
Adaptive Memory Protection
for Many-Core Systems

Application-centric operating-system design

Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

�1

Memory protection

Working (main) storage

• differentiated access control

• text, data, stack, other

• read, write, execute

• using address monitoring

�2

security

security
• protecting an entity from its environment

Address-space isolation

Software based

• full interpretation
• CSIM* virtual machine

• compilation
• type-safe language

Hardware based

• partial interpretation
• operating system
• M{M,P}U

�3

safety

*Complete Software Interpreter Machine

safety
• protecting the environment from an entity

Multi-core system
Symbol of a state of the art tiled
28-core processor 😉

• 7 cores per tile, coherent

• 4 tiles per system, cache
incoherent

• homogeneous at core but
heterogeneous at tile level

“Many-core’’ goes far beyond

• several tens of cores as a
lower limit

• hundreds or thousands not
too far away

�4

core

tile

system

Image: The search result when, after reading Herb Sutter's article (The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, Dr.
Dobb's Journal, 30(3), March 2005), I browsed on the Internet for the term "multi-core".

Shared (working) memory

Several processes having more
or less things in common

• whole program

• selected parts

• single variables

Almost noiseless for uni-core
(i.e., single) processors

• single hardware resource

• CPU as well as MMU

�5

Where the shoe pinches

�6

unshared

Translation lookaside buffer

The address-translation cache
as part of the MMU

• thus, one per CPU

• more precisely, one for
each core

Breeds interference within a
shared address space

• of simultaneous processes

• mapped to different cores

�7

Figure: Hieronymus in the case, (dt. „Hieronymus im Gehäus“, Albrecht Dürer, 1514). Hieronymus applies, figuratively, as a patron saint of translators.

Interference

• in consequence of accessing
a shared resource

• also triggered by conflicting
planning/selection decisions

Obstruction of a process due to
simultaneous external actions

• of other processes

• on the same or other CPU

© Sunil Doiphode

Superposition of several actions
in space and time

�8

Noise when sharing

�9

0

500

1000

1500

2000

2500

operating-system noise

int
en

sit
y

1

address-space
isolation on

address-spaceaddress-space
isolation off

The solution to this is not Blockchain!

Outline for what follows

• Operating system noise
• cause of interference

• Experimental study
• extent of interference

• Resource-aware computing
• control of interference

• Summary

�10

Operating-system noise
Cause of interference

�11

Background noise

Indirect operating-system costs
as to space, time, and energy

• static for space, usually

• dynamic for time & energy
• unsteady, suddenly
• commonly unpredictable

Cause for delay, jitter, or failure
of a process

• possible deadline violation

• troubles real-time operation

�12

© Alexandra Mantzari

Case study: MPSoC*

Multi-tile processor architecture

• compute tile

• memory tile

• I/O tile

Network on chip (NoC)

• network adapter (NA)

• router

Partitioned global address space
(PGAS)

�13

*Multiprocessor system on chip

P1
text/data

PGAS
Several memory partitions combined into a single address space

• coexisting machine programs reside at different address regions

• private regions may be mapped to identical address ranges

• all other regions are mapped to different address ranges

• mostly single-level store, in principle shareable by all processes

Retrieve and release of memory results in address-space changes

OS P2
text/data
mem_unmap
�14

P1
dynamic

mem_map

(From the perspective of an operating system)

A. multi-level page table (PT), per process

• defines access to the actual static/dynamic memory regions

B. use-pieces (UP) of memory, per process

• keeps track of allocated static/dynamic segments, bookkeeping

C. TLB, per CPU

• does neither recognise PT modifications nor other TLB units

D. operating-system (OS) level memory management, per tile

E. global PT, per system — captures all machine programs plus OS

Process isolation features
inter-processor interrupts

�15

Operation with isolation

Assumed, P1 releases memory:

1. clear PT and UP entries

2. free memory region, unite holes

3. flush local TLB

4. remote TLB flushing

• signal (IPI) other CPU

• flush local TLB

5. signal (IPI) completion, return to P1
�16

OS static text/data dynamic

P1TL
B

TL
B

PT UP

O
S

st
at

e
of

 P
1

hole list

hole hole hole

mem_unmap

C
PU

0C
PU

1

CPU0 CPU1

recreate
consistency

Operation without isolation

Assumed, P1 releases memory:

