
Slothful Linux:
An Efficient Hybrid Real-Time System
by Hardware-Based Task Dispatching

Diplomarbeit im Studiengang Informatik

vorgelegt von

Rainer Müller

geboren am 14. Februar 1987 in Erlangen

Angefertigt am

Lehrstuhl für Informatik 4 – Verteilte Systeme und Betriebssysteme
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer:

Dipl.-Inf. Wanja Hofer
Dr.-Ing. Daniel Lohmann
Dr.-Ing. Fabian Scheler

Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat

Beginn der Arbeit: 01.01.2012
Abgabe der Arbeit: 02.07.2012

Abstract

The particular requirements raised in the embedded market lead to the develop-
ment of real-time operating systems, which differ from the common general-purpose
operating systems by applying strict timing and providing predictable execution of
tasks. Some features of a real-time application, such as human interaction and some
data transfers to other components, are not time-critical and thus, can be executed
by a general-purpose operating system in order to reduce the footprint of the real-
time system. As the general-purpose operating system requires access to the data
gathered by the real-time operating system, these two should be consolidated on the
same platform forming a hybrid system.

This thesis examines how the existing Sloth approach of interrupt-driven sched-
uling can be applied to a combined system running both a real-time core and the
Linux kernel concurrently on the same hardware. This entails a review of existing
approaches towards a real-time capable Linux and the design of a communication
channel between the real-time core and processes running in Linux. The evaluation
of the resulting Slothful Linux is supposed to show the advantages of the Sloth
approach in a hybrid system compared to both the standalone Sloth and another
real-time extension for Linux.

Zusammenfassung

Die speziellen Anforderungen von eingebetteten Systemen haben zur Entwick-
lung von Echtzeitbetriebssystemen geführt, die sich von den üblichen Allzweckbe-
triebsystemen durch striktes Einhalten von Zeitvorgaben und vorhersagbarer Aus-
führung von Tasks unterscheiden. Einige Teile der Echtzeitanwendung, unter ande-
rem Benutzerinteraktionen oder Datentransfer zu anderen Hardwarekomponenten,
sind nicht zeitkritisch und können daher in ein Allzweckbetriebssystem ausgelagert
werden. Dadurch verringert sich der Ressourcenbedarf der Echtzeitanwendung. Um
dem Allzweckbetriebssystem Zugriff auf die erfassten Daten des Echtzeitbetriebs-
systems zu ermöglichen, sollten diese auf derselben Plattform als hybrides System
vereint werden.

Diese Arbeit untersucht, wie das existierende Sloth-Konzept für das interrupt-
gesteuerte Einplanen von Tasks auf ein kombiniertes System übertragen werden
kann, in dem neben einem Echtzeitbetriebssystem gleichzeitig der Linux-Kernel auf
derselben Hardware ausgeführt wird. Dies umfasst sowohl die Analyse existierender
Ansätze für ein echtzeitfähiges Linux als auch die Entwicklung eines Kommunikations-
kanals zwischen dem Echtzeitkern und Prozessen unter Linux. Die Evaluation des
resultierenden Slothful Linux soll aufzeigen, welche Vorteile das Sloth-Konzept
in einem Hybridsystem im Vergleich mit dem freistehenden Sloth und einer wei-
teren Echtzeiterweiterung für Linux bietet.

Contents

1 Introduction 1
1.1 Real-Time Operating Systems . 1
1.2 Consolidation of Real-Time and General-Purpose Operating Systems . . . 2
1.3 Goals of this Thesis . 3
1.4 The Linux Kernel . 4
1.5 The Sloth Real-Time Kernel . 4

1.5.1 The Sloth Concept . 4
1.5.2 Requirements on the Interrupt Controller 7

1.6 Outline of this Thesis . 7

2 Problem Analysis 8
2.1 Requirements on an RTOS . 8
2.2 Existing Projects based on Linux . 9

2.2.1 The RT-Preempt Patch . 9
2.2.2 The I-Pipe Patch for Generic Interrupt Virtualization 10
2.2.3 Summary . 12

2.3 Integration of Sloth into Linux . 12
2.4 Summary . 12

3 Design and Implementation of Sloth on the Intel x86 14
3.1 Sloth Design Overview . 14
3.2 The Intel x86 Interrupt Subsystem . 15
3.3 Utilization of the Local APIC . 18

3.3.1 Tasks . 19
3.3.2 Resource Management . 21

3.4 Summary . 21

i

4 Design and Implementation of Slothful Linux 22
4.1 Design of Slothful Linux . 22

4.1.1 Tasks and Resources . 22
4.1.2 Pipes . 23
4.1.3 Real-Time Applications as Linux Kernel Modules 23
4.1.4 Summary . 24

4.2 Implementation of Slothful Linux . 24
4.2.1 Modifications to the Standard Linux Kernel 24
4.2.2 Tasks . 27
4.2.3 Resources . 29
4.2.4 Pipes . 29
4.2.5 Summary . 32

5 Evaluation 33
5.1 Evaluation Metrics . 33
5.2 Platform Setup . 34
5.3 Performance Evaluation . 35

5.3.1 Performance Benchmarking with the Time-Stamp Counter 35
5.3.2 Results of the Performance Evaluation 37
5.3.3 Summary of the Performance Evaluation 40

5.4 Evaluation of Interrupt Latency . 40
5.4.1 Latency Measurements with the Local APIC Timer 40
5.4.2 Results of the Interrupt Latency Evaluation 41
5.4.3 Summary of the Interrupt Latency Evaluation 44

5.5 Limitations . 44
5.6 Summary . 45

6 Conclusion 46

Bibliography 48

ii

Chapter 1

Introduction

In the last decades, computers have become a ubiquity around us as we are using them
on a daily basis for both work and entertainment. Furthermore, many items around
us are already being controlled by computers hidden from our view. The behavior of
machines such as cars, aircrafts, industrial workbenches, and even home appliances is
conducted by one or multiple embedded devices that are responsible for controlling the
machine’s movement. Depending on the operation, this can either happen autonomously
or according to user input. When such tasks have strict timing requirements, they are
classified as real-time and are usually performed by control hardware with well-adapted
operating systems.

1.1 Real-Time Operating Systems
Human interaction with the computer has lead to the development of many different
operating systems to accomplish the varying tasks required in the system. The well-
recognized general-purpose operating systems (GPOS) are being used in the interaction
with users and allow us to arrange things like world-wide network communication.

However, in embedded devices different requirements call for different operating sys-
tems. Especially, decisions for control in safety-critical systems have to be made in a
reliable way to avoid damages or harm to both machines and humans. To ensure these
properties, specific design criteria are applied to the class of real-time operating sys-
tems (RTOS). Although the term real-time in their name might suggest otherwise, these
operating systems are not necessarily required to act very fast, instead the key is that
the handling of events always takes a limited, predictable amount of time. This allows
to plan program execution in the correct order, so that the reaction to physical events is
always on time. An RTOS can operate on varying timescales, such as motor controllers
operating in a time range of a few microseconds, multimedia devices with requirements in
the range of milliseconds, or industrial plants where processes can take seconds, minutes,
or even hours.

1

RTOS

RTApp

GPOS

Application
Application
Application

Single Hardware Unit

Controlled
System sensor data

control
commands

Other
Components

network
communication

shared
resources

Figure 1.1: Schematic implementation of a hybrid system which runs both an RTOS and a GPOS
on a single hardware platform.

In general, RTOS can be divided into the categories of soft and hard. In a soft real-
time system, missing a few deadlines can be tolerated and therefore, the result might be
of lower quality. For example in a video display, occasionally losing a single frame will
go almost unnoticeable due to the dynamics of the human eye. The average performance
of the system will still be acceptable, although a deadline has been missed [1].

In contrast, a hard real-time system guarantees timing constraints with strict dead-
lines that cannot be missed under any circumstances. In such a system, missing a deadline
cannot be tolerated and would raise an exception to be handled by the application. For
example, the internal state of a real-time application controlling an assembly line must
always be synchronized with the actual state of the manufacturing system. Any control
actuations in this system must be issued in a specific time frame to ensure the resulting
product will match the desired outcome.

1.2 Consolidation of Real-Time and General-Purpose
Operating Systems

In the past, hard real-time applications have usually been implemented using industrial
components such as microcontrollers and signal processors dedicated to a single task. For
safety-critical applications, the deployment of a real-time system needs to pass through
multiple verification steps to ensure the correctness of the system.

However, some tasks related to the implementation of a real-time application do not
need to be handled in the RTOS itself and can be moved out to reduce the amount of code
to be verified. Such tasks include the gathering of statistics or running visualizations on
data collected from sensors. In general, any task meant for human interaction can be

2

handled in a GPOS as these are not time-critical due to the perception of the human
senses. Thus, splitting the real-time part off the whole application leaves two separate
parts where the one for controlling can be implemented using a specialized RTOS and
the other for human intervention can be run in a GPOS.

As this part implemented in the GPOS still needs to access the data collected by the
application running in the RTOS, the data needs to be shared. One approach to this is
the consolidation of the two systems on the same hardware platform as that removes the
need for transfer mechanisms across devices as depicted in Figure 1.1.

Such communication or visualization efforts can be achieved on standard PC hard-
ware as their compatibility to a lot of other components allows usage in many possible
combinations. Since the consolidation effort removes the need for separated components
running the real-time system, the bill of materials can be reduced by using standard
hardware. Furthermore, the PC hardware based on the Intel x86 processors is widely
available, which makes the development of an RTOS on this platform cheaper than using
specialized industrial components. Also, a manufacturer can warrant that replacement
parts will be available in the whole lifespan of a deployed product.

1.3 Goals of this Thesis

The Sloth system introduced by Hofer et al. [2] provides a small RTOS with low laten-
cies by using the hardware for components usually implemented in software. The main
concept in Sloth is the use of the interrupt controller hardware for thread scheduling
by modeling all threads as interrupt handlers. The Sloth system has already proven to
outperform existing implementations in previous publications [2, 3].

Implementations of Sloth have already been accomplished on the Infineon TriCore
and the ARM Cortex-M3 [2, 4]. While these existing implementations of Sloth run
standalone on a microcontroller platform, this thesis investigates how an RTOS imple-
menting the Sloth real-time scheduling can be integrated with Linux as a GPOS in
order to run them both concurrently on the same PC hardware.

Existing approaches towards a real-time capable Linux need to be reviewed by exam-
ination of the implementations of these systems and to identify concepts to be reused for
the implementation of a hybrid system using the Sloth approach for interrupt-driven
scheduling for the real-time part. An important factor in the analysis is the handling
of interrupts, since latency—a major property of an RTOS—may not be affected by in-
terrupt blocking in the Linux kernel. The real-time extension for Linux designed in this
thesis implements the Sloth approach of interrupt-driven scheduling, where the Linux
running simultaneously is supposed to provide user interaction without influencing the
real-time guarantees of the Sloth system. To take full advantage of the fusion, the
real-time tasks running in the RTOS need to communicate with processes in the GPOS
in order to transfer information between the two systems; thus, an adequate mechanism
needs to be invented as well. The resulting Slothful Linux provides the functional-

3

ity of common Linux with an additionally RTOS core that uses the Sloth concept for
scheduling.

In order to compare the implementation of Slothful Linux with another existing
hybrid system, the Intel x86 was chosen as hardware platform as it is widely supported
among available systems. At first, the standalone Sloth system is ported to the bare-
metal Intel x86 to review the available interrupt controller hardware. This proves the
fitness of the platform and is also a competitor for evaluations against the combined
implementation.

The following two sections provide necessary background information on both the
Linux kernel and the Sloth real-time system, which are combined into Slothful Linux
in this thesis.

1.4 The Linux Kernel

Since its advent about 20 years ago, Linux [5] has gained a wide user-base and is devel-
oped by a large community of programmers around the world supporting many different
hardware components. As the source code of Linux is available under the terms of an
open source license, everyone can extend the kernel code in numerous ways. Likewise,
the availability of the source code makes it possible to understand its control flow paths
in detail, which supports both development and verification of modifications to the Linux
kernel.

Due to the success of Linux as a base for prior implementations of hybrid real-time
systems (further detailed in Section 2.2), this thesis aims to integrate the Sloth real-time
kernel with Linux, in order to run both concurrently on the same computing hardware.

1.5 The Sloth Real-Time Kernel
The Sloth concept proposes to implement scheduling and dispatching of different control
flows in an operating system by using the interrupt controller hardware. This removes
the usual distinction between threads and interrupts by implementing all control flows
as interrupt handlers and thus, eliminates the need for a software scheduler completely.
In this system, scheduling decisions for both synchronous and asynchronous events are
made solely in the scope of the interrupt controller, which has a huge improvement on
the performance of system services.

