.
DOI: 10.1145/1629575.1629596.

[11] Calvin Ko, Timothy Fraser, Lee Badger, and Douglas
Kilpatrick. “Detecting and countering system intrusions
using software wrappers”. In: 9th Conf. on USENIX Se-
curity Symposium (SSYM ’00). USENIX, 2000.

[12] Anil Kurmus, Alessandro Sorniotti, and Rüdiger Kapitza.
“Attack surface reduction for commodity OS kernels:
trimmed garden plants may attract less bugs”. In: 4th
Eur. W’shop on system security (EUROSEC ’11). ACM,
2011. DOI: 10.1145/1972551.1972557.

[13] Butler Lampson, Martı́n Abadi, Michael Burrows, and
Edward Wobber. “Authentication in distributed systems:
theory and practice”. In: ACM Trans. Comp. Syst. 10.4
(1992). DOI: 10.1145/138873.138874.

[14] C.T. Lee, J.M. Lin, Z.W. Hong, and W.T. Lee. “An
Application-Oriented Linux Kernel Customization for
Embedded Systems”. In: Journal of information science
and engineering 20.6 (2004).

[15] Jochen Liedtke. “On µ-Kernel Construction”. In: 15th
ACM Symp. on OS Principles (SOSP ’95). ACM OSR.
ACM, 1995. DOI: 10.1145/224057.224075.

[16] A. Madhavapeddy, R. Mortier, R. Sohan, T. Gazagnaire,
S. Hand, T. Deegan, D. McAuley, and J. Crowcroft.
“Turning Down the LAMP: Software Specialisation for
the Cloud”. In: 2nd USENIX Conf. on hot topics in cloud
computing (HOTCLOUD’10). USENIX, 2010.

[17] Frank Mayer, Karl MacMillan, and David Caplan.
SELinux By Example: Using Security Enhanced Linux.
Prentice Hall, 2006.

[18] David Mosberger and Tai Jin. “httperf. A tool for measur-
ing web server performance”. In: SIGMETRICS Perfor-
mance Evaluation Review 26.3 (1998). DOI: 10.1145/
306225.306235.

[19] phpBB. Free and Open Source Forum Software. URL:
www.phpbb.com (visited on 06/03/2012).

[20] Niels Provos. “Improving host security with system call
policies”. In: 12th Conf. on USENIX Security Symposium
(SSYM ’03). Vol. 12. USENIX, 2003.

[21] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and
Wolfgang Schröder-Preikschat. “Efficient Extraction and
Analysis of Preprocessor-Based Variability”. In: 9th Int.
Conf. on Generative Programming and Component En-
gineering (GPCE ’10). ACM, 2010. DOI: 10.1145/
1868294.1868300.

[22] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and
Wolfgang Schröder-Preikschat. “Feature Consistency in
Compile-Time-Configurable System Software: Facing
the Linux 10,000 Feature Problem”. In: ACM SIGOP-
S/EuroSys Eur. Conf. on Computer Systems 2011 (Eu-
roSys ’11). ACM, 2011. DOI: 10 . 1145 / 1966445 .
1966451.

[23] Chris Wright, Crispin Cowan, James Morris, Stephen
Smalley, and Greg Kroah-Hartman. “Linux Security
Module Framework”. In: Ottawa Linux Symposium.
2002.

[24] Michal Zalewski, Niels Heinen, and Sebastian Roschke.
skipfish. Web application security scanner. URL: http:
/ / code . google . com / p / skipfish/ (visited on
06/03/2012).

[25] Christoph Zengler and Wolfgang Küchlin. “Encoding
the Linux Kernel Configuration in Propositional Logic”.
In: Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI 2010) Workshop on Config-
uration 2010. 2010.

6

“Automatic OS Kernel TCB Reduction by Leveraging Compile-Time Configurability” [W5?]

164 HotDep ’12

	Introduction
	The Case for Tailorable System Software
	Contributions
	Papers of This Treatise
	Structure of This Treatise

	Towards Tailorable System Software
	Design for Static Variability
	Implementation Approaches for Tailorable System Software
	Decompositional Implementation of Variability
	Compositional Implementation of Variability
	Generative Implementation of Variability
	Summary

	The CiAO Approach
	CiAO Goals
	Implementation Approach: Aspect-Aware Development
	CiAO Results
	CiAO Key Papers

	The Sloth Approach
	Sloth Goals
	Implementation Approach: Generative Programming
	Sloth Results
	Sloth Key Papers

	The VAMOS Approach
	VAMOS Goals
	Implementation Approach: Holistic Variability Model
	VAMOS Results
	VAMOS Key Papers

	Discussion, Future Work, and Conclusions
	Impact on Functional and Nonfunctional Properties
	Explicit, Implicit, and Automatic Tailoring
	Multi-Level Separation of Concerns
	Conclusions

	Bibliography
	General Bibliography
	Personal Bibliography

	Paper Reprints
	CiAO Papers
	Sloth Papers
	VAMOS Papers