1. clear UP entries

2. free memory region, unite holes

3. return to P1

�17

OS static text/data dynamic

P1TL
B

TL
B

UP

O
S

st
at

e
of

 P
1

hole list

hole hole hole

mem_unmap

PT

C
PU

0

CPU0 CPU1

Logically, unmapped regions do not
belong to (user) processes anymore.
These processes must never access
those regions.

type safety

Out of the dilemma

• “cache-coherent’’ TLB

• hardware function, possibly
managed by software

• micro-architecture level

• operating-mode transitions

• dynamic reconfiguration of
system software

• operating-system level

�18

Operating-mode transitions
• considerably simplified by using a flat (logical) address space

• in addition, (user) process address-space areas do not overlap

Unprotect process address space

• disable PT for the threads of the respective process

• if applicable, just apply global (system specific) PT

Protect process address space

• restore PT from UP entries, (re-) enable PT for the respective threads

• apply local (process specific) PT

• synchronous IPI multicast to relevant processors

• flush TLB of the respective MMU⎨

☛ establish multiple protection domains

☛ establish single protection domain

�19

Empirical study
Noise measurement

�20

Experimental set-up
Hardware

• 4 x Intel Xeon E7-4830 v3 @ 2.10 GHz (8 cores each)
• 512 GB DDR4 @ 1333 MHz

Operating modes

• address-space isolation dynamically turned on and off

• statically unprotected system

Benchmarks

• interference provoked through IPIs and TLB flushing

• average values of 16 runs per reading, hot caches

• coefficient of variation less than 5%

�21

Executive

OctoPOS
A Parallel Operating System

for Invasive Computing

�22

Linux 4.7

Memory protection
put into operation

�23

0 20 40 60
0

5000

10000

15000

processors

t
im

e
(
n
s
)

enable address-space isolation

512
256
128
1

pages

2

0 100 200 300 400 500
0

5000

10000

15000

20000

mapped pages

t
im

e
(
n
s
)

enable address-space isolation

64
32
16
2
1

processors

3

Overhead depending on the process size (in use-pieces) per CPU (left) and number of pages (right).

Memory protection
put out of operation

�24

0 20 40 60
0

5000

10000

15000

processors

t
im

e
(
n
s
)

disable address-space isolation

512
256
128
1

pages

4

0 100 200 300 400 500
0

5000

10000

15000

mapped pages

t
im

e
(
n
s
)

disable address-space isolation

64
32
16
2
1

processors

5

Overhead depending on the process size (in use-pieces) per CPU (left) and number of pages (right).

Memory protection
minimal additional costs

�25

0 20 40 600

20

40

60

80

processors
tim

e(
ns

)

mem_map

dynamic o�
static o�

6

0 20 40 600

20

40

60

80

processors

tim
e(

ns
)

mem_unmap

dynamic o�
static o�

9

Overhead per process per CPU with address-space isolation turned on, but disabled (top), and off (bottom).

Memory protection
relatively considered

�26

0 20 40 60
0

5000

10000

15000

processors

ti
m

e
(
n
s
)

OctoPOS mem_unmap

512
256
128
1
512, o�

pages

10

0 20 40 60
0

50000

100000

150000

processors

ti
m

e
(
n
s
)

Linux 4.7 munmap

512
256
128
1

pages

12

0 100 200 300 400 500
0

5000

10000

15000

unmapped pages

ti
m

e
(
n
s
)

OctoPOS mem_unmap

64
32
16
2
1
64, o�

processors

11

0 100 200 300 400 500
0

50000

100000

150000

unmapped pages

ti
m

e
(
n
s
)

Linux 4.7 munmap

64
32
16
2
1

processors

13

Overhead per pages unmapped for OctoPOS (left) and Linux (right): 10-fold increase from left to right.

Interference in action

�27

background process: forever { mem_map; delay; mem_unmap }
mem_map(...)
delay(X)
mem_unmap(...)

start_timer()
work(Y)
stop_timer()

0

500

1000

1500

2000

2500

jitter

tim
e(

ns
)

14

cf. p. 9

address-space
isolation off

address-space
isolation on

foreground process*

*ray tracing application

–David Parnas, 1979*

“Some users may require only a subset of the
services or features that other users need.
These ‘less demanding’ users may demand

that they not be forced to pay for the resources
consumed by the unneeded features.”