1.5.1 The Sloth Concept
The reference implementation of Sloth is designed as a standalone event-driven real-
time system implementing the OSEK1 operating system specification [6]. An overview

1OSEK is a German acronym for “Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug”, translates to “open systems and corresponding interfaces for automotive electronics”

4

IRQ Source
Task1

prio=1

request

IRQ Source
Task2

prio=2

request

IRQ Source
Task3

prio=3

request

IRQ Source
Task4

prio=4

request

Hardware
Peripheral

Timer
System

Hardware

IRQ

Alarm

Expiration

IRQ
Arbi-
tration
Unit

CPU

curprio=X

ActivateTask(Task1)

IRQ Vector
Table

task1()

task2()

task3()

task4()

Figure 1.2: Design of the Sloth system using interrupt handlers for implementation of different
control flows.

of the concept can be seen in Figure 1.2. The system functionality includes control flow
abstractions in form of tasks, where each of them is assigned to a separate interrupt source
with a fixed priority. Therefore, the activation of such a task merely means setting the
corresponding pending bit in the interrupt controller. This can be done synchronously by
software with a system service, or asynchronously by a peripheral hardware device. The
scheduling decision is then handled by the IRQ arbitration unit that decides which of
the pending interrupts—with the attached task control flow—has the highest priority. If
the current CPU priority is lower than this highest priority determined in the arbitration
step, the interrupt controller signals an interrupt request to the CPU. Otherwise, if the
current CPU priority is already higher, then no interrupt request will be signaled until the
CPU priority is lowered again. When the CPU is interrupted by the interrupt controller,
the corresponding task will be dispatched automatically by looking up its entry point in
the vector table. The CPU priority does not always have to match the priority of the
executing control flow as it can also be changed in critical sections for mutual exclusion.
Such synchronization primitives are implemented as resources in OSEK.

The OSEK specification describes two types of tasks: basic and extended. The for-
mer have a strict run-to-completion property, while the latter are able to block and wait
for an event. Although another publication [3] already enhanced the Sloth concept
for extended tasks, this thesis focuses on the implementation of basic tasks targeting a
basic conformance class of OSEK. Also, common systems with a software-based sched-
uler differentiate between asynchronous triggered interrupt service routines (ISRs) and
synchronous activated tasks. In Sloth, all tasks are effectively implemented as inter-

5

CPU Priority
Level

t

0

1

2

3

4

t1 t2 t3 t4 t5 t6 t7

init()

enableIRQs()

Task1

Act(Task3)

Task3 E
Interrupt

Term()

Task2 Term()

Task1 Term()

idle()

Task2
E

Interrupt

Figure 1.3: Example control flow in a Sloth system. The execution of most system services leads
to an implicit or explicit altering of the current CPU priority level, which subsequently leads to
an automatic and correct scheduling and dispatching of the control flows by the hardware.

rupt handlers: both tasks and ISRs are allowed to be triggered asynchronously. Thus,
in the following, the term task refers to control flows with run-to-completion properties,
irrespective whether their activation is synchronous or asynchronous.

The task management of Sloth is depicted in the example control flow in Figure 1.3.
In this configuration, Task1, Task2, and Task3 have the priorities 1, 2, and 3, respectively.
After initialization of the system, where the auto-started Task1 is set to pending, the
system dispatches Task1 running with priority 1 at t1. At t2, Task1 activates Task3 using
the ActivateTask() system service. As Task3 has the higher priority, it is immediately
dispatched and preempts Task1; the current CPU priority level is raised to 3. At the
time t3, an asynchronous task activation occurs by a hardware device that signals a
request in the interrupt source of Task2. In this case, the dispatching of Task2 has
to be delayed as the current execution priority is 3. The interrupt controller does not
interrupt the CPU and the execution of Task3 continues. Only as Task3 terminates itself
at t4 using the TerminateTask() system service, the execution priority is lowered and
the interrupt controller interrupts the CPU to dispatch Task2 which sets the execution
priority to 2. Task2 terminates at t5, where the execution priority is lowered again so
that the preempted Task1 continues running. At t6, where Task1 terminates itself, no
other control flow is currently pending. Thus, the system is running an idle function at
the lowest priority level waiting for further interrupts until Task2 is triggered again by
an interrupt at t7. This time it is dispatched at once as no other control flow is running
or pending.

6

1.5.2 Requirements on the Interrupt Controller
The Sloth concept with utilization of the interrupt controller for scheduling leads to
a very concise kernel implementation. The design of Sloth is not tailored to specific
hardware in order to be able to implement such a system on many modern platforms
which fulfill the following requirements:

• The interrupt subsystem must provide different priority levels for each task in the
system.

• The interrupt subsystem must support software-generated interrupts, allowing syn-
chronous triggering of individual interrupts.

While existing implementations of Sloth run standalone on embedded platforms, this
thesis covers the design and implementation of an efficient hybrid real-time system based
on the Sloth concept, which runs concurrently with Linux on Intel x86 hardware. Sec-
tion 3.2 details the interrupt controller available on this platform and also shows that it
complies with these requirements for the implementation of the Sloth concept.

1.6 Outline of this Thesis
This chapter gave an overview of the Sloth concept and introduced the goal of this the-
sis: Slothful Linux, a hybrid system running Linux and a Sloth system concurrently
on the same hardware platform. The following Chapter 2 gives an overview of both
the requirements of an RTOS and outlines existing real-time extensions for the Linux
kernel. Chapter 3 describes the design and implementation of Sloth on the bare-metal
Intel x86 platform, which will then be integrated with Linux to form Slothful Linux
in Chapter 4. Both implementations will be evaluated and discussed in Chapter 5; this
chapter also compares Slothful Linux with existing real-time extensions for the Linux
kernel. Chapter 6 concludes this thesis with a summary of the results and an outlook
for future work.

7

Chapter 2

Problem Analysis

This chapter gives an overview of the requirements on an RTOS emphasizing the kernel
features related to the scheduling and dispatching of tasks. In the consolidation process
of RTOS and GPOS it is important that these real-time properties are being respected.
Thus, this chapter presents a review of current existing real-time extensions for the Linux
kernel and their approaches, with a focus on interrupt virtualization.

2.1 Requirements on an RTOS
Operating systems are responsible for scheduling multiple tasks according to their pri-
orities and for dispatching new tasks as they become active. Additionally, interrupts
triggered by peripheral hardware components can signal events to the kernel that might
need to be forwarded to the appropriate tasks.

In an RTOS, these operations need to be carried out in a predictable manner so that
the program execution timing becomes deterministic. These timings can subsequently be
used to assign a fixed worst-case execution timing to the jobs accomplished by the tasks
in the RTOS. The response constraints of a real-time application can only be satisfied
with reliable execution in the RTOS.

Therefore, task switches should take a fixed amount of time for saving and restoring
context of the executing tasks. At best, system services for task switches only introduce
a short latency into the application’s execution, while scheduling decisions necessary due
to task activation or termination need to be made promptly. To react fast on external
events, an RTOS should ideally be preemptible at all times, which benefits a low interrupt
latency. The scheduler should be able to preempt tasks in the system and give the CPU
resources to other tasks according to their priorities by providing many opportunities for
rescheduling. The responsiveness of the system can be improved by handling multiple
levels of interrupts, where interrupt handlers can preempt not only running tasks but
also other interrupt handlers. In order to preserve the integrity of data, applications
must be able to synchronize concurrent access to resources by multiple tasks; this task

8

synchronization mechanism needs to be predictable and may not introduce unbounded
priority inversion. Tasks of high priority may be delayed for an unlimited amount of
time by other control flows of lower priority. [1, 7]

Overall, as operating systems are only used as an abstraction for applications to
the hardware and do not fulfill a purpose of their own, especially real-time operating
systems in the embedded market should have a low overhead and a high performance.
By reducing the footprint of the operating system, more resources will be available for
the application providing the actual functionality in a deployed system.

2.2 Existing Projects based on Linux
Linux has become quite popular over the years and due to its community-based develop-
ment it gained support for various hardware components. However, the standard Linux
kernel fails to provide strict timing guarantees and the responsiveness to hardware inter-
rupts shows variances. Previous measurements of these properties have shown that the
standard Linux kernel does not meet the requirements to be used as an RTOS [8, 9].

However, several approaches have already been implemented in order to improve
the timing predictability of Linux. These different solutions can be classified into two
categories:

• Modify Linux with patches to provide a kernel with real-time behavior.

• Move the real-time activity into a smaller real-time kernel that handles all inter-
rupts and run the Linux kernel with virtualized interrupts as a low-priority task.

The following sections take examples for both categories and explain the different ap-
proaches in more detail.

2.2.1 The RT-Preempt Patch
For the first option, the RT-Preempt patch [10, 11] is a well-known example of modifi-
cations to the Linux kernel. This patch already poses a long and steady process along
the development of Linux, as some features developed as part of this patch were also
integrated into the standard Linux kernel. The most important part of the patch tries to
make the full kernel code preemptible. This is achieved by allowing preemption of locking
primitives synchronizing critical sections in the kernel. Additionally, it implements pri-
ority inheritance for kernel spinlocks and semaphores to avoid priority inversions. Even
hardware interrupt handlers are made preemptible by wrapping them into a thread con-
text. Overall, the patch includes a variety of features of interest for real-time capabilities
within the Linux kernel.

However, despite the features added by this patch, the Linux kernel with the features
of the RT-Preempt patch does not qualify for use in hard real-time systems. Measure-
ments have shown that the real-time performance still includes a jitter, although it has

9

Linux Kernel

Drivers Interrupt
Handlers

Process Process Process

Real-Time
System

Interrupt
Shield

RT-Task

RT-Task

Hardware Interrupt
Controller

I/O

Interrupts

InterruptsInterrupt
blocking

Figure 2.1: Interrupt virtualization adds an abstraction to the Linux kernel which removes direct
access to the interrupt controller. This makes it possible to run Linux and an RTOS side-by-side
on the same hardware.

been reduced a lot compared to the standard Linux kernel [12]. With this patch, there
is also no way to make guarantees for a worst case execution time as the implementation
is quite complex and thus, it is not possible to test all control paths a real-time appli-
cation task might take. Nevertheless, the RT-Preempt patch at least manages to bring
real-time support to the Linux kernel that can be used in a scenario with soft real-time
requirements [12].

2.2.2 The I-Pipe Patch for Generic Interrupt Virtualization
The second approach uses interrupt virtualization with an abstraction layer between
the Linux kernel and the interrupt controller hardware as shown in Figure 2.1. For
this virtualization, all functionality regarding interrupt handling needs to be removed
from the Linux kernel. Instructions for blocking interrupts on the hardware—assembler
mnemonics cli/sti on Intel x86—could inflict unpredictable delays in the interrupt
dispatching as they are used for synchronization throughout the Linux kernel code in
drivers from many different authors.

The synchronization of code sections using hardware interrupt blocking needs to be
replaced by optimistic interrupt protection [13], which allows the occurrence of interrupts
during these sections but prevents the execution of interrupt handlers until the end of

10

Highest
Priority

Linux
Kernel

Lower
Priority

Head Domain Root Domain

Interrupts . . .
stall
point

stall
point

stall
point

stall
point

Figure 2.2: The I-Pipe patch arranges multiple domains in the form of a pipeline where each
domain may only handle the events passed by the domains of higher priority. The position of the
root domain containing the Linux kernel might be anywhere along the pipeline. Each domain
implements optimistic interrupt protection and can be stalled to block the handling of interrupts
in this domain without influencing the domains of higher priority.

the section. Therefore, although they actually can be interrupted, these sections still
appear to be “uninterruptible” in the control flow.

To achieve this protection, replacement functions for the entry of such critical sections
only mark interrupts as blocked in software. A small real-time kernel receives interrupts
from the controller hardware and dispatches their handlers according to this current
blocking state. If interrupts are allowed, their handlers can be dispatched immediately
in the Linux kernel. Otherwise, they need to be delayed until the synchronized section
will be left. At this point in the replacement code, a check is added that dispatches
pending interrupt handlers as marked by the real-time kernel.

With these changes, interrupts are always handled by the real-time kernel and al-
though Linux is unable to block interrupts, synchronization of interrupt handlers is still
possible. In this system, the real-time kernel always takes precedence as it reacts on the
interrupts and thus, the Linux kernel will only run when the real-time application is idle.

This technique was used to implement the first Linux based real-time operating sys-
tems [14, 15]; later on, the Adeos patch for Linux [16, 17, 18] aims for a generic way of
interrupt virtualization. It is used as base for both RTAI [19] and Xenomai [20], which
are two projects adding real-time capabilities to the Linux kernel.

