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Memory protection

Working (main) storage 

• differentiated access control 

• text, data, stack, other 

• read, write, execute 

• using address monitoring
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security

security
• protecting an entity from its environment



Address-space isolation

Software based 

• full interpretation 
• CSIM* virtual machine 

• compilation 
• type-safe language 

Hardware based 

• partial interpretation 
• operating system 
• M{M,P}U
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safety

*Complete Software Interpreter Machine

safety
• protecting the environment from an entity



Multi-core system
Symbol of a state of the art tiled 
28-core processor 😉 

• 7 cores per tile, coherent 

• 4 tiles per system, cache 
incoherent 

• homogeneous at core but 
heterogeneous at tile level 

“Many-core’’ goes far beyond 

• several tens of cores as a 
lower limit 

• hundreds or thousands not 
too far away
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core

tile

system

Image: The search result when, after reading Herb Sutter's article (The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, Dr. 
Dobb's Journal, 30(3), March 2005), I browsed on the Internet for the term "multi-core".



Shared (working) memory

Several processes having more 
or less things in common 

• whole program 

• selected parts 

• single variables  

Almost noiseless for uni-core 
(i.e., single) processors 

• single hardware resource 

• CPU as well as MMU
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Where the shoe pinches
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unshared



Translation lookaside buffer

The address-translation cache 
as part of the MMU  

• thus, one per CPU 

• more precisely, one for 
each core 

Breeds interference within a 
shared address space 

• of simultaneous processes 

• mapped to different cores
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Figure: Hieronymus in the case, (dt. „Hieronymus im Gehäus“, Albrecht Dürer, 1514). Hieronymus applies, figuratively, as a patron saint of translators.



Interference

• in consequence of accessing 
a shared resource 

• also triggered by conflicting 
planning/selection decisions 

Obstruction of a process due to 
simultaneous external actions 

• of other processes 

• on the same or other CPU

© Sunil Doiphode

Superposition of several actions 
in space and time
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Noise when sharing
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The solution to this is not Blockchain!



Outline for what follows

• Operating system noise 
• cause of interference 

• Experimental study 
• extent of interference 

• Resource-aware computing 
• control of interference 

• Summary
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Operating-system noise
Cause of interference
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Background noise

Indirect operating-system costs 
as to space, time, and energy 

• static for space, usually 

• dynamic for time & energy 
• unsteady, suddenly 
• commonly unpredictable 

Cause for delay, jitter, or failure 
of a process 

• possible deadline violation 

• troubles real-time operation
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Case study: MPSoC*

Multi-tile processor architecture 

• compute tile 

• memory tile 

• I/O tile 

Network on chip (NoC) 

• network adapter (NA) 

• router 

Partitioned global address space 
(PGAS)
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*Multiprocessor system on chip



P1 
text/data

PGAS
Several memory partitions combined into a single address space 

• coexisting machine programs reside at different address regions 

• private regions may be mapped to identical address ranges 

• all other regions are mapped to different address ranges 

• mostly single-level store, in principle shareable by all processes 

Retrieve and release of memory results in address-space changes

OS P2 
text/data
mem_unmap
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P1 
dynamic

mem_map

(From the perspective of an operating system )



A. multi-level page table (PT), per process 

• defines access to the actual static/dynamic memory regions 

B. use-pieces (UP) of memory, per process 

• keeps track of allocated static/dynamic segments, bookkeeping 

C. TLB, per CPU 

• does neither recognise PT modifications nor other TLB units 

D. operating-system (OS) level memory management, per tile 

E. global PT, per system — captures all machine programs plus OS

Process isolation features 
inter-processor interrupts
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Operation with isolation

Assumed, P1 releases memory: 

1. clear PT and UP entries 

2. free memory region, unite holes 

3. flush local TLB 

4. remote TLB flushing 

• signal (IPI) other CPU 

• flush local TLB 

5. signal (IPI) completion, return to P1
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Operation without isolation

Assumed, P1 releases memory: 

1. clear UP entries 

2. free memory region, unite holes 

3. return to P1
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Logically, unmapped regions do not 
belong to (user) processes anymore. 
These processes must never access 
those regions.

type safety



Out of the dilemma

• “cache-coherent’’ TLB 

• hardware function, possibly 
managed by software 

• micro-architecture level 

• operating-mode transitions 

• dynamic reconfiguration of 
system software 

• operating-system level
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Operating-mode transitions
• considerably simplified by using a flat (logical) address space 

• in addition, (user) process address-space areas do not overlap 

Unprotect process address space 

• disable PT for the threads of the respective process 

• if applicable, just apply global (system specific) PT 

Protect process address space 

• restore PT from UP entries, (re-) enable PT for the respective threads 

• apply local (process specific) PT 

• synchronous IPI multicast to relevant processors 

• flush TLB of the respective MMU⎨

☛ establish multiple protection domains

☛ establish single protection domain
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Empirical study
Noise measurement
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Experimental set-up
Hardware 