*Designing Software for Ease of Extension and Contraction, IEEE TSE, vol. SE-5, no. 2

�28

Address-space isolation
‘on demand’

Resource-aware computing
Invasive programming

�29

A symbol for Mindfulness.

Invasive Programming denotes the capability of a program running on a parallel computer:
• to request and temporarily claim processor, communication and memory resources in the neighbourhood of its actual computing environment (invade),
• to then execute in parallel the given program using these claimed resources (infect),
• and to be capable to subsequently free these resources again (retreat).

1. make a claim

• request/reserve computing resources

2. utilise the claim

• deal with the resources received

3. drop the claim

• release of resources after their use

Resource awareness
Trinity of requisition, usage, and restoration

�30

invade

infect

retreat

invade
• explore and claim resources in the (logical) neighbourhood of a processor running a given program

infect
• copy the same or another program into all claimed processors and start execution

retreat
• may terminate the program or just allow the invasion of its invaded resources by other programs

realignment

organise

compute

reorganise

Resource usage cycle

acquire

allocate

release

invade

infect

retreat

2.
4.

1.

1.

3.

1. refine
2. reuse
3. revise
4. return

in
va

si
ve

co
nv

en
tio

na
l

4.

�31

Units of “invasion’’

1. candidate

2. instance

3. incarnation

4. execution

i-let Program section being aware of
potential parallel execution

operating-system entities {
�32

invasive (based on Merriam-Webster):
• tending to spread especially in a quick manner,
• disseminating from a localised area throughout the system,
• extending and dispersing easily possibly at the expense of existing entities and balance.
To ensure situational, urgent non-sequential processes depending on internal and external constraints.

One or more different i-let...

candidates
solving method

operation principle
source module

instances
activity category
processor type
object module

incarnations
operating mode
resource class
load module

executions
characteristic trait

(HW, FW, SW)
core image

�33

infect

run to
completion

compile

Depending on the level of abstraction considered, different i-let entities and associated properties are distinguished:

candidate
(a) prospect out of a family of algorithms for the same problem to be solved,
(b) potential cause of a specific operation principle of the (parallel) processor as to be enforced by the operating system and
(c) possibly represented and maintained as a separate source module.

instance
(a) medium of activity of an invasive-parallel program,
(b) specification of a virtual processor for it and
(c) possibly represented and maintained as a separate object module.

incarnation
(a) characteristic of the mode of operation to be realised by the operating system,
(b) ground anchor for the resources virtually needed for making progress in parallel processing and
(c) possibly represented and maintained as a separate load module.

execution
(a) actual disposition of a portion of an invasive-parallel program running on a real processor,
(b) effective unit of processing implemented in soft-, firm-, or hardware
(c) associated with a dedicated memory image.

Address-space isolation
‘on demand’ (revisited)

�34

invade

retreat

resource
management

address-space
reconfiguration

induce

Summary

�35

Daß dies mit Verstand geschah
war Herr Lehrer Lämpel da.

Of this wisdom an example
To the world was Master Laempel.

(Max and Moritz — A Juvenile History in Seven Tricks by Wilhelm Busch, here: Fourth Trick)

Think application-centric…

Memory protection serves the safety and security

• hardware-based solutions are by far not dogma

• if anything, only type-unsafe processes have to be “imprisoned’’

Address-space solation is not without cost and causes uncertainty

• time-dependent processes suffer from interference

• interference is the cause of many evils for predictability

Design for predictability is an overarching aspect that crosscuts the
whole computing system

�36

Recommended reading
• J. Teich et al., Invasive Computing

— Concepts and Overheads, 2012

• D. Lohmann, Tailorable System
Software, 2014

• G. Drescher and W. Schröder-
Preikschat, An Experiment in Wait-
Free Synchronisation of Priority-
Controlled Simultaneous
Processes: Guarded Sections, 2015

• T. Hönig, Proactive Energy-Aware
Computing, 2017

• G. Drescher, Adaptive Address-
Space Management for Resource-
Aware Applications, 2019

�37

Figure: An important missive (dt. „Die Lektüre“), Carl Spitzweg, around 1870.

Acknowledgement

�38

http://invasic.informatik.uni-erlangen.de