By using the interrupt virtualization mechanism, Adeos arranges multiple domains
with static priorities along the form of a pipeline as depicted in Figure 2.2. Interrupt
events generated by the hardware flow from the highest to the lowest priority domains.
The head of the pipeline is nearest to the hardware and has the highest priority. This
interrupt pipeline for Linux as provided by Adeos is commonly referred to as the I-Pipe
patch for Linux.

The domain stages in the interrupt pipeline can be stalled, which inhibits interrupt
handling at this stage and only records their occurrence for handling later. The pending

11

interrupts are being recorded and replayed once the stage is unstalled. However, inter-
rupts generated by the hardware are still fed to the domains of higher priority. Therefore,
domains of lower priority will be preempted when interrupts occur that need to be han-
dled in higher priority domains. A domain registers handlers for incoming interrupts and
either passes interrupt events on to the next stage in the pipeline or ends handling at
this stage. If no handler for a specific interrupt has been registered in a domain, it is
automatically propagated down to the other domains in the pipeline.

The I-Pipe patch treats Linux as the root domain, which is the initial domain brought
up at boot time. Afterwards, more domains can be added at arbitrary positions in the
pipeline. For the implementation of a real-time system, the most interesting stage is
at the head where interrupts are received first. Both RTAI and Xenomai insert a new
domain for their real-time core that must have the highest priority at the head. Although
the I-Pipe patch allows to install many domains along the pipeline, using two domains—
one for the real-time and one for the general-purpose part—is the main use in these
implementations.

2.2.3 Summary
The standard Linux kernel does not provide real-time capabilities; however, two different
approaches towards providing real-time capabilities with the Linux kernel are available.
Of these, the RT-Preempt patch only provides soft real-time performance. This shows
that modifications to the Linux kernel can be quite complicated and the resulting behav-
ior is influenced by many factors. However, support for hard real-time can be achieved
by using the second approach of interrupt virtualization as for example provided by the
I-Pipe patch against the Linux kernel.

2.3 Integration of Sloth into Linux
Interrupt virtualization adds an abstraction to the handling of interrupts in the standard
Linux kernel and thus, a real-time extension can schedule and dispatch its tasks indepen-
dently. This technique removes direct access to the interrupt controller hardware from
the Linux kernel. The Sloth system relies on utilization of the interrupt controller for
scheduling and dispatching and requires direct access to the hardware for that. Thus, the
interrupt virtualization mechanism perfectly fits for the hybrid Slothful Linux which
will be detailed in Chapter 4.

2.4 Summary
The main requirement on an RTOS is the deterministic execution to guarantee pre-
dictable and strict timing of an application. Of the existing real-time extensions to the

12

Linux kernel, only those applying interrupt virtualization are able to provide hard real-
time guarantees. This mechanism provided as a generic solution by the I-Pipe patch for
the Linux kernel can be reused for the integration of Slothful Linux.

13

Chapter 3

Design and Implementation
of Sloth on the Intel x86

The Sloth concept was designed for using the interrupt controller for scheduling pur-
poses in an event-driven embedded system. Before implementing a combined RTOS and
GPOS, Sloth was first ported to the bare-metal Intel x86 platform to see how the avail-
able hardware components comply with the requirements defined in Section 1.5.2. After
providing an overview of the design of the Sloth kernel in the first section, this chapter
describes the Intel x86 interrupt subsystem and its utilization for the implementation of
Sloth tasks and resources.

3.1 Sloth Design Overview
Sloth implements the OSEK operating system specification as explained in Section 1.5.
It supports tasks as control flow abstractions for which a fixed priority needs to be
defined in an application specific configuration before compilation. A system generation
step analyzes the application configuration in order to tailor the system to the needs
of the application and assigns each task an interrupt source according to its priority.
Afterwards it generates corresponding code that only contains features selected in the
configuration. Thus, the resulting binary can be reduced in size and will be as small
as possible. Table 3.1 gives an overview of the available system services for tasks and
resources.

Multiple tasks can be competing for execution on a CPU, although only one of them
can be running at the same time. Usually, a software scheduler is responsible to determine
the execution order of tasks. However, in Sloth there is no such software component
and the interrupt controller hardware determines the execution sequence instead. These
tasks can be activated either synchronously by the ActivateTask() system service or
asynchronously by a hardware device. As tasks are already implemented as interrupt

14

System Service Functionality

ActivateTask(TaskID) schedules a task for execution
TerminateTask() ends the current control flow
ChainTask(TaskID) ends the current control flow and schedules another task

ready for execution thereafter

GetResource(ResID) enters a critical section
ReleaseResource(ResID) leaves a critical section

Table 3.1: The system services provided by Sloth for the management of tasks and resources
according to the OSEK OS specification.

handlers in Sloth, there is no need for a separate abstraction for interrupt service
routines.

Furthermore, resources can be acquired with the system services GetResource() and
ReleaseResource() for mutual exclusion in critical sections using the OSEK priority
ceiling protocol. While a resource is held, the current execution priority is raised to
the highest priority of all tasks accessing the same resource, which prevents preemption
during the synchronized section.

3.2 The Intel x86 Interrupt Subsystem
The Intel x86 architecture is one of the most common hardware platforms with an em-
phasis on backward compatibility. It implements a CISC instruction set with data stored
in little-endian byte order. In its history, the design was subject to many additions, so
that modern x86 CPUs are superscalar, featuring pipelining and out-of-order execution.

However, most notable for this work, the original external Programmable Interrupt
Controller (PIC) was replaced by Intel with the Advanced Programmable Interrupt Con-
troller (APIC) to support multiple processors in the same computer. This new hardware
is specified in two parts, the local APIC as an inherent part of modern x86 CPUs and
the I/O APIC as an external gateway on bus interfaces as shown in Figure 3.1. This
new APIC architecture removed the need for interrupt vector sharing by extending the
previous 16 available vectors of the cascaded PIC mode to 224 usable vectors in the local
APIC. While originally intended for multiple processors, the local APIC and I/O APIC
can also be used in uni-processor systems. Programming of the local APIC is achieved
by reading and writing memory-mapped registers [21, Ch. 3A].

The I/O APIC is part of the chipset and has multiple input pins on which it receives
interrupts from devices. It is responsible to redirect these interrupts to one or more
local APICs connected over the system bus by raising the corresponding vectors as
programmed in the redirect table of the I/O APIC. Additionally, the local APICs are able
to send inter-processor interrupts (IPIs) for any vector to one or more of the connected

15

CPU Core 0

Local APIC

IDTR Execution
Unit

Interrupt
messages

IPIs

CPU Core 1

Local APIC

IDTR Execution
Unit

Interrupt
messages

IPIs
System Bus

Interrupt
messages

System Chipset

I/OAPIC External
Interrupt Lines

Figure 3.1: The x86 interrupt controller architecture with local APIC and I/O APIC which
is meant to support multiple processors, but can also be used in uni-processor systems. The
local APIC receives interrupt messages on the system bus and can also send inter-processor
interrupts (IPIs) to other processors or to itself—in which case they are handled internally and
are not put on the bus.

local APICs. These IPIs can also be configured for delivery to the sender itself. Such
a self-IPI can be used for synchronous interrupt triggering by software. IPIs can be
issued by writing the Interrupt Command Register (ICR) with the vector number and
destination. The local APIC as part of the CPU asserts interrupts as signaled on the
system bus and interrupts the execution unit in order to dispatch interrupt handlers using
an Interrupt Descriptor Table (IDT) in memory specified by the internal IDTR register.
This is basically a vector table in form of a list of addresses to the corresponding handlers
and also contains additional flags specifying privilege levels. Of these 256 entries, the
first 32 vectors are reserved by Intel for exceptions, leaving 224 vectors to be used for
signals from external devices or issuing software-generated interrupts.

Of these vectors delivered through the local APIC each has an implied priority based
on the vector number. This priority will be used to determine when specific interrupts
can be serviced by the CPU. The interrupt priorities are organized in groups of 16, which
means there are 14 different preemption priorities for the 224 usable vectors. Technically,
the higher 4 bits of the 8-bit vector number resolves to the priority group and the lower
4 bits specify the priority level inside that group as illustrated in Figure 3.2.

The first two priority groups fall into the range of the reserved vectors in use for
system exceptions. For these, the prioritizing does not apply since exceptions need to be
handled in a synchronous manner. For the rest of the priority groups applies: the higher

16

8-bit vector number 01234567

priority group level within group

Figure 3.2: The priorities of the vectors of the local APIC are derived from their number, where
the higher 4 bits specify the priority group and the lower 4 bits specify the priority level inside
that group.

the priority value, the higher the priority level. Within a group, prioritizing is based on
the vector number, where a higher vector number means a higher priority level within
the group.

The CPU also has a priority level in the Process Priority Register (PPR) for the current
executing control flow. This read-only register value is then used to control the interrupt
signaling of the local APIC, which will only interrupt the CPU if the pending interrupt
vector has a higher priority group. If the priority group is lower or equal, the interrupt
will be held back by the APIC until the CPU priority is lowered again. Preemption of
control flows will only occur based on the priority group, while the vector numbering
within the group is only used to arbitrate between multiple pending interrupts of the
same group.

When dispatching an interrupt handler, the PPR is set to the priority group of the
corresponding vector; thus, any interrupt in a lower priority group will be deferred.
A second mechanism can be used by software to set a threshold priority for interrupt
handling; the Task Priority Register (TPR) defines a lower bound for interrupt signaling
and temporarily disables interrupts below or equal to a specific priority group. When
software sets the TPR to 0, all interrupts will be handled, when set to 15, none of the
interrupts in the vector table will be handled at all. This also affects the current CPU
priority in the PPR and thus, the interrupt arbitration of the APIC. The value of the PPR
is either the priority group of the currently executing interrupt handler or the value of
the TPR, whichever of the two is higher.

Interrupts can also be masked on a global basis with the interrupt enable flag (IF) in
the EFLAGS system register. This can be controlled with the instruction mnemonics cli
for “clear interrupt flag” to disable interrupts and sti for “set interrupt flag” to enable
interrupts. All interrupt handlers are entered with this interrupt flag disabled, but upon
leaving the interrupt handler with the iret instruction, the previous state of the flags
register will be restored.

When exiting an interrupt handler, the APIC has to be informed that servicing
completed before ending the interrupt handling in the CPU with an iret instruction.
This is achieved by writing into the end-of-interrupt (EOI) register. The value written
to this write-only register is arbitrary and is discarded. Following the write, the APIC
re-sets the current processor priority in the PPR as described above and, if necessary,
dispatches the next pending interrupt.

17

CPU Priority
PPR/vector

t

2
32–47

3
48–63

4
64–79

t1 t2 t3 t4 t5 t6

App.

ISR48
E

IRQ48

ISR64
E

IRQ64

EOI iret

ISR48

(cont.)

E
IRQ32

EOI iret

ISR32 EOI iret

App.

Figure 3.3: Example of nesting of interrupt handlers with different priorities. The interrupt
handlers are being dispatched according to their priority groups, where only an interrupt with a
higher priority group can preempt a running interrupt handler with a lower priority group.

Whenever an interrupt of a higher priority than the current processor priority is
pending and interrupts are enabled in the processor flags, the APIC signals this interrupt
immediately to the CPU without waiting for a write to EOI. This means that interrupt
handlers can be interrupted, effectively leading to a nesting of interrupt handlers as
demonstrated in Figure 3.3.

In this example, a normal application is executing when at t1, the interrupt for the
interrupt vector 48 is triggered. This leads to an immediate dispatch of the corresponding
ISR48 and the CPU priority is raised to the priority group of the interrupt vector. Assume
that each of the interrupt handlers in this figure allow interrupts again as their first
action. At t2, the interrupt for the vector 64 is set to pending. Although another ISR
is currently running, ISR64 is dispatched and preempts the currently running ISR48 as
it has a higher priority group. The execution of ISR48 continues after ISR64 returns
from the interrupt handler by writing to the EOI and executing the iret instruction. In
contrast, as the vector 32 is requested at t4, the ISR32 is deferred until the ISR48 with
their higher priority group has finished and signals the end of the interrupt and returns
at t5. Finally, as ISR32 ends the interrupt at t6, the interrupted application can run
again.

3.3 Utilization of the Local APIC
The local APIC fulfills the requirements on an interrupt controller in order to implement
Sloth on the hardware platform as listed in Section 1.5.2. Each Sloth task can be

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14priorities

16 32 48 64 80 96 112 128 144 160 176 192 208 224 2400 255

vectors

0–31
reserved

1 2 3 4 5 6 7 8 9 10 11 12 13 14
priority groups

Configuration:
(priorities of tasks
and resources)

APIC:

Figure 3.4: The mapping of the priority spaces from the specifications in the application config-
uration to the physical priorities corresponding to the APIC vector numbers.

assigned to one of the available interrupts vectors with inherent priorities as provided by
the local APIC. It is also possible to trigger an arbitrary vector in a synchronous manner
from software with a self-IPI. With the mandatory functionality in place, the local APIC
can be used to implement tasks and resources on the Intel x86 architecture.