• 4 x Intel Xeon E7-4830 v3 @ 2.10 GHz (8 cores each) 
• 512 GB DDR4 @ 1333 MHz  

Operating modes 

• address-space isolation dynamically turned on and off 

• statically unprotected system 

Benchmarks 

• interference provoked through IPIs and TLB flushing 

• average values of 16 runs per reading, hot caches 

• coefficient of variation less than 5%
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Executive

OctoPOS
A Parallel Operating System 

for Invasive Computing
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Linux 4.7



Memory protection 
put into operation

�23

0 20 40 60
0

5000

10000

15000

processors

t
im

e
(
n
s
)

enable address-space isolation

512
256
128
1

pages

2

0 100 200 300 400 500
0

5000

10000

15000

20000

mapped pages

t
im

e
(
n
s
)

enable address-space isolation

64
32
16
2
1

processors

3

Overhead depending on the process size (in use-pieces) per CPU (left) and number of pages (right).



Memory protection 
put out of operation
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Overhead depending on the process size (in use-pieces) per CPU (left) and number of pages (right).



Memory protection 
minimal additional costs
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Overhead per process per CPU with address-space isolation turned on, but disabled (top), and off (bottom).



Memory protection 
relatively considered
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Overhead per pages unmapped for OctoPOS (left) and Linux (right): 10-fold increase from left to right.



Interference in action 
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background process: forever { mem_map; delay; mem_unmap }
mem_map(...)
delay(X)
mem_unmap(...)

start_timer()
work(Y)
stop_timer()
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–David Parnas, 1979*

“Some users may require only a subset of the 
services or features that other users need. 
These ‘less demanding’ users may demand 

that they not be forced to pay for the resources 
consumed by the unneeded features.” 

*Designing Software for Ease of Extension and Contraction, IEEE TSE, vol. SE-5, no. 2
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Address-space isolation 
‘on demand’



Resource-aware computing
Invasive programming
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A symbol for Mindfulness.

Invasive Programming denotes the capability of a program running on a parallel computer:
• to request and temporarily claim processor, communication and memory resources in the neighbourhood of its actual computing environment (invade),
• to then execute in parallel the given program using these claimed resources (infect),
• and to be capable to subsequently free these resources again (retreat).



1. make a claim 

• request/reserve computing resources 

2. utilise the claim 

• deal with the resources received 

3. drop the claim 

• release of resources after their use

Resource awareness 
Trinity of requisition, usage, and restoration
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invade

infect

retreat

invade
• explore and claim resources in the (logical) neighbourhood of a processor running a given program

infect
• copy the same or another program into all claimed processors and start execution

retreat
• may terminate the program or just allow the invasion of its invaded resources by other programs
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compute

reorganise

Resource usage cycle
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Units of “invasion’’

1. candidate

2. instance

3. incarnation


4. execution

i-let Program section being aware of 
potential parallel execution

operating-system entities {
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invasive (based on Merriam-Webster):
• tending to spread especially in a quick manner,
• disseminating from a localised area throughout the system,
• extending and dispersing easily possibly at the expense of existing entities and balance.
To ensure situational, urgent non-sequential processes depending on internal and external constraints.



One or more different i-let...

candidates 
solving method 

operation principle 
source module

instances 
activity category 
processor type 
object module

incarnations 
operating mode 
resource class 
load module

executions 
characteristic trait 

(HW, FW, SW) 
core image
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infect

run to
completion

compile

Depending on the level of abstraction considered, different i-let entities and associated properties are distinguished:

candidate
(a) prospect out of a family of algorithms for the same problem to be solved,
(b) potential cause of a specific operation principle of the (parallel) processor as to be enforced by the operating system and
(c) possibly represented and maintained as a separate source module.

instance
(a) medium of activity of an invasive-parallel program,
(b) specification of a virtual processor for it and
(c) possibly represented and maintained as a separate object module.

incarnation
(a) characteristic of the mode of operation to be realised by the operating system,
(b) ground anchor for the resources virtually needed for making progress in parallel processing and
(c) possibly represented and maintained as a separate load module.

execution
(a) actual disposition of a portion of an invasive-parallel program running on a real processor,
(b) effective unit of processing implemented in soft-, firm-, or hardware
(c) associated with a dedicated memory image.



Address-space isolation 
‘on demand’ (revisited)
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Summary
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Daß dies mit Verstand geschah
war Herr Lehrer Lämpel da.

Of this wisdom an example 
To the world was Master Laempel.

(Max and Moritz — A Juvenile History in Seven Tricks by Wilhelm Busch, here: Fourth Trick)



Think application-centric…

Memory protection serves the safety and security 

• hardware-based solutions are by far not dogma 

• if anything, only type-unsafe processes have to be “imprisoned’’ 

Address-space solation is not without cost and causes uncertainty 

• time-dependent processes suffer from interference 

• interference is the cause of many evils for predictability 

Design for predictability is an overarching aspect that crosscuts the 
whole computing system
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Figure: An important missive (dt. „Die Lektüre“), Carl Spitzweg, around 1870.
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