3.3.1 Tasks
In the Sloth concept, control flows are organized into tasks that are scheduled according
to their priority by the interrupt controller. On the Intel x86, this is implemented using
the local APIC by assigning tasks to interrupts. As the interrupt vectors have an inherent
priority derived from their number, task priorities need to be mapped from their logical
specification in the configuration to the physical equivalents in the APIC. Since the
priorities in the APIC are organized in groups of 16 and preemption will only occur
when the priority group is higher, the vector numbers for the Sloth system need to be
spread through the different groups. This means the system can use up to 14 different
priorities as shown in Figure 3.4.

Tasks can be activated synchronously with the system service ActivateTask(). This
is implemented by issuing a self-IPI with the local APIC, which is only a single write
instruction to the ICR. Tasks may also be triggered asynchronously by an external device
when the I/O APIC has been programmed accordingly to raise the corresponding vector;
both ways mark the vector as pending. If the current CPU priority is less than the priority
group of the marked interrupt, this leads to an interruption of the execution unit.

To dispatch an interrupt handler, the CPU first stores the non-volatile register context
of the current control flow on the stack and then looks up the entry address in the
vector table. In consequence, execution continues at this address, where a small wrapper
function saves the remaining context. Subsequently, the wrapper jumps to a generated
function prologue which sets the current task variable to this activated task. The prologue
also enables interrupts at this point again, which allows preemption of this control flow
by tasks with a higher priority level.

19

currTask = prevTask cli lapic_eoi() iret
terminate

TerminateTask()
or

ChainTask() lapic_ipi_self()

chain

Figure 3.5: Task termination needs to be protected as interrupts could occur between signaling
the end-of-interrupt to the APIC and completing the interrupt handler with an iret. Chaining
another task additionally requires sending a self-IPI to trigger the corresponding interrupt.

The run-to-completion property of tasks matches the semantics of interrupt handlers
perfectly, allowing to nest task execution in the same way as interrupt handlers as shown
above in Figure 3.3.

A currently running task terminates itself with the system service TerminateTask(),
which ends the execution of the calling control flow. A task must indicate the termination
with either TerminateTask() or ChainTask() (see below). The previous context needs
to be restored, including dropping the CPU priority to the previous level. The latter is
achieved automatically by writing to the EOI register, which reverts the current priority
in the PPR to either the priority group of the previously interrupted control flow or the
value of the TPR, whichever is higher. However, since the end-of-interrupt in the APIC
lowers the priority before the current interrupt handler was actually completed with the
iret instruction, the still-running control flow could again be interrupted immediately by
the next pending interrupt. Therefore, interrupts between signaling the end-of-interrupt
to the APIC and the iret instructions must be prevented by disabling all interrupts
beforehand with an cli instruction. As the iret instruction restores the previous state
of the EFLAGS system register from the stack, it automatically enables interrupts again.

Additionally, the system service ChainTask() is available to both terminate the cur-
rent control flow and schedule another task for execution in a single operation. If the
chained task has a higher priority than the calling task, it is essential that the newly
scheduled task does not start execution until the calling task has been terminated. This
means that synchronization is required for the proper chaining of tasks by suppressing the
activation request until the task termination has been completed. In Sloth on Intel x86,
this is achieved by first blocking all interrupts and signaling the end-of-interrupt in the
same way as in TerminateTask(); only then the task to be chained will be activated by
sending the corresponding self-IPI. Finally, the iret instruction implicitly restores the
interrupt-enable flag; thus, the interrupt controller will decide which pending interrupt
will be dispatched next according to the priorities. The sequences for task termination
and task chaining are depicted in Figure 3.5.

20

3.3.2 Resource Management
Resources are used for mutual exclusion between different tasks. They allow to coordinate
the access to shared components such as memory ranges or hardware peripherals. OSEK
specifies a priority ceiling protocol [6, p. 29] that mandates that a resource can only be
occupied by one task at a time, avoids any deadlocks by the use of resources and prohibits
unbounded priority inversion. A resource acquisition raises the current execution priority
to the ceiling priority of the resource—the highest priority level of all tasks allowed to
access this resource. When released, the execution priority level is lowered to the task’s
previous priority.

The ceiling priority value is statically computed at system generation for each resource
in an application. These priorities need to be mapped in the same way as task priorities:
from logical values in the configuration to physical equivalents in the APIC. The system
service GetResource() acquires a resource to enter a critical section in a task. When
a task needs multiple resources, the calls to GetResource() and ReleaseResource()
need to be strictly nested, such that the execution priority is raised and lowered in a
stack-based manner.

In the Sloth implementation for Intel x86, resources are implemented using the
lower priority threshold provided by the TPR in the APIC. Using this register, the current
execution priority can be elevated to a higher level, which prevents interrupt handlers
of a lower priority from dispatching. The current priority can only be raised over the
priority of the currently executing interrupt handler. Initially, the TPR is set to value 0,
which does not influence the arbitration and thus, only the priorities of the interrupts
are taken into account.

On acquiring a resource with GetResource(), the current priority in the TPR is
pushed onto a stack to allow nesting of resource usage. After saving the previous value,
the ceiling priority of the acquired resource is written to the TPR. The system service
ReleaseResource() reverses the operation by restoring the previous execution priority
from the stack into the TPR. This leaves the critical section enclosed by the two system
services.

3.4 Summary
The Sloth concept proposes interrupt-driven scheduling by use of the interrupt con-
troller hardware to eliminate the need for a software-based scheduler. The Sloth im-
plementation for the Intel x86 supports tasks and resources by utilizing the functionality
of the local APIC, which is part of the CPU.

21

Chapter 4

Design and Implementation
of Slothful Linux

In the last chapter on the design and implementation of Sloth on the bare-metal
Intel x86 the hardware platform already proved to meet the requirements of the Sloth
concept. This chapter covers the design and implementation of the hybrid Slothful
Linux, which is capable of running the interrupt-driven Sloth real-time system along
with Linux on a single computer.

4.1 Design of Slothful Linux
When adding Sloth as a real-time extension to the Linux kernel, the implementation
should offer the same functionality as the standalone Sloth system as presented in
Chapter 3. This means that the system should support tasks that are scheduled and
dispatched by the interrupt controller and resources to limit the access to shared com-
ponents. Additionally, as Slothful Linux runs an RTOS in combination with Linux
on the same hardware, there also needs to be a channel to transfer data between the two
systems. Therefore, Slothful Linux implements pipes to transfer data from the real-
time system to processes running in the general-purpose OS. In an application running
on Slothful Linux, these could be sensor values used for visualizations drawn by an
application running in Linux.

4.1.1 Tasks and Resources
The Sloth concept takes advantage of the interrupt controller for scheduling and dis-
patching of tasks. The interrupt virtualization technique described in Section 2.2.2 in-
troduces an abstraction layer which removes direct access to the interrupt controller
hardware from the Linux kernel. This is a perfect match for the implementation of a hy-
brid system running Sloth concurrently with Linux on the same hardware. The Sloth

22

real-time kernel will have direct access to the interrupt controller, using its priority ar-
bitration hardware for scheduling decisions. The interrupts intended for the real-time
system can dispatch tasks directly in the Sloth kernel, while interrupts from peripherals
will be passed on to the Linux kernel.

Thus, the I-Pipe patch is used as a basis for the implementation of Slothful Linux.
Applying this patch to the Linux kernel already removes sections blocking interrupt han-
dling, which allows interrupts—and especially the associated Sloth tasks—to preempt
the Linux kernel at any time. In the interrupt pipeline, the Sloth real-time core will
be inserted as a new domain at the head priority. The Linux domain in the pipeline will
be stalled when required, whereas, the Sloth domain will never be stalled. In a Sloth
system, the priorities are managed directly by the interrupt controller and interrupts will
not be signaled by the hardware unless preemption of the current control flow is actually
allowed with respect to the current execution priority of the processor.

Therefore, the Sloth domain does not take advantage of the interrupt pipeline—
rather, the additional code in the interrupt dispatching could add unnecessary cycles to
the interrupt latency. Therefore, interrupts intended for the Sloth system should not
flow through the interrupt pipeline, but instead should be delivered right to the Sloth
system. Further changes to the Linux kernel will ensure that Sloth will have exclusive
access to the appropriate interrupt vectors and its handlers.

4.1.2 Pipes
In order to take advantage of the consolidation of an RTOS and a GPOS on the same
hardware, data needs to be shared between the two. For this purpose, Slothful Linux
uses persistent pipes to implement a unidirectional communication channel from the real-
time core to user space processes in Linux. Of course, this is an extension to the existing
Sloth system and there is no specification in OSEK for this kind of object.

Data transfers from the real-time part to a user space process need to occur across
the Linux kernel as the real-time core does not know the user space processes of Linux
and—by the UNIX philosophy—the user space process needs a file or device to read
from. Therefore, the pipes are implemented as character devices in Linux, which can be
read from user space processes and written by real-time Sloth tasks.

4.1.3 Real-Time Applications as Linux Kernel Modules
The implementation of Slothful Linux is supposed to be flexible and to support differ-
ent real-time applications. In the same way the standalone Sloth system can be tailored
to the needs of an application, the real-time core should only contain the relevant parts
as required for the application at hand. Therefore, Slothful Linux uses kernel mod-
ules to implement real-time applications. This makes it possible to load and unload
a real-time application after booting the computer, which also aids development as no
reboot is required to make changes to the real-time core. Each configured application

23

will be compiled into a single loadable Linux kernel module that contains all required
information for the deployment of the real-time application.

4.1.4 Summary
Slothful Linux applies the interrupt virtualization offered by the I-Pipe patch to deny
the Linux kernel the direct access to the interrupt controller. The real-time core schedules
and dispatches tasks utilizing the interrupt controller, without being influenced by the
Linux kernel. The real-time applications bundled into kernel modules can be loaded at
runtime, while pipes using character devices offer a communication channel to user space
processes in Linux.

4.2 Implementation of Slothful Linux
The implementation of Slothful Linux supports running an interrupt-driven real-time
core along with Linux on the same hardware platform. In its current form, it is based
on the Linux kernel version 2.6.38.8, which is the latest supported version of the I-Pipe
patch for Intel x86 at time of this writing. Due to the use of hardware components
systems implementations of the Sloth system are limited to the hardware platforms
they have been designed for. In this case, Slothful Linux makes direct use of the
local APIC available on the Intel x86 platform. The implementation targets a single
processor system, however, the design is not limited to this and could easily be adapted
to multi-core systems.

4.2.1 Modifications to the Standard Linux Kernel
Slothful Linux uses interrupt virtualization to remove the direct access to the inter-
rupt controller from the Linux kernel. A common implementation of this approach is
available for Linux with the I-Pipe patch as part of the Adeos project. However, further
modifications to the standard Linux kernel are necessary to implement interrupt-driven
scheduling of real-time tasks according to the Sloth concept.

Using the I-Pipe Patch for Interrupt Virtualization

The I-Pipe patch is a modification to the Linux kernel that implements interrupt vir-
tualization by optimistic interrupt protection for multiple domains arranged along an
interrupt pipeline, as described in Section 2.2.2.

As a short reiteration, with the I-Pipe patch interrupts will not be handled directly by
Linux, but an abstraction layer between the kernel and the interrupt controller hardware
is added. As the direct access to the hardware has been removed, the Linux kernel
no longer blocks interrupts directly, but only records the current blocking state in a
variable. The new abstraction layer then decides if interrupt handlers can be dispatched

24

Sloth Linux
Kernel

Real-Time
Domain

Root Domain

Interrupts

Sloth Interrupts

stall
point

Intercepted
Interrupts

Figure 4.1: The pipeline architecture as used in Slothful Linux where the Sloth domain takes
precedence over the domain of the Linux kernel. The Linux domain has a stalling point in front,
while the Sloth real-time core receives the intercepted interrupts directly avoiding the interrupt
pipeline.

immediately or need to be delayed until the variable is reset. This allows to preempt the
Linux kernel at any time, which is required to run an RTOS concurrently at a higher
priority.

In order to implement the interrupt pipeline of the I-Pipe patch, the default interrupt
handler of the Linux kernel is replaced with a specific handler for the interrupt pipeline.
Each interrupt signaled by the hardware could be awaited by any of the domains in the
pipeline. Therefore, each of the domains needs to be checked if they have installed an
handler for the incoming interrupt request. This happens in strict order of the pipeline,
which stops as soon as a domain accepting this interrupt is found and the corresponding
handler is dispatched. If a domain is currently stalled, no interrupt handler can be
dispatched here and the interrupt is recorded as pending to be handled later.

For this case of using the I-Pipe patch for the implementation of a hybrid system
running both an RTOS core and Linux on the same hardware, there is only need for
two separate domains. Of course, the real-time domain needs a higher priority than
the Linux kernel. In the specific case of the Sloth concept, which uses the interrupt
controller for the scheduling and dispatching of tasks, the real-time domain needs to be
the head domain of the pipeline. At this position, the Sloth domain has direct access to
the interrupt controller and can use it to its full extent. Figure 4.1 shows the interrupt
pipeline used by Slothful Linux.

Intercepting Interrupts for Sloth

In a Sloth system, the interrupt subsystem of the hardware platform is in control of
the scheduling and dispatching of tasks. Each task is mapped to an interrupt with
the appropriate priority that is used by the interrupt controller for arbitration between
multiple control flows waiting to be executed. Therefore, the pipeline added by the I-Pipe

25

patch will only be used for the optimistic interrupt protection within the Linux kernel
and not for the Sloth real-time core.

As latency is a major property of real-time systems, going through the interrupt
handlers of the I-Pipe patch walking along the pipeline would add unnecessary cycles to
the latency of the Sloth system. Hence, Sloth installs its own interrupt handler for
the subset of the available interrupt vectors used for the corresponding tasks.

In the standard Linux kernel, all interrupt vectors of the local APIC in the interrupt
descriptor table (IDT) point to the single dispatcher function handle_irq that checks
for registered interrupt handlers and dispatches them. As this single dispatcher function
needs to know which interrupt was actually triggered, a trampoline function table is
added in between that pushes the interrupt number onto the stack and then jumps to
the actual handler function handle_irq. This table is actually packed in groups of seven
handlers into a single 32-byte sized chunk, as that fits into a single cache line on modern
Intel x86 processors. This alignment optimization means that six of the interrupts in
this chunk will have to take another jump to the handling function.

For Slothful Linux, the interrupt handler addresses in the IDT that usually point
to the trampoline table are overwritten with addresses to its own trampoline table
sloth_irq_entries, which points to the handler function handle_sloth_irq. In con-
trast to the original handler table, it is not packed into smaller chunks with short jumps,
but contains the full address for each entry as Sloth needs to treat each interrupt the
same. Otherwise the dispatching of a task could take a different amount of cycles based
on its vector number, which is contrary to the realization of the real-time properties.

As the vectors registered here are directly handled in the Sloth real-time core and
can neither reach the I-Pipe dispatcher nor the Linux kernel handler, they are marked
as used in the vector allocator. This removes the vectors out of control from the Linux
kernel and ensures they will never be assigned to an interrupt and thus, they are not
expected to be ever delivered to Linux.

For the design goal of encapsulating each real-time application into a self-contained
kernel module, the actual addresses of the task functions are not known at compile
time. The dynamic loading of modules assigns memory for the text segments at run-
time, placing the functions at unknown locations. Thus, handle_sloth_irq takes these
addresses from a dispatcher table that is part of the kernel module.

Kernel Module Loading

Real-time applications for use in Slothful Linux are compiled into single kernel mod-
ules as the Linux kernel module interface already provides the necessary functionality
for loading dynamic code and data sections.

Each kernel module contains a small initialization function that registers a new do-
main in the interrupt pipeline to be used for the Sloth real-time core. The module
also brings the task functions and a dispatcher table that assigns these tasks to the cor-
responding interrupt vectors with their implied priority. In the initialization function,

26

the table is registered with the patched interrupt handler in the Linux kernel and is
subsequently used for the dispatching of tasks in the real-time system. Furthermore,
the initialization also registers the required character devices for the pipes used in the
real-time application.

The whole initialization sequence is synchronized by blocking all interrupts to avoid
the handling of interrupts until the mandatory setup of the dispatcher table is complete.
At all other occasions, the Sloth real-time core will only block interrupts for synchro-
nization purposes where required for a short and bounded time. In the same way as the
kernel modules can be loaded, they can also be removed from the Linux kernel, where
an exit function unloads the dispatcher table, removes the Sloth domain from the in-
terrupt pipeline and cleans the character devices for the pipes. Thus, the changes made
at module initialization can be fully reversed to the original state.

Summary of the Modifications to the Linux Kernel

Besides applying the I-Pipe patch, only slight additional modifications to the Linux kernel
are required for the Sloth real-time core. In the interrupt handling, some vectors are
intercepted by a custom handler function to dispatch the corresponding real-time tasks.
The interrupt handler uses a dispatcher table which is registered during the load of the
real-time application that is compiled into a Linux kernel module.

4.2.2 Tasks
Due to interrupt virtualization, the Linux kernel no longer has direct access to the
interrupt controller; thus, the Sloth real-time core can use it to its full extent for the
scheduling and dispatching of tasks. In Slothful Linux, each real-time task is assigned
to an interrupt vector of the local APIC in the same way as on the bare-metal Intel x86.
Task priorities need to be mapped from their logical value in the configuration to a vector
with an inherent priority derived from its number. As described in the previous section,
the Linux kernel has been patched to remove some interrupt vectors out of its control.
The Sloth real-time core intercepts these interrupts to dispatch the corresponding tasks.

The Linux kernel uses the interrupt vectors of the local APIC as depicted in Table 4.1.
The interrupts in the range 129 to 223 are used for the Sloth system, which means—due
to the priority organization of the vectors in the local APIC in groups of 16—there can be
up to 5 different tasks in a real-time application for Slothful Linux as can be seen in
the smaller overview shown as part of Table 4.1. The remaining interrupt vectors have
been left to the Linux kernel for use with peripheral devices. However, this partition
has been chosen arbitrarily and could be extended to support more tasks in the Sloth
real-time core when removing more vectors from the Linux kernel. Special care has to
be taken not to change the vector 128, which is traditionally used as the system call gate
in Linux.

27

Vector Function

0–19 NMI and exceptions
20–31 Reserved by Intel

32–127 External interrupts
128 System call gate

129-223
{External interrupts in standard Linux
Real-time tasks in Slothful Linux

224-238 Special system interrupts
239 Local APIC timer interrupt
240 Local APIC thermal interrupt

241-253 IPIs for SMP systems
254 Local APIC error interrupt
255 Local APIC spurious interrupt

Table 4.1: The interrupt vectors of the local APIC as allocated by the Linux kernel.
Slothful Linux intercepts some of the vectors meant for external devices in order to implement
interrupt-driven scheduling of real-time tasks.

Slothful Linux:
144 Task 1

145–159 (unused)
160 Task 2

161–175 (unused)
176 Task 3

177–191 (unused)
192 Task 4

193–207 (unused)
208 Task 5

209–223 (unused)

The interrupt dispatching of the local APIC occurs according to the inherent prior-
ities of the vectors. As the vectors reserved for the Sloth system have a higher priority
than the vectors left for external devices controlled by the Linux kernel, the real-time
system can always preempt the interrupt handlers of the general-purpose system. How-
ever, some vectors still have a higher priority than the Sloth core as these are mostly
error conditions that need to be handled by the Linux kernel; for example, one vector
of the special system interrupts is used for machine check events or the thermal event
interrupt where both indicate possible hardware faults. The Linux kernel configuration
used for the deployment of Slothful Linux will ensure that most of these vectors will
never be triggered. The evaluation setup described in the following Chapter 5 will give
some more detail on this topic.

In the Sloth real-time core, the same system services for tasks as in the standalone
system can be used. Tasks are activated synchronously with the ActivateTask() system
service, which issues a self-IPI for the local APIC. External devices may trigger tasks
as well when the I/O APIC has been programmed to trigger this vector for the corre-
sponding interrupt. Of course, the signaling of pending vectors in the local APIC is the
same as on the standalone system: the CPU will only be interrupted if the current CPU
priority is less than the priority group of the pending interrupt.

The interrupt dispatch goes through the IDT and the handle_sloth_irq function as
described in the previous section. As in the bare-metal implementation, interrupts are
automatically disabled at the entry of an interrupt routine. This Sloth specific handler
first switches to the Sloth real-time domain in the interrupt pipeline and stores which

28

domain was preempted. This switch is arranged by setting a global state variable of the
interrupt pipeline, which is guarded by a few sanity checks. Although the interrupt could
also have occurred while the CPU was already executing code in the real-time domain,
this domain switch is always performed in the same way to ensure the same latency is
induced for each interrupt handling. Switching domains at this point is necessary so that
any exception raised in the Sloth domain can be handled there, as otherwise it would
escalate to a problem in the Linux kernel, which would not know how to handle this as
from the perspective of Linux, no interrupt occurred at all. Thus, it would assume the
currently control flow marked as running caused this exception—which could be within
the kernel or any user space process. At this switch, the root domain—the Linux kernel
itself—is marked as stalled to inhibit handling of interrupts. Afterwards, the prologue of
the task function provided by the real-time application is called. This prologue records
this task as the currently running task and subsequently enables interrupts again.

The task function itself runs with the same privileges as every interrupt handler in the
Linux kernel. The dispatching of real-time tasks in Slothful Linux does not take any
special measures in this regard. The task dispatcher does not reconfigure the MMU or
switch to another privilege level in order to reduce latency. Therefore, the programming
of real-time applications should be carried out carefully as the current implementation
does not provide memory protection.

When the task function has finished and terminates itself with the TerminateTask()
system service, the end of the interrupt handling is signaled to the local APIC in the
same way as in the bare-metal Intel x86 implementation. Afterwards, the context of
the preempted domain is restored and at the completion of the interrupt handling with
the iret instruction, interrupts are automatically enabled again. Thereafter, if more
interrupts are pending, the next highest vector number will be dispatched. The imple-
mentation of ChainTask() follows the same approach, except it additionally triggers of
the chained task by sending a self-IPI.

4.2.3 Resources
The real-time core running in Slothful Linux manages resources in the same way as
the bare-metal system implementing the OSEK priority ceiling protocol. On resource
acquisition with GetResource(), the current CPU priority is raised by writing the cor-
responding ceiling priority to the TPR of the local APIC. This ceiling priority for each
resource is statically computed in the system generation step according to the configu-
ration.

4.2.4 Pipes
Pipes represent a unidirectional communication channel between the Sloth real-time
core and processes controlled by the Linux kernel. They allow to transfer data from
the real-time system to the general-purpose domain in order to take advantage of the

29

Sloth
Real-Time

Core

Linux
KernelRT-Task User-Space

Process

Buffer
shared memory

Real-Time Domain General-Purpose Domain

chardev
/dev/slothpipe0

WritePipe()
read()

Figure 4.2: In Slothful Linux, a pipe represents a unidirectional communication channel be-
tween the real-time system core and processes running in the general-purpose operating system.

consolidation of the two systems as depicted in Figure 4.2. A user space process running
in the Linux kernel cannot interact with the real-time core directly, as the tasks running
there are not known to Linux. Thus, data transfers must occur across the Linux kernel
and need to be exposed to user space processes through an interface. As the real-time
core and Linux share the same address space, the pipe implementation uses a buffer in
shared memory to which the real-time core can output its data. The data gathered in
this buffer can then be read through a character device by user space processes.

Character devices provided by the Linux kernel appear in the file system as if they
were normal files; however, they act as an interface to a device driver—in this case, the
Sloth pipes. Processes running in Linux can open these files with the common file
operations that invoke the corresponding callbacks in the driver running in the Linux
kernel.

Each real-time application can configure multiple pipes which are mapped to char-
acter devices named /dev/slothpipe0, /dev/slothpipe1, and so on. These character
devices are persistent for the runtime of the real-time application in Slothful Linux
and model the behavior of named pipes or FIFOs. User space processes can open them
at any time to read the data stream that has been written previously by real-time tasks.
The implementation is limited to one direction as the tasks implemented in the Sloth
real-time core have run-to-completion semantics and, thus, cannot block and wait for
more data. A bidirectional communication channel would be possible by extending the
implementation with a non-blocking read operation in the real-time system in future
work.

At load time of the real-time application in form of a Linux kernel module, the re-
quired pipes with callbacks are allocated and the corresponding device nodes are created.
As pipes implement a unidirectional communication channel, the callback for the open

30

System Service Functionality

WritePipe(PipeID, string) writes a string to a pipe
WritefPipe(PipeID, format, ...) writes a formatted string to a pipe

WritePipeLocked(PipeID, ResID, string) same as WritePipe(),
synchronizing access on a resource

WritefPipeLocked(PipeID, ResID, format, ...) same as WritefPipe(),
synchronizing access on a resource

Table 4.2: The system services provided by Slothful Linux for writing pipes in the real-time
system.

system call ensures that Linux user processes can only open them in read-only mode and
does not allow write operations from user space. As the pipe storage is persistent, each
pipe is backed by a ring buffer that stores the data written from the real-time task until
the data is read from the receiving end. The buffer has a static size which is subject to
the application configuration.

For the real-time core, new system services have been introduced following the naming
scheme of the other system services as shown in Table 4.2. WritePipe() writes a simple
null-terminated string into the buffer of the pipe. The system service WritefPipe()
implements common printf()-style formatting, which produces output according to di-
rectives given in a format string referring to the following arguments.

In these two system services, access to the pipe object is not protected. If a task of
higher priority preempts another task that is currently writing a string to a pipe and sub-
sequently, the high-priority task also outputs data to the pipe, the resulting data stream
in the pipe will be mangled. Thus, if writes to a single pipe can occur in multiple control
flows, the access to the pipe needs to be synchronized. This can be achieved by using
resources in Sloth that provide system services for mutual exclusion. The application
programmer is responsible to ensure the correct ordering of the data written to a pipe.
However, two separate system services WritePipeLocked() and WritefPipeLocked()
aid the programmer by offering small wrappers that temporarily acquire the given re-
source while writing to a pipe.

In summary, pipes allow the real-time application running in Slothful Linux to
transfer data to the general-purpose operating system. Concurrent read and write ac-
cesses do not need synchronization between Linux and the real-time core, however, the
application programmer needs to ensure only one write operation occurs in the real-time
core at the same time. The read operations on the corresponding character devices pro-
vided by the Linux kernel allow pipes to retrieve the data written by the real-time tasks
without influencing the behavior of the real-time system.

31

4.2.5 Summary
Slothful Linux applies small modifications to the Linux kernel to intercept interrupt
vectors in order to bypass the interrupt pipeline of the I-Pipe patch to reduce the latency
of task dispatches and take advantage of the interrupt-driven scheduling in the Sloth
real-time core. The task and resource management follows the bare-metal implementa-
tion with the same utilization of the local APIC. With new system services, pipes offer
a communication channel by use of a shared buffer between the real-time domain and
the Linux kernel, which will be read by character devices from user space processes in
Linux.

32

Chapter 5

Evaluation

The implementation of Slothful Linux presented in the previous chapter implements a
hybrid system where a real-time core runs concurrently with Linux on the same hardware.
This chapter evaluates the resulting implementation in comparison with the bare-metal
implementation of Sloth for the Intel x86 and Xenomai [20], another hybrid system
based on the Linux kernel. Although real-time systems usually provide a lot of features
on the kernel level, this evaluation will focus on performance and latency as these are
the properties where the Sloth concept has already proven its positive effects.

This chapter first presents the metrics used in the evaluation in Section 5.1 and ex-
plains the setup of both the hardware platform and the operating systems in Section 5.2.
The evaluation of the performance in Section 5.3 includes the system services in both
the standalone Sloth and Slothful Linux. Section 5.4 presents measurements on
the interrupt latency induced by the handling of interrupts in the competing operating
systems. Section 5.5 discusses the current limitations of Slothful Linux implemented
on the Intel x86.

5.1 Evaluation Metrics
Operating systems are usually only used as a means to an end, as the applications running
on them provide the actual functionality of the whole system. Therefore, it is especially
important for an embedded operating system to provide high performance in the system
services and to use little resources to leave as much as possible for the application, while
still fulfilling the intended duties.

In this evaluation, the performance of the system services is assessed by the amount of
clock cycles they take for their execution. This includes the system services of a Sloth
system as presented in Section 3.1. The task management includes synchronous task
activation with and without dispatch and the termination and chaining of tasks, which
inherently cause a task switch as the current control flow is ended. The management of

33

resources contains the acquisition of a resource as well as releasing the resource again,
which can lead to a task dispatch in certain situations.

Additionally, the way an operating system handles interrupts has an influence on
the predictability of the system. In order to compare the behavior of the systems,
measurements need to be taken on the interrupt level. The interrupt latency is defined
as the time interval between the point in time where the interrupt request is issued and
the time the execution of the corresponding handler function starts. Thus, this is a
metric for the overhead the operating system adds for the management of asynchronous
triggered interrupts.

In the following experiments, the performance of the system services will be measured
by the required clock cycles for their execution that will be obtained from the time-
stamping counter of the processor. The interrupt latency will be measured with help of
the local APIC timer.

5.2 Platform Setup
The measurements for the evaluation of the system performance were taken on an Intel
Embedded Development Board with an Intel Atom D510 [22, 23]. The processor was
configured in the BIOS such that sources of indeterminism have been ruled out. Power-
saving features usually exposed via ACPI were disabled, the front-side system bus is
running at 166.6 MHz, and the CPU clock with a multiplier of 10 runs at a constant rate
of 1.6 GHz. This ensures that the measurements are not influenced by dynamic frequency
scaling or throttling of the CPU in T-States by omitting duty cycles. Furthermore,
although this Atom CPU offers two separate processing cores with Hyper-Threading1,
only one single core has been used in these tests— a uni-processor system with SMT
disabled. The implementation of Slothful Linux presented in this thesis targets a
single processor system and these configuration choices ensure that the measurements
are obtained on a single core.

The evaluation includes both systems presented in this thesis—the standalone Sloth
implementation and Slothful Linux. Additionally, Xenomai was chosen as an alter-
native implementation of a real-time extension for Linux. The Linux systems are both
based on kernel 2.6.38.8, each with the latest I-Pipe patch version 2.11-02 for x86; the
Xenomai system is version 2.6.0. Both Linux systems were booted up in single-user mode
and no artificial load was generated during the experiments.

As both Sloth systems implement the same system services, the performance of task
switches and resource management can be evaluated with the same test application. For
comparison of Slothful Linux with Xenomai, no common task management interface
is available. The Sloth concept targets systems with a static priority space that is
configured at compile-time where the priorities of the tasks do not change at runtime of

1Hyper-Threading is Intel’s marketing name for simultaneous multithreading (SMT), where multiple
threads can be executed concurrently in different pipeline stages of a superscalar processor.

34

the system. In Xenomai, however, tasks are created dynamically such that new tasks can
be spawned at any time. Also, Xenomai tasks always provide their own context with their
own stack in contrast to the run-to-completion tasks implemented in Slothful Linux.
Thus, a comparison of the task management provided by Xenomai against the real-time
core of Slothful Linux would not yield interesting results since the two concepts are
too different. The methods used for obtaining the performance measurements of the
system services are described in Section 5.3.1.

Nevertheless, the interrupt latency can be compared across all three systems. The
latency in the standalone Sloth system was measured for comparison of the overhead
induced in the real-time core of Slothful Linux due to the domain switches. Sec-
tion 5.4.1 explains how the interrupt latency of the systems was observed in the evalua-
tion experiment.

5.3 Performance Evaluation
The system services provided by the systems implementing the Sloth concept are mea-
sured in test cases, which give a comprehension on the performance of the operating
system implementation.

5.3.1 Performance Benchmarking with the Time-Stamp Counter
The performance of the system services was measured by the clock cycles spent for their
execution. The Intel x86 CPUs provide a time-stamping mechanism that can be used
to measure the relative time occurrence between two events. The time-stamp counter
is a 64-bit value that starts with the initial value of zero at reset of the processor and
increments by each processor clock cycle—effectively running at the same rate. There
are slight differences between processors when dynamic frequency scaling is involved [21,
Ch. 3B], however, this has been ruled by the BIOS configuration as described in the
previous section. For these measurements, the time-stamp counter (TSC) increments
at the constant rate of the processor clock. This counter can be read with the rdtsc
instruction that stores the 64-bit value separated into its high and low 32-bit parts into
two registers.

However, due to the superscalar property of modern x86 CPUs, precise measurements
of code execution need to be carried out with due consideration. To benchmark the cycles
spent for execution in a naive way would be to read the time-stamp counter with the
rdtsc instruction, then run the code to the measured. Afterwards, read the time-stamp
counter again and calculate the difference between the two obtained values to get the
amount of elapsed clock cycles. The problem with this approach is that modern x86
CPUs feature out-of-order execution, that modifies the temporal sequence of independent
instructions in order to optimize the throughput of the processor [21, Ch. 1].

Thus, to guarantee all instructions between the two calls to rdtsc and no instructions
outside this range will be measured, serializing instructions need to be added to the

35

uint32_t startLow, startHigh, endLow, endHigh;
uint64_t start, end, duration;
/* Serialize instruction stream and read time-stamp counter at start */
asm volatile (

"xor %%eax, %%eax\n"
"cpuid\n"
"rdtsc\n"
"mov %%edx, %0\n"
"mov %%eax, %1\n"
: "=r" (startHigh), "=r" (startLow)
: : : "%eax", "%ebx", "%ecx", "%edx");

/* ... the code to be measured needs to be placed here ... */

/* Serialize instruction stream and read time-stamp counter at end */
asm volatile (

"mov %%cr0, %%eax\n"
"mov %%eax, %%cr0\n"
"rdtsc\n"
"mov %%edx, %0\n"
"mov %%eax, %1\n"
: "=r" (endHigh), "=r" (endLow)
: : "%eax", "%edx");

/* Calculate elapsed CPU cycles */
start = (((uint64_t) startHigh) << 32) | startLow;
end = (((uint64_t) endHigh) << 32) | endLow;
duration = end - start;

Figure 5.1: The benchmarking method recommended by Intel for measuring elapsed clock cycles
during code execution [24].

instruction stream [24, p. 9]. A serializing instruction forces the CPU to complete any
preceding instructions before advancing to the next one. The serializing instruction
cpuid, which usually returns information about the processor, is added right before the
first rdtsc instruction. Using the cpuid instruction again after the execution of the
measured code for serialization would add variance to the measurement that reduces
its resolution. Therefore, the recommended alternative is the sequence of reading and
writing the current value of the cr0 control register to itself [24, p. 13]. The resulting
measurement code is shown in Figure 5.1. As this method obtains a 64-bit value from the
TSC, the measurement duration can amount to years before the counter value overflows,
which is definitely enough for this purpose.

In the setup of the test cases it was observed that due to the serialization instructions,
the resolution of the measurements appears to be limited to the clock rate of the system
bus on the particular Intel Atom board used for the evaluation, as the CPU seems to
synchronize on the bus clock at this point. Thus, the accuracy of the measurements is

36

limited to 10 cycles. The measurements need to be repeated multiple times especially as
the fill of the instruction cache at the beginning might introduce deviations.

In order to get specific measurements of the code sections to be tested, the overhead
introduced by this benchmarking method needs to be filtered out. This offset was ob-
tained before starting the actual measurements by running the serialized rdtsc sequence
multiple times. This value was then subtracted from all other measurements to get the
actual clock cycles required for the execution of the code only. As the CPU is running at
a constant rate of 1.6 GHz, each clock cycle takes 0.6 ns and the results in the following
sections are presented in both clock cycles of the CPU and in absolute nanoseconds.

The correctness of this bechmarking approach was verified by taking measurements
over a fixed amount of simple instructions, such as a hundred instructions of xor or
mov with register operands. The result showed that both the benchmarking and the
calculcation of the overhead are correct.

5.3.2 Results of the Performance Evaluation
A test application using the system services related to tasks and resources was used
for the measurements on both the standalone Sloth system and the real-time core of
Slothful Linux. This application uses multiple tasks, where the performance of task
switches and the cost of synchronization using resources can be observed. The selected
test cases measure the system services from the point before the invoking statement
until the action is completed. For example, a task activation involving preemption of the
current task is measured from the point before ActivateTask() to the first instruction in
the task function of the activated task. If no preemption or another task switch occurs,
the measurement is stopped at the instruction right after the invocation of the system
service.

Standalone Sloth

The results for the system services in the standalone Sloth system running on the Intel
x86 are presented in Table 5.1. The first test case S1 takes 162 cycles, as without a dis-
patch the synchronous task activation by sending a self-IPI is merely a write instructions
to the memory-mapped register of the local APIC to set the destination and vector num-
ber in order to trigger the IPI. Of course, as this is an synchronous action, a short delay
might be caused by the APIC for the arbitration as well. In test case S2, a task with a
higher priority is activated; thus, the currently running task is preempted and the other
task is dispatched. The 601 cycles listed in the table include both the triggering of the
self-IPI, the arbitration in the local APIC, the jumps through the IDT and the prologue
of the activated task until the first instruction of the application provided function is
reached.

The termination of a task in S3 takes 219 cycles, whereas chaining another task in
S4 requires 810 cycles, the most time-consuming system service measured. However,

37

Test Case CPU Cycles ns rel. comp.

S1 ActivateTask() without dispatch 162 97.2
S2 ActivateTask() with dispatch 601 360.6
S3 TerminateTask() with dispatch 219 131.4
S4 ChainTask() with dispatch 810 486.0
S5 GetResource() without dispatch 160 96.0
S6 ReleaseResource() without dispatch 130 78.0
S7 ReleaseResource() with dispatch 560 336.0

Table 5.1: Performance evaluation of task switching and resources in the standalone Sloth sys-
tem. The values specify the measured execution time in number of clock cycles and nanoseconds
for the Intel Atom D510 running at 1.6 GHz; the bar charts on the right present a relative
comparison.

chaining a task means that the current task is terminated and another task is activated
and dispatched. Taking the values of the task termination S3 and task activation S2
together, this almost equals the cycles measured for task chaining, where the slight
difference is only due to the resolution of the measurements of up to 10 cycles as explained
in Section 5.3.1.

The system service for acquiring a resource takes 160 cycles in test case S5, this
includes a synchronized store of the execution priority on a stack and raising the execution
priority with the TPR of the local APIC. For releasing the resource again without a
dispatch—that means according to the priorities no task activation is pending—takes
130 cycles in S6 which is slightly faster than the acquisition as it only needs to restore
the previous priority from the top of the stack. If another task was activated in between
with a priority between the previous execution priority and the ceiling priority of the
acquired resource, a dispatch needs to occur as soon as the resource is released. This
situation is measured in test case S7, where the dispatch from the release of the resource
until the first instruction of the other task function takes 560 cycles. This is slightly
faster than an ActivateTask() with dispatch in S2 since the writes to the registers of
the local APIC and the assertion of the interrupt request already occurred before the
measurement started.

Overall, the measurements of the implementation of Sloth for the Intel x86 platform
show a consistent picture on the performance of the system services. Due to the concise
kernel of a system implementing the Sloth concept, the impact of task switches and the
influence of the different actions on the system services can be interpreted quite well.

Slothful Linux

The same test application used for the standalone Sloth system was also executed on
the real-time core of the Slothful Linux implementation. Both systems implement

38

Test Case CPU Cycles ns rel. comp.

L1 ActivateTask() without dispatch 167 100.2
L2 ActivateTask() with dispatch 946 567.6
L3 TerminateTask() with dispatch 558 334.8
L4 ChainTask() with dispatch 1418 850.8
L5 GetResource() without dispatch 166 99.6
L6 ReleaseResource() without dispatch 137 82.2
L7 ReleaseResource() with dispatch 817 490.2

Table 5.2: Performance evaluation of task switching and resources in the real-time core of
Slothful Linux. The values specify the measured execution time in number of clock cycles
and nanoseconds for the Intel Atom D510 running at 1.6 GHz; the bar charts on the right
present a relative comparison.

the same interface, so no changes to the application source code or configuration were
required. The results of the measurements are shown in Table 5.2.

The connections between the different system services are similar to the standalone
Sloth system. The first test case L1, a task activation without a dispatch takes 167 cy-
cles in Slothful Linux, which is the same as in the standalone Sloth system when
taking the resolution of the measurements into account. However, a task activation with
a dispatch in L2 takes 946 cycles, as compared to the 601 cycles measured in Sloth.
Although bypassing the interrupt pipeline of the I-Pipe patch, the additional approxi-
mately 300 cycles in Slothful Linux are subject to the switch to the real-time domain,
which is always performed even though the interrupted code was already executing in the
Sloth domain as explained in Section 4.2.2. This can be observed in task termination
in the same way, where L3 in Slothful Linux takes 558 cycles, which is almost the
same amount of cycles more compared to the standalone Sloth implementation with
219 cycles in test case S3. Again, at task termination, the interrupted domain needs
to be restored which happens regardless whether the domain to return to already was
the real-time domain. For ChainTask() in L4 with 1418 cycles, this domain switching is
applied twice. The switch is required once for termination of the current control flow and
again in the prologue of the dispatched task. In comparison with S4 in the standalone
Sloth, task chaining takes approximately 600 cycles more in Slothful Linux—which
is twice the domain switching overhead observed before.

On the other hand, the resource management in the real-time core of Slothful
Linux is identical with respect to the measurement resolution. The system services
GetResource() in L5 and ReleaseResource() without dispatch in L6 take 166 and
133 cycles, respectively. However, releasing a resource with a task dispatch involved
requires 817 cycles in test case L7. Once again, compared to the 560 cycles in test case
S7 in the standalone Sloth, the additional overhead induced by domain switching can
be seen in Slothful Linux.

39

5.3.3 Summary of the Performance Evaluation
The performance evaluation of both the standalone Sloth implementation and the hy-
brid Slothful Linux show similar results. However, task switches in the real-time
core of Slothful Linux are affected by an additional overhead caused by the domain
switching that is required for the interrupt pipeline.

5.4 Evaluation of Interrupt Latency
The interrupt latency indicates how the operating system reacts on interrupt requests.
In real-time systems, it is not only important to have fast handling of interrupts; rather,
the timeliness of interrupt handling should be predictable with low variability.

5.4.1 Latency Measurements with the Local APIC Timer
Accurate timing measurements of the interrupt latency are difficult to measure by use of
external devices since the instant at which an interrupt is requested—an asynchronous
event—needs to be determined. The latency measurements in this thesis did not resort
to peripheral hardware, instead, the interrupts were generated internally by using the
local APIC. Thus, the measurements only determine the interrupt latency that is actually
induced by software. Any arbitration and communication usually happening on the buses
between the hardware device, the I/O APIC and the local APIC have been neglected.
As the handling of interrupts in software is the only factor that can be influenced in an
operating system, this metric allows to compare the different implementations.

In addition to the functionality described in Section 3.2, the local APIC contains a
timer that is used to trigger a local interrupt based on a counter timeout value. Software
sets up the initial count register with the timeout value, which is then copied to the
current count register and decremented there at a fixed rate. When the current count
register reaches zero, an interrupt is generated. The corresponding vector to be set to
pending is configured in its local vector table (LVT) entry. The clock source for the
timer is derived from the system bus clock, divided by the value specified in the divide
configuration register ranging from 1 to 128.

The local APIC offers two modes for the timer: periodic and one-shot. When driving
the local APIC timer in periodic mode, the initial value is loaded into the current count
register again and the countdown is repeated. In one-shot mode, the current count
remains at zero until the initial count is reprogrammed.

The timer functionality of the local APIC is usually in use by operating systems for
timer interrupts. However, as it is able to trigger local interrupts in an asynchronous
manner, it will be used to measure the interrupt latency induced by the systems. To pre-
vent the Linux kernel in Slothful Linux from using the timer component of the local
APIC, the system was booted with the kernel command line argument nolapic_timer.
Thereby, Linux switches to another time source available on the hardware such as the

40

High-Precision Event Timer (HPET) provided by the chipset for periodic timer inter-
rupts. For the Xenomai system, the local APIC timer needs to be enabled at startup as
otherwise the Xenomai initialization does not succeed. However, as no alarms are set up
through the interface, the local APIC timer is actually unused. Thus, the timer of the
local APIC can freely be used by test applications for measurement purposes.

The interrupt latency is defined as the time between the instant where an interrupt
is triggered and the moment the registered interrupt handler starts its execution. When
executing in periodic mode, the current count register of the local APIC is reset at the
same time the interrupt is issued. Thus, reading this value returns the time left until
the next timer deadline or, subtracting the current count register from the initial count
returns the amount of clock ticks that occurred since the last reset.

Therefore, the setup for measuring the interrupt latency programs the local APIC
timer to run in periodic mode with a divide value of 1; thus, the timer ticks occur at
the same rate of the system bus. The configured handler function for the corresponding
vector immediately reads the current count register and calculates the interrupt latency
as the difference to the initial count. As the local APIC timer is counting at the system
bus clock rate, the resolution of these values is one tenth of the CPU clock cycles. For
the presentation, all measurements have been converted to CPU clock cycles to avoid
confusion.

5.4.2 Results of the Interrupt Latency Evaluation
The interrupt latency induced by the interrupt handling was measured for the standalone
Sloth implementation, for the real-time core of Slothful Linux, and for the Xenomai
real-time extension for Linux. For the two systems implementing the Sloth concept,
a task was activated asynchronously by using the local APIC timer as described in the
previous section. The measurement of the latency was taken at the first instruction
of the task function. In the Xenomai system, an interrupt handler was set up using
the rt_intr_create() API call, which also measured the interrupt latency at the first
instruction of the registered handler function. To get a fair comparison, this was set up as
a kernel module in Xenomai, as the Slothful Linux system also loads its applications
into kernel space. In the two Linux competitors, the general-purpose part was left idle
and no artificial load was generated on the systems. The measurements were repeated
5000 times to get a comprehensive view on the interrupt handling of the three systems.

The results of the measurements for all three systems—standalone Sloth, Slothful
Linux, and Xenomai—are presented in Figure 5.2.

Standalone Sloth

The Sloth implementation on the bare-metal Intel x86 was measured for illustration
purposes as shown in Figure 5.2(a). As it runs as an RTOS alone on the hardware, it
does not need to cut back and respect other systems. As Sloth has full control over the

41

hardware it is the fastest of the three measured systems. The interrupt latency is stable
at a mean value of 450.5 cycles, with a standard deviation of 6 cycles only.

When put into relation to the values obtained for the synchronous task activations
in the standalone Sloth system presented in Table 5.1, the experiments give a coherent
picture. The synchronous task activation with dispatch in test case S2 amounts to 601 cy-
cles, whereas the synchronous task activation without a dispatch in test case S1 takes
162 cycles. For the interrupt latency measurement, the activation occurs asynchronously
by the local APIC timer. Thus, with respect to the resolution of the two methods for ob-
taining the measurements, the difference between these two values approximately equals
the 450 cycles obtained in the interrupt latency measurement presented here.

Slothful Linux

The second graph Figure 5.2(b) shows the measured values for the real-time core of the
Slothful Linux system. As can be seen, the values are higher than for the standalone
Sloth system. As already observed in the performance evaluation of the system ser-
vices in Section 5.3.2, the interrupt dispatching in Slothful Linux induces additional
300 cycles for the domain switch. However, the overhead appears to be twice as high
in this case with a median value of 1050 cycles in Slothful Linux compared to the
median value of 450 cycles for the standalone Sloth system.

The overhead can also be recognized when applying the same calculations in relation
with the synchronous task activations presented in Table 5.2 as above for the standalone
Sloth system. The synchronous task activation with dispatch in test case L2 takes
946 cycles, which is 779 cycles more than the synchronous task activation without dis-
patch in test case L1 with 167 cycles. Compared to the 1050 cycles determined for the
interrupt latency here, there are approximately 270 cycles remaining.

There is no obvious source of these additional cycles; thus, further investigation is
required on this topic; a possible approach would be to trace the interrupt dispatching
sequence. Otherwise, this could also be subject to the multi-level caching of the Intel
x86 platform. Unlike in the previous measurements on the synchronous task activations,
the Linux kernel runs between the asynchronous task activations in this case. Thus,
if the Linux kernel issues cache flushes here, these would also affect the latency of the
interrupt handling as the IDT, the Sloth trampoline, the Sloth dispatcher table, and
the task function itself provided by the real-time application kernel module are loaded
from memory. As each memory access passes through the MMU, a TLB miss could
induce latency as well. A solution for this problem could be locking relevant instructions
in the cache as this would avoid memory accesses and thus, reduce the latency.

Xenomai

The data gathered for the Xenomai system is presented in the third graph in Fig-
ure 5.2(c). With a standard deviation of 85.5 cycles for Xenomai, the values are not

42

(a) Sloth

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Measurements

L
a
te
n
cy

[µ
s]

0

1000

2000

3000

4000

5000

C
P
U

C
yc
le
s

min=450, max=520, median=450, mean=450.5, stddev=6.0 [cycles]

(b) Slothful Linux

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Measurements

L
a
te
n
cy

[µ
s]

0

1000

2000

3000

4000

5000

C
P
U

C
yc
le
s

min=960, max=2730, median=1050, mean=1058.8, stddev=37.6 [cycles]

(c) Xenomai

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Measurements

L
a
te
n
cy

[µ
s]

0

1000

2000

3000

4000

5000

C
P
U

C
yc
le
s

min=2010, max=4320, median=2030, mean=2039.5, stddev=85.5 [cycles]

Figure 5.2: Comparison of the interrupt latency induced by the standalone Sloth system, the
real-time core in the Slothful Linux system and the Xenomai system.

as stable as the Slothful Linux system with a standard deviation of 37.6 cycles. This
can also be observed clearly by the distribution of the measurements in the plot. The
interrupt latency measured for Xenomai with a median vale of 2030 cycles is even higher
than in Slothful Linux with a median value of 1050 cycles.

Despite the remaining overhead of unknown origin in Slothful Linux, it already
provides lower interrupt latency compared to Xenomai, which is due to the interception
of the vectors specific to the Sloth system avoiding the interrupt pipeline for their
dispatch.

5.4.3 Summary of the Interrupt Latency Evaluation
The standalone Sloth system has the lowest interrupt latency as it has full control over
the hardware and does not require as many indirections in the interrupt dispatching as
the real-time core in Slothful Linux. This hybrid system is affected by the overhead of
the domain switching and probably an additional overhead of uncertain source is added
by caching of the memory accesses. The measurements observed both a higher latency
and a higher deviation for the Xenomai system than for the Slothful Linux system,
as the latter circumvents the interrupt pipeline.

5.5 Limitations
As observed in the evaluation, the Intel x86 platform is quite complex due to the pipelin-
ing of the CPU and the influence of memory accesses by multi-level caching, which need
to be respected in the development of real-time systems for this hardware. The most
important factor in favor of using this platform for the actual deployment for real-time
applications is the high execution performance.

The Slothful Linux implementation presented in this thesis was developed on the
Intel x86 as a reference, while the design of Slothful Linux is not limited to this
platform. In fact, any platform that fulfills the requirements on the interrupt controller
defined in Section 1.5.2 and that is supported by the Linux kernel would be a feasible
target for the implementation of a hybrid system based on this concept.

However, the maximum number of different tasks in a real-time application in a
Sloth system is limited by the number of priorities offered by the hardware platform.
While the Intel x86 offers 224 different interrupt vectors in the local APIC, they are
spread into 14 priority groups determining the preemption of interrupt handlers. Thus, as
the standalone Sloth implementation is already restrained on the bare-metal platform,
sharing the priority space with the Linux kernel reduces the number of tasks in the real-
time core of Slothful Linux even more. As triggering an interrupt of the real-time
core is equivalent to a task activation, the available interrupt vectors need to be strictly
partitioned and cannot be shared with the Linux system.

The implementation of Slothful Linux is currently bound to the use of basic tasks
with run-to-completion property only, which matches exactly the strictly nested dispatch-

44

ing of interrupt handlers exactly. The original Sloth concept was already extended to
overcome this limitation on the TriCore platform [3]. However, as the local APIC does
not provide a way to disable the dispatch of specific interrupt vectors, the approach pre-
sented in the extension for Sloth on the TriCore could not be applied to the Intel x86
and further research on this topic is necessary.

Also, as the MMU is not reconfigured at the dispatch of real-time tasks and the task
functions are running with the privileges of the Linux kernel without memory protection,
a badly behaving real-time application could tamper with the internals of the kernel. This
should not pose a problem in actual systems; after all, loading a real-time application
bundled as a kernel module must be carried out by the superuser, who would have access
to the whole system anyway.

The Linux kernel used as the base for Slothful Linux supports many different
hardware platforms and its development follows a fast pace that arose some problems
during the implementation of Slothful Linux. While the interface offered to user-
space applications is stable and standardized by specifications, the internal interfaces
offered to kernel modules are subject to a steady evolution in each kernel version. Thus,
for an extension such as Slothful Linux, it is necessary to adapt to changes in the
kernel and re-evaluate the system on a regularly basis.

5.6 Summary
The evaluation of the performance of the system services showed that the real-time core
of Slothful Linux could reach the same values as Sloth. However, the hybrid system
is affected by the domain switching of the interrupt pipeline provided by the I-Pipe patch.
While the interrupt latency evaluation could not reveal all sources of induced latency in
Slothful Linux, it already reached a latency lower than the Xenomai system.

The interrupt pipeline is the main source for these additional overhead, although it is
only being used for the optimistic interrupt protection in the domain of the Linux kernel.
Thus, replacing the interrupt pipeline with a less complex implementation could reduce
or remove this overhead.

45

Chapter 6

Conclusion

In this thesis, the Sloth concept of interrupt-driven scheduling was applied to the effi-
cient hybrid real-time system Slothful Linux, where both an RTOS and a GPOS run
concurrently on the same hardware. By use of interrupt virtualization, the presented
design of Slothful Linux supports execution of tasks in the real-time core in the same
way as a standalone Sloth implementation, where scheduling and dispatching of tasks
is handled by the interrupt controller. As the Linux kernel is only running in the idle
time of the Sloth system, it does not influence the real-time properties of the hybrid
system.

Slothful Linux provides pipes as communication channels between the real-time
core and user-space processes running in Linux, which can be used to transfer data in
order to implement gathering of statistics or visualizations in the general-purpose part
of the system. Thus, the Linux part can implement interaction with humans or network
connections to components that do not need to occur with real-time properties.

The presented Slothful Linux implementation has proven that the Sloth ap-
proach of interrupt-driven scheduling is feasible to be used in a hybrid system achieving
both real-time and general-purpose activities on the same hardware platform. The eval-
uation of the hybrid system showed that the required transition between the general-
purpose and the real-time domain for all task switches in Slothful Linux induces a
constant additional overhead compared to the standalone Sloth system. However, the
control flows of the real-time core in Slothful Linux are again managed according to
the Sloth concept by using the interrupt subsystem for scheduling and dispatching of
tasks, which has positive effects on the non-functional properties of the system. Although
applying the existing I-Pipe patch for optimistic interrupt protection, Sloth avoids the
interrupt pipeline for the dispatching of tasks by intercepting the corresponding inter-
rupts. Thus, the interrupt latency of the concise Sloth core observed in the evaluation
is half as low as the interrupt latency of another real-time extension for Linux. However,
Slothful Linux does not achieve the same low latencies as the standalone Sloth sys-
tem, which needs further investigation on the interrupt dispatching sequence that shows
deviations due to caching.

46

The topic of integrating Sloth with a GPOS leaves room for enhancements in future
work. As the I-Pipe patch is only applied for the optimistic interrupt protection in the
Linux kernel and the supplied interrupt pipeline is not used for the dispatching of real-
time tasks in the Sloth core, a less complex implementation could replace the utilized
functionality of the I-Pipe patch in order to simplify the structure of the system.

Also, with the ongoing trend towards multi-core systems in the embedded market,
Slothful Linux could benefit from using multiple cores. A possible approach would be
to deploy a different real-time application on each processor core, while the Linux system
can run concurrently on all cores by the same technique as presented in this thesis. In
contrast, multiple cores could also be used to run both systems in parallel at the same
time by arranging the RTOS and the GPOS on distinct cores.

47

Bibliography

[1] Jane W. S. Liu. Real-Time Systems. Prentice Hall, Upper Saddle River, NJ, USA,
2000.

[2] Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-Preikschat.
Sloth: Threads as interrupts. In Proceedings of the 30th IEEE Real-Time Systems
Symposium (RTSS 2009), pages 204–213, Los Alamitos, CA, USA, 2009. IEEE
Computer Society.

[3] Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat. Sleepy Sloth:
Threads as interrupts as threads. In Proceedings of the 32nd IEEE Real-Time Sys-
tems Symposium (RTSS 2011), pages 67–77, Los Alamitos, CA, USA, December
2011. IEEE Computer Society.

[4] Rainer Müller. Implementation of an interrupt-driven OSEK operating system ker-
nel on an ARM Cortex-M3 microcontroller. Study Thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg, October 2011.

[5] Linus Torvalds et al. Linux kernel source.
http://kernel.org.

[6] OSEK/VDX Group. Operating system specification 2.2.3. Technical report,
OSEK/VDX Group, February 2005.
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf.

[7] Kaushik Ghosh, Bodhisattwa Mukherjee, and Karsten Schwan. A Survey of Real-
Time Operating Systems. Technical report, College of Computing, Georgia Institute
of Technology, 1994.

[8] Matteo Marchesotti, Roberto Podestá, and Mauro Migliardi. A measurement-based
analysis of the responsiveness of the Linux kernel. In 13th Annual IEEE Interna-
tional Conference and Workshop on Engineering of Computer Based Systems (ECBS
2006), pages 397–408. IEEE Computer Society, March 2006.

48

http://kernel.org
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

[9] Paul Regnier, George Lima, and Luciano Barreto. Evaluation of interrupt handling
timeliness in real-time Linux operating systems. SIGOPS Operating Systems Review,
42(6):52–63, October 2008.

[10] Ingo Molnar et al. Real-Time Linux (CONFIG_PREEMPT_RT).
https://rt.wiki.kernel.org/.

[11] Paul McKenney. A realtime preemption overview.
http://lwn.net/Articles/146861/, August 2005.

[12] Arther Siro, Carsten Emde, and Nicholas McGuire. Assessment of the realtime
preemption patches (RT-Preempt) and their impact on the general purpose perfor-
mance of the system. In Proceedings of the 9th Real-Time Linux Workshop, 2007.

[13] Daniel Stodolsky, J. Bradley, Chen Brian, and N. Bershad. Fast interrupt priority
management in operating system kernels. In In Second USENIX Symposium on
Microkernels and Other Kernel Archtitectures, pages 105–110. USENIX, 1993.

[14] Victor Yodaiken and Michael Barabanov. A Real-Time Linux. Linux Journal, 34,
1997.

[15] Michael Barabanov. A Linux-based real-time operating system. Master’s thesis,
New Mexico Institute of Mining and Technology, 1997.

[16] Karim Yaghmour. Adaptive domain environment for operating systems. Technical
report, Opersys, Inc., 2001.

[17] The Adeos Project. Adaptive Domain Environment for Operating Systems (Adeos).
http://home.gna.org/adeos/, March 2004.

[18] Philippe Gerum. Life with Adeos, Revision B.
http://www.xenomai.org/documentation/xenomai-2.6/html/
life-with-adeos/, September 2005.

[19] The RTAI Project. Real Time Application Interface (RTAI) for Linux.
http://rtai.org, February 2010.

[20] The Xenomai Project. Xenomai: Real-Time Framework for Linux.
http://xenomai.org, May 2012.

[21] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer Manuals,
May 2012.
http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

49

https://rt.wiki.kernel.org/
http://lwn.net/Articles/146861/
http://home.gna.org/adeos/
http://www.xenomai.org/documentation/xenomai-2.6/html/life-with-adeos/
http://www.xenomai.org/documentation/xenomai-2.6/html/life-with-adeos/
http://rtai.org
http://xenomai.org
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

[22] Intel Corporation. Embedded Development Boards for Intel Atom Processors.
http://www.intel.com/p/en_US/embedded/designcenter/tools/
development-board.

[23] Intel Corporation. Intel Atom Processor D510.
http://ark.intel.com/products/43098/.

[24] Intel Corporation. How to Benchmark Code Execution Times on Intel IA-32 and
IA-64 Instruction Set Architectures.
http://download.intel.com/embedded/software/IA/324264.pdf.

50

http://www.intel.com/p/en_US/embedded/designcenter/tools/development-board
http://www.intel.com/p/en_US/embedded/designcenter/tools/development-board
http://ark.intel.com/products/43098/
http://download.intel.com/embedded/software/IA/324264.pdf

	Introduction
	Real-Time Operating Systems
	Consolidation of Real-Time and General-Purpose Operating Systems
	Goals of this Thesis
	The Linux Kernel
	The Sloth Real-Time Kernel
	The Sloth Concept
	Requirements on the Interrupt Controller

	Outline of this Thesis

	Problem Analysis
	Requirements on an RTOS
	Existing Projects based on Linux
	The RT-Preempt Patch
	The I-Pipe Patch for Generic Interrupt Virtualization
	Summary

	Integration of Sloth into Linux
	Summary

	Design and Implementation of Sloth on the Intel x86
	Sloth Design Overview
	The Intel x86 Interrupt Subsystem
	Utilization of the Local APIC
	Tasks
	Resource Management

	Summary

	Design and Implementation of SlothfulLinux
	Design of SlothfulLinux
	Tasks and Resources
	Pipes
	Real-Time Applications as Linux Kernel Modules
	Summary

	Implementation of SlothfulLinux
	Modifications to the Standard Linux Kernel
	Tasks
	Resources
	Pipes
	Summary

	Evaluation
	Evaluation Metrics
	Platform Setup
	Performance Evaluation
	Performance Benchmarking with the Time-Stamp Counter
	Results of the Performance Evaluation
	Summary of the Performance Evaluation

	Evaluation of Interrupt Latency
	Latency Measurements with the Local APIC Timer
	Results of the Interrupt Latency Evaluation
	Summary of the Interrupt Latency Evaluation

	Limitations
	Summary

	Conclusion
	Bibliography